
# Objective - Currently exclusive systems and applying buffers run outside of the multithreaded executor and just calls the funtions on the thread the schedule is running on. Stageless changes this to run these using tasks in a scope. Specifically It uses `spawn_on_scope` to run these. For the render thread this is incorrect as calling `spawn_on_scope` there runs tasks on the main thread. It should instead run these on the render thread and only run nonsend systems on the main thread. ## Solution - Add another executor to `Scope` for spawning tasks on the scope. `spawn_on_scope` now always runs the task on the thread the scope is running on. `spawn_on_external` spawns onto the external executor than is optionally passed in. If None is passed `spawn_on_external` will spawn onto the scope executor. - Eventually this new machinery will be able to be removed. This will happen once a fix for removing NonSend resources from the world lands. So this is a temporary fix to support stageless. --- ## Changelog - add a spawn_on_external method to allow spawning on the scope's thread or an external thread ## Migration Guide > No migration guide. The main thread executor was introduced in pipelined rendering which was merged for 0.10. spawn_on_scope now behaves the same way as on 0.9.
868 lines
32 KiB
Rust
868 lines
32 KiB
Rust
use std::{
|
|
future::Future,
|
|
marker::PhantomData,
|
|
mem,
|
|
panic::AssertUnwindSafe,
|
|
sync::Arc,
|
|
thread::{self, JoinHandle},
|
|
};
|
|
|
|
use async_task::FallibleTask;
|
|
use concurrent_queue::ConcurrentQueue;
|
|
use futures_lite::{future, FutureExt};
|
|
|
|
use crate::{
|
|
thread_executor::{ThreadExecutor, ThreadExecutorTicker},
|
|
Task,
|
|
};
|
|
|
|
struct CallOnDrop(Option<Arc<dyn Fn() + Send + Sync + 'static>>);
|
|
|
|
impl Drop for CallOnDrop {
|
|
fn drop(&mut self) {
|
|
if let Some(call) = self.0.as_ref() {
|
|
call();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Used to create a [`TaskPool`]
|
|
#[derive(Default)]
|
|
#[must_use]
|
|
pub struct TaskPoolBuilder {
|
|
/// If set, we'll set up the thread pool to use at most `num_threads` threads.
|
|
/// Otherwise use the logical core count of the system
|
|
num_threads: Option<usize>,
|
|
/// If set, we'll use the given stack size rather than the system default
|
|
stack_size: Option<usize>,
|
|
/// Allows customizing the name of the threads - helpful for debugging. If set, threads will
|
|
/// be named <thread_name> (<thread_index>), i.e. "MyThreadPool (2)"
|
|
thread_name: Option<String>,
|
|
|
|
on_thread_spawn: Option<Arc<dyn Fn() + Send + Sync + 'static>>,
|
|
on_thread_destroy: Option<Arc<dyn Fn() + Send + Sync + 'static>>,
|
|
}
|
|
|
|
impl TaskPoolBuilder {
|
|
/// Creates a new [`TaskPoolBuilder`] instance
|
|
pub fn new() -> Self {
|
|
Self::default()
|
|
}
|
|
|
|
/// Override the number of threads created for the pool. If unset, we default to the number
|
|
/// of logical cores of the system
|
|
pub fn num_threads(mut self, num_threads: usize) -> Self {
|
|
self.num_threads = Some(num_threads);
|
|
self
|
|
}
|
|
|
|
/// Override the stack size of the threads created for the pool
|
|
pub fn stack_size(mut self, stack_size: usize) -> Self {
|
|
self.stack_size = Some(stack_size);
|
|
self
|
|
}
|
|
|
|
/// Override the name of the threads created for the pool. If set, threads will
|
|
/// be named `<thread_name> (<thread_index>)`, i.e. `MyThreadPool (2)`
|
|
pub fn thread_name(mut self, thread_name: String) -> Self {
|
|
self.thread_name = Some(thread_name);
|
|
self
|
|
}
|
|
|
|
/// Sets a callback that is invoked once for every created thread as it starts.
|
|
///
|
|
/// This is called on the thread itself and has access to all thread-local storage.
|
|
/// This will block running async tasks on the thread until the callback completes.
|
|
pub fn on_thread_spawn(mut self, f: impl Fn() + Send + Sync + 'static) -> Self {
|
|
self.on_thread_spawn = Some(Arc::new(f));
|
|
self
|
|
}
|
|
|
|
/// Sets a callback that is invoked once for every created thread as it terminates.
|
|
///
|
|
/// This is called on the thread itself and has access to all thread-local storage.
|
|
/// This will block thread termination until the callback completes.
|
|
pub fn on_thread_destroy(mut self, f: impl Fn() + Send + Sync + 'static) -> Self {
|
|
self.on_thread_destroy = Some(Arc::new(f));
|
|
self
|
|
}
|
|
|
|
/// Creates a new [`TaskPool`] based on the current options.
|
|
pub fn build(self) -> TaskPool {
|
|
TaskPool::new_internal(self)
|
|
}
|
|
}
|
|
|
|
/// A thread pool for executing tasks. Tasks are futures that are being automatically driven by
|
|
/// the pool on threads owned by the pool.
|
|
#[derive(Debug)]
|
|
pub struct TaskPool {
|
|
/// The executor for the pool
|
|
///
|
|
/// This has to be separate from TaskPoolInner because we have to create an `Arc<Executor>` to
|
|
/// pass into the worker threads, and we must create the worker threads before we can create
|
|
/// the `Vec<Task<T>>` contained within `TaskPoolInner`
|
|
executor: Arc<async_executor::Executor<'static>>,
|
|
|
|
/// Inner state of the pool
|
|
threads: Vec<JoinHandle<()>>,
|
|
shutdown_tx: async_channel::Sender<()>,
|
|
}
|
|
|
|
impl TaskPool {
|
|
thread_local! {
|
|
static LOCAL_EXECUTOR: async_executor::LocalExecutor<'static> = async_executor::LocalExecutor::new();
|
|
static THREAD_EXECUTOR: ThreadExecutor<'static> = ThreadExecutor::new();
|
|
}
|
|
|
|
/// Create a `TaskPool` with the default configuration.
|
|
pub fn new() -> Self {
|
|
TaskPoolBuilder::new().build()
|
|
}
|
|
|
|
fn new_internal(builder: TaskPoolBuilder) -> Self {
|
|
let (shutdown_tx, shutdown_rx) = async_channel::unbounded::<()>();
|
|
|
|
let executor = Arc::new(async_executor::Executor::new());
|
|
|
|
let num_threads = builder
|
|
.num_threads
|
|
.unwrap_or_else(crate::available_parallelism);
|
|
|
|
let threads = (0..num_threads)
|
|
.map(|i| {
|
|
let ex = Arc::clone(&executor);
|
|
let shutdown_rx = shutdown_rx.clone();
|
|
|
|
let thread_name = if let Some(thread_name) = builder.thread_name.as_deref() {
|
|
format!("{thread_name} ({i})")
|
|
} else {
|
|
format!("TaskPool ({i})")
|
|
};
|
|
let mut thread_builder = thread::Builder::new().name(thread_name);
|
|
|
|
if let Some(stack_size) = builder.stack_size {
|
|
thread_builder = thread_builder.stack_size(stack_size);
|
|
}
|
|
|
|
let on_thread_spawn = builder.on_thread_spawn.clone();
|
|
let on_thread_destroy = builder.on_thread_destroy.clone();
|
|
|
|
thread_builder
|
|
.spawn(move || {
|
|
TaskPool::LOCAL_EXECUTOR.with(|local_executor| {
|
|
if let Some(on_thread_spawn) = on_thread_spawn {
|
|
on_thread_spawn();
|
|
drop(on_thread_spawn);
|
|
}
|
|
let _destructor = CallOnDrop(on_thread_destroy);
|
|
loop {
|
|
let res = std::panic::catch_unwind(|| {
|
|
let tick_forever = async move {
|
|
loop {
|
|
local_executor.tick().await;
|
|
}
|
|
};
|
|
future::block_on(ex.run(tick_forever.or(shutdown_rx.recv())))
|
|
});
|
|
if let Ok(value) = res {
|
|
// Use unwrap_err because we expect a Closed error
|
|
value.unwrap_err();
|
|
break;
|
|
}
|
|
}
|
|
});
|
|
})
|
|
.expect("Failed to spawn thread.")
|
|
})
|
|
.collect();
|
|
|
|
Self {
|
|
executor,
|
|
threads,
|
|
shutdown_tx,
|
|
}
|
|
}
|
|
|
|
/// Return the number of threads owned by the task pool
|
|
pub fn thread_num(&self) -> usize {
|
|
self.threads.len()
|
|
}
|
|
|
|
/// Allows spawning non-`'static` futures on the thread pool. The function takes a callback,
|
|
/// passing a scope object into it. The scope object provided to the callback can be used
|
|
/// to spawn tasks. This function will await the completion of all tasks before returning.
|
|
///
|
|
/// This is similar to `rayon::scope` and `crossbeam::scope`
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// use bevy_tasks::TaskPool;
|
|
///
|
|
/// let pool = TaskPool::new();
|
|
/// let mut x = 0;
|
|
/// let results = pool.scope(|s| {
|
|
/// s.spawn(async {
|
|
/// // you can borrow the spawner inside a task and spawn tasks from within the task
|
|
/// s.spawn(async {
|
|
/// // borrow x and mutate it.
|
|
/// x = 2;
|
|
/// // return a value from the task
|
|
/// 1
|
|
/// });
|
|
/// // return some other value from the first task
|
|
/// 0
|
|
/// });
|
|
/// });
|
|
///
|
|
/// // The ordering of results is non-deterministic if you spawn from within tasks as above.
|
|
/// // If you're doing this, you'll have to write your code to not depend on the ordering.
|
|
/// assert!(results.contains(&0));
|
|
/// assert!(results.contains(&1));
|
|
///
|
|
/// // The ordering is deterministic if you only spawn directly from the closure function.
|
|
/// let results = pool.scope(|s| {
|
|
/// s.spawn(async { 0 });
|
|
/// s.spawn(async { 1 });
|
|
/// });
|
|
/// assert_eq!(&results[..], &[0, 1]);
|
|
///
|
|
/// // You can access x after scope runs, since it was only temporarily borrowed in the scope.
|
|
/// assert_eq!(x, 2);
|
|
/// ```
|
|
///
|
|
/// # Lifetimes
|
|
///
|
|
/// The [`Scope`] object takes two lifetimes: `'scope` and `'env`.
|
|
///
|
|
/// The `'scope` lifetime represents the lifetime of the scope. That is the time during
|
|
/// which the provided closure and tasks that are spawned into the scope are run.
|
|
///
|
|
/// The `'env` lifetime represents the lifetime of whatever is borrowed by the scope.
|
|
/// Thus this lifetime must outlive `'scope`.
|
|
///
|
|
/// ```compile_fail
|
|
/// use bevy_tasks::TaskPool;
|
|
/// fn scope_escapes_closure() {
|
|
/// let pool = TaskPool::new();
|
|
/// let foo = Box::new(42);
|
|
/// pool.scope(|scope| {
|
|
/// std::thread::spawn(move || {
|
|
/// // UB. This could spawn on the scope after `.scope` returns and the internal Scope is dropped.
|
|
/// scope.spawn(async move {
|
|
/// assert_eq!(*foo, 42);
|
|
/// });
|
|
/// });
|
|
/// });
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// ```compile_fail
|
|
/// use bevy_tasks::TaskPool;
|
|
/// fn cannot_borrow_from_closure() {
|
|
/// let pool = TaskPool::new();
|
|
/// pool.scope(|scope| {
|
|
/// let x = 1;
|
|
/// let y = &x;
|
|
/// scope.spawn(async move {
|
|
/// assert_eq!(*y, 1);
|
|
/// });
|
|
/// });
|
|
/// }
|
|
pub fn scope<'env, F, T>(&self, f: F) -> Vec<T>
|
|
where
|
|
F: for<'scope> FnOnce(&'scope Scope<'scope, 'env, T>),
|
|
T: Send + 'static,
|
|
{
|
|
Self::THREAD_EXECUTOR.with(|scope_executor| {
|
|
self.scope_with_executor_inner(true, scope_executor, scope_executor, f)
|
|
})
|
|
}
|
|
|
|
/// This allows passing an external executor to spawn tasks on. When you pass an external executor
|
|
/// [`Scope::spawn_on_scope`] spawns is then run on the thread that [`ThreadExecutor`] is being ticked on.
|
|
/// If [`None`] is passed the scope will use a [`ThreadExecutor`] that is ticked on the current thread.
|
|
///
|
|
/// When `tick_task_pool_executor` is set to `true`, the multithreaded task stealing executor is ticked on the scope
|
|
/// thread. Disabling this can be useful when finishing the scope is latency sensitive. Pulling tasks from
|
|
/// global excutor can run tasks unrelated to the scope and delay when the scope returns.
|
|
///
|
|
/// See [`Self::scope`] for more details in general about how scopes work.
|
|
pub fn scope_with_executor<'env, F, T>(
|
|
&self,
|
|
tick_task_pool_executor: bool,
|
|
external_executor: Option<&ThreadExecutor>,
|
|
f: F,
|
|
) -> Vec<T>
|
|
where
|
|
F: for<'scope> FnOnce(&'scope Scope<'scope, 'env, T>),
|
|
T: Send + 'static,
|
|
{
|
|
Self::THREAD_EXECUTOR.with(|scope_executor| {
|
|
// If a `external_executor` is passed use that. Otherwise get the executor stored
|
|
// in the `THREAD_EXECUTOR` thread local.
|
|
if let Some(external_executor) = external_executor {
|
|
self.scope_with_executor_inner(
|
|
tick_task_pool_executor,
|
|
external_executor,
|
|
scope_executor,
|
|
f,
|
|
)
|
|
} else {
|
|
self.scope_with_executor_inner(
|
|
tick_task_pool_executor,
|
|
scope_executor,
|
|
scope_executor,
|
|
f,
|
|
)
|
|
}
|
|
})
|
|
}
|
|
|
|
fn scope_with_executor_inner<'env, F, T>(
|
|
&self,
|
|
tick_task_pool_executor: bool,
|
|
external_executor: &ThreadExecutor,
|
|
scope_executor: &ThreadExecutor,
|
|
f: F,
|
|
) -> Vec<T>
|
|
where
|
|
F: for<'scope> FnOnce(&'scope Scope<'scope, 'env, T>),
|
|
T: Send + 'static,
|
|
{
|
|
// SAFETY: This safety comment applies to all references transmuted to 'env.
|
|
// Any futures spawned with these references need to return before this function completes.
|
|
// This is guaranteed because we drive all the futures spawned onto the Scope
|
|
// to completion in this function. However, rust has no way of knowing this so we
|
|
// transmute the lifetimes to 'env here to appease the compiler as it is unable to validate safety.
|
|
let executor: &async_executor::Executor = &self.executor;
|
|
let executor: &'env async_executor::Executor = unsafe { mem::transmute(executor) };
|
|
let external_executor: &'env ThreadExecutor<'env> =
|
|
unsafe { mem::transmute(external_executor) };
|
|
let scope_executor: &'env ThreadExecutor<'env> = unsafe { mem::transmute(scope_executor) };
|
|
let spawned: ConcurrentQueue<FallibleTask<T>> = ConcurrentQueue::unbounded();
|
|
let spawned_ref: &'env ConcurrentQueue<FallibleTask<T>> =
|
|
unsafe { mem::transmute(&spawned) };
|
|
|
|
let scope = Scope {
|
|
executor,
|
|
external_executor,
|
|
scope_executor,
|
|
spawned: spawned_ref,
|
|
scope: PhantomData,
|
|
env: PhantomData,
|
|
};
|
|
|
|
let scope_ref: &'env Scope<'_, 'env, T> = unsafe { mem::transmute(&scope) };
|
|
|
|
f(scope_ref);
|
|
|
|
if spawned.is_empty() {
|
|
Vec::new()
|
|
} else {
|
|
future::block_on(async move {
|
|
let get_results = async {
|
|
let mut results = Vec::with_capacity(spawned_ref.len());
|
|
while let Ok(task) = spawned_ref.pop() {
|
|
results.push(task.await.unwrap());
|
|
}
|
|
results
|
|
};
|
|
|
|
let tick_task_pool_executor = tick_task_pool_executor || self.threads.is_empty();
|
|
|
|
// we get this from a thread local so we should always be on the scope executors thread.
|
|
let scope_ticker = scope_executor.ticker().unwrap();
|
|
if let Some(external_ticker) = external_executor.ticker() {
|
|
if tick_task_pool_executor {
|
|
Self::execute_global_external_scope(
|
|
executor,
|
|
external_ticker,
|
|
scope_ticker,
|
|
get_results,
|
|
)
|
|
.await
|
|
} else {
|
|
Self::execute_external_scope(external_ticker, scope_ticker, get_results)
|
|
.await
|
|
}
|
|
} else if tick_task_pool_executor {
|
|
Self::execute_global_scope(executor, scope_ticker, get_results).await
|
|
} else {
|
|
Self::execute_scope(scope_ticker, get_results).await
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
async fn execute_global_external_scope<'scope, 'ticker, T>(
|
|
executor: &'scope async_executor::Executor<'scope>,
|
|
external_ticker: ThreadExecutorTicker<'scope, 'ticker>,
|
|
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
|
|
get_results: impl Future<Output = Vec<T>>,
|
|
) -> Vec<T> {
|
|
// we restart the executors if a task errors. if a scoped
|
|
// task errors it will panic the scope on the call to get_results
|
|
let execute_forever = async move {
|
|
loop {
|
|
let tick_forever = async {
|
|
loop {
|
|
external_ticker.tick().or(scope_ticker.tick()).await;
|
|
}
|
|
};
|
|
// we don't care if it errors. If a scoped task errors it will propagate
|
|
// to get_results
|
|
let _result = AssertUnwindSafe(executor.run(tick_forever))
|
|
.catch_unwind()
|
|
.await
|
|
.is_ok();
|
|
}
|
|
};
|
|
execute_forever.or(get_results).await
|
|
}
|
|
|
|
#[inline]
|
|
async fn execute_external_scope<'scope, 'ticker, T>(
|
|
external_ticker: ThreadExecutorTicker<'scope, 'ticker>,
|
|
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
|
|
get_results: impl Future<Output = Vec<T>>,
|
|
) -> Vec<T> {
|
|
let execute_forever = async {
|
|
loop {
|
|
let tick_forever = async {
|
|
loop {
|
|
external_ticker.tick().or(scope_ticker.tick()).await;
|
|
}
|
|
};
|
|
let _result = AssertUnwindSafe(tick_forever).catch_unwind().await.is_ok();
|
|
}
|
|
};
|
|
execute_forever.or(get_results).await
|
|
}
|
|
|
|
#[inline]
|
|
async fn execute_global_scope<'scope, 'ticker, T>(
|
|
executor: &'scope async_executor::Executor<'scope>,
|
|
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
|
|
get_results: impl Future<Output = Vec<T>>,
|
|
) -> Vec<T> {
|
|
let execute_forever = async {
|
|
loop {
|
|
let tick_forever = async {
|
|
loop {
|
|
scope_ticker.tick().await;
|
|
}
|
|
};
|
|
let _result = AssertUnwindSafe(executor.run(tick_forever))
|
|
.catch_unwind()
|
|
.await
|
|
.is_ok();
|
|
}
|
|
};
|
|
execute_forever.or(get_results).await
|
|
}
|
|
|
|
#[inline]
|
|
async fn execute_scope<'scope, 'ticker, T>(
|
|
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
|
|
get_results: impl Future<Output = Vec<T>>,
|
|
) -> Vec<T> {
|
|
let execute_forever = async {
|
|
loop {
|
|
let tick_forever = async {
|
|
loop {
|
|
scope_ticker.tick().await;
|
|
}
|
|
};
|
|
let _result = AssertUnwindSafe(tick_forever).catch_unwind().await.is_ok();
|
|
}
|
|
};
|
|
execute_forever.or(get_results).await
|
|
}
|
|
|
|
/// Spawns a static future onto the thread pool. The returned Task is a future. It can also be
|
|
/// cancelled and "detached" allowing it to continue running without having to be polled by the
|
|
/// end-user.
|
|
///
|
|
/// If the provided future is non-`Send`, [`TaskPool::spawn_local`] should be used instead.
|
|
pub fn spawn<T>(&self, future: impl Future<Output = T> + Send + 'static) -> Task<T>
|
|
where
|
|
T: Send + 'static,
|
|
{
|
|
Task::new(self.executor.spawn(future))
|
|
}
|
|
|
|
/// Spawns a static future on the thread-local async executor for the current thread. The task
|
|
/// will run entirely on the thread the task was spawned on. The returned Task is a future.
|
|
/// It can also be cancelled and "detached" allowing it to continue running without having
|
|
/// to be polled by the end-user. Users should generally prefer to use [`TaskPool::spawn`]
|
|
/// instead, unless the provided future is not `Send`.
|
|
pub fn spawn_local<T>(&self, future: impl Future<Output = T> + 'static) -> Task<T>
|
|
where
|
|
T: 'static,
|
|
{
|
|
Task::new(TaskPool::LOCAL_EXECUTOR.with(|executor| executor.spawn(future)))
|
|
}
|
|
|
|
/// Runs a function with the local executor. Typically used to tick
|
|
/// the local executor on the main thread as it needs to share time with
|
|
/// other things.
|
|
///
|
|
/// ```rust
|
|
/// use bevy_tasks::TaskPool;
|
|
///
|
|
/// TaskPool::new().with_local_executor(|local_executor| {
|
|
/// local_executor.try_tick();
|
|
/// });
|
|
/// ```
|
|
pub fn with_local_executor<F, R>(&self, f: F) -> R
|
|
where
|
|
F: FnOnce(&async_executor::LocalExecutor) -> R,
|
|
{
|
|
Self::LOCAL_EXECUTOR.with(f)
|
|
}
|
|
}
|
|
|
|
impl Default for TaskPool {
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
impl Drop for TaskPool {
|
|
fn drop(&mut self) {
|
|
self.shutdown_tx.close();
|
|
|
|
let panicking = thread::panicking();
|
|
for join_handle in self.threads.drain(..) {
|
|
let res = join_handle.join();
|
|
if !panicking {
|
|
res.expect("Task thread panicked while executing.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A `TaskPool` scope for running one or more non-`'static` futures.
|
|
///
|
|
/// For more information, see [`TaskPool::scope`].
|
|
#[derive(Debug)]
|
|
pub struct Scope<'scope, 'env: 'scope, T> {
|
|
executor: &'scope async_executor::Executor<'scope>,
|
|
external_executor: &'scope ThreadExecutor<'scope>,
|
|
scope_executor: &'scope ThreadExecutor<'scope>,
|
|
spawned: &'scope ConcurrentQueue<FallibleTask<T>>,
|
|
// make `Scope` invariant over 'scope and 'env
|
|
scope: PhantomData<&'scope mut &'scope ()>,
|
|
env: PhantomData<&'env mut &'env ()>,
|
|
}
|
|
|
|
impl<'scope, 'env, T: Send + 'scope> Scope<'scope, 'env, T> {
|
|
/// Spawns a scoped future onto the thread pool. The scope *must* outlive
|
|
/// the provided future. The results of the future will be returned as a part of
|
|
/// [`TaskPool::scope`]'s return value.
|
|
///
|
|
/// For futures that should run on the thread `scope` is called on [`Scope::spawn_on_scope`] should be used
|
|
/// instead.
|
|
///
|
|
/// For more information, see [`TaskPool::scope`].
|
|
pub fn spawn<Fut: Future<Output = T> + 'scope + Send>(&self, f: Fut) {
|
|
let task = self.executor.spawn(f).fallible();
|
|
// ConcurrentQueue only errors when closed or full, but we never
|
|
// close and use an unbounded queue, so it is safe to unwrap
|
|
self.spawned.push(task).unwrap();
|
|
}
|
|
|
|
/// Spawns a scoped future onto the thread the scope is run on. The scope *must* outlive
|
|
/// the provided future. The results of the future will be returned as a part of
|
|
/// [`TaskPool::scope`]'s return value. Users should generally prefer to use
|
|
/// [`Scope::spawn`] instead, unless the provided future needs to run on the scope's thread.
|
|
///
|
|
/// For more information, see [`TaskPool::scope`].
|
|
pub fn spawn_on_scope<Fut: Future<Output = T> + 'scope + Send>(&self, f: Fut) {
|
|
let task = self.scope_executor.spawn(f).fallible();
|
|
// ConcurrentQueue only errors when closed or full, but we never
|
|
// close and use an unbounded queue, so it is safe to unwrap
|
|
self.spawned.push(task).unwrap();
|
|
}
|
|
|
|
/// Spawns a scoped future onto the thread of the external thread executor.
|
|
/// This is typically the main thread. The scope *must* outlive
|
|
/// the provided future. The results of the future will be returned as a part of
|
|
/// [`TaskPool::scope`]'s return value. Users should generally prefer to use
|
|
/// [`Scope::spawn`] instead, unless the provided future needs to run on the external thread.
|
|
///
|
|
/// For more information, see [`TaskPool::scope`].
|
|
pub fn spawn_on_external<Fut: Future<Output = T> + 'scope + Send>(&self, f: Fut) {
|
|
let task = self.external_executor.spawn(f).fallible();
|
|
// ConcurrentQueue only errors when closed or full, but we never
|
|
// close and use an unbounded queue, so it is safe to unwrap
|
|
self.spawned.push(task).unwrap();
|
|
}
|
|
}
|
|
|
|
impl<'scope, 'env, T> Drop for Scope<'scope, 'env, T>
|
|
where
|
|
T: 'scope,
|
|
{
|
|
fn drop(&mut self) {
|
|
future::block_on(async {
|
|
while let Ok(task) = self.spawned.pop() {
|
|
task.cancel().await;
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
#[allow(clippy::disallowed_types)]
|
|
mod tests {
|
|
use super::*;
|
|
use std::sync::{
|
|
atomic::{AtomicBool, AtomicI32, Ordering},
|
|
Barrier,
|
|
};
|
|
|
|
#[test]
|
|
fn test_spawn() {
|
|
let pool = TaskPool::new();
|
|
|
|
let foo = Box::new(42);
|
|
let foo = &*foo;
|
|
|
|
let count = Arc::new(AtomicI32::new(0));
|
|
|
|
let outputs = pool.scope(|scope| {
|
|
for _ in 0..100 {
|
|
let count_clone = count.clone();
|
|
scope.spawn(async move {
|
|
if *foo != 42 {
|
|
panic!("not 42!?!?")
|
|
} else {
|
|
count_clone.fetch_add(1, Ordering::Relaxed);
|
|
*foo
|
|
}
|
|
});
|
|
}
|
|
});
|
|
|
|
for output in &outputs {
|
|
assert_eq!(*output, 42);
|
|
}
|
|
|
|
assert_eq!(outputs.len(), 100);
|
|
assert_eq!(count.load(Ordering::Relaxed), 100);
|
|
}
|
|
|
|
#[test]
|
|
fn test_thread_callbacks() {
|
|
let counter = Arc::new(AtomicI32::new(0));
|
|
let start_counter = counter.clone();
|
|
{
|
|
let barrier = Arc::new(Barrier::new(11));
|
|
let last_barrier = barrier.clone();
|
|
// Build and immediately drop to terminate
|
|
let _pool = TaskPoolBuilder::new()
|
|
.num_threads(10)
|
|
.on_thread_spawn(move || {
|
|
start_counter.fetch_add(1, Ordering::Relaxed);
|
|
barrier.clone().wait();
|
|
})
|
|
.build();
|
|
last_barrier.wait();
|
|
assert_eq!(10, counter.load(Ordering::Relaxed));
|
|
}
|
|
assert_eq!(10, counter.load(Ordering::Relaxed));
|
|
let end_counter = counter.clone();
|
|
{
|
|
let _pool = TaskPoolBuilder::new()
|
|
.num_threads(20)
|
|
.on_thread_destroy(move || {
|
|
end_counter.fetch_sub(1, Ordering::Relaxed);
|
|
})
|
|
.build();
|
|
assert_eq!(10, counter.load(Ordering::Relaxed));
|
|
}
|
|
assert_eq!(-10, counter.load(Ordering::Relaxed));
|
|
let start_counter = counter.clone();
|
|
let end_counter = counter.clone();
|
|
{
|
|
let barrier = Arc::new(Barrier::new(6));
|
|
let last_barrier = barrier.clone();
|
|
let _pool = TaskPoolBuilder::new()
|
|
.num_threads(5)
|
|
.on_thread_spawn(move || {
|
|
start_counter.fetch_add(1, Ordering::Relaxed);
|
|
barrier.wait();
|
|
})
|
|
.on_thread_destroy(move || {
|
|
end_counter.fetch_sub(1, Ordering::Relaxed);
|
|
})
|
|
.build();
|
|
last_barrier.wait();
|
|
assert_eq!(-5, counter.load(Ordering::Relaxed));
|
|
}
|
|
assert_eq!(-10, counter.load(Ordering::Relaxed));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mixed_spawn_on_scope_and_spawn() {
|
|
let pool = TaskPool::new();
|
|
|
|
let foo = Box::new(42);
|
|
let foo = &*foo;
|
|
|
|
let local_count = Arc::new(AtomicI32::new(0));
|
|
let non_local_count = Arc::new(AtomicI32::new(0));
|
|
|
|
let outputs = pool.scope(|scope| {
|
|
for i in 0..100 {
|
|
if i % 2 == 0 {
|
|
let count_clone = non_local_count.clone();
|
|
scope.spawn(async move {
|
|
if *foo != 42 {
|
|
panic!("not 42!?!?")
|
|
} else {
|
|
count_clone.fetch_add(1, Ordering::Relaxed);
|
|
*foo
|
|
}
|
|
});
|
|
} else {
|
|
let count_clone = local_count.clone();
|
|
scope.spawn_on_scope(async move {
|
|
if *foo != 42 {
|
|
panic!("not 42!?!?")
|
|
} else {
|
|
count_clone.fetch_add(1, Ordering::Relaxed);
|
|
*foo
|
|
}
|
|
});
|
|
}
|
|
}
|
|
});
|
|
|
|
for output in &outputs {
|
|
assert_eq!(*output, 42);
|
|
}
|
|
|
|
assert_eq!(outputs.len(), 100);
|
|
assert_eq!(local_count.load(Ordering::Relaxed), 50);
|
|
assert_eq!(non_local_count.load(Ordering::Relaxed), 50);
|
|
}
|
|
|
|
#[test]
|
|
fn test_thread_locality() {
|
|
let pool = Arc::new(TaskPool::new());
|
|
let count = Arc::new(AtomicI32::new(0));
|
|
let barrier = Arc::new(Barrier::new(101));
|
|
let thread_check_failed = Arc::new(AtomicBool::new(false));
|
|
|
|
for _ in 0..100 {
|
|
let inner_barrier = barrier.clone();
|
|
let count_clone = count.clone();
|
|
let inner_pool = pool.clone();
|
|
let inner_thread_check_failed = thread_check_failed.clone();
|
|
std::thread::spawn(move || {
|
|
inner_pool.scope(|scope| {
|
|
let inner_count_clone = count_clone.clone();
|
|
scope.spawn(async move {
|
|
inner_count_clone.fetch_add(1, Ordering::Release);
|
|
});
|
|
let spawner = std::thread::current().id();
|
|
let inner_count_clone = count_clone.clone();
|
|
scope.spawn_on_scope(async move {
|
|
inner_count_clone.fetch_add(1, Ordering::Release);
|
|
if std::thread::current().id() != spawner {
|
|
// NOTE: This check is using an atomic rather than simply panicking the
|
|
// thread to avoid deadlocking the barrier on failure
|
|
inner_thread_check_failed.store(true, Ordering::Release);
|
|
}
|
|
});
|
|
});
|
|
inner_barrier.wait();
|
|
});
|
|
}
|
|
barrier.wait();
|
|
assert!(!thread_check_failed.load(Ordering::Acquire));
|
|
assert_eq!(count.load(Ordering::Acquire), 200);
|
|
}
|
|
|
|
#[test]
|
|
fn test_nested_spawn() {
|
|
let pool = TaskPool::new();
|
|
|
|
let foo = Box::new(42);
|
|
let foo = &*foo;
|
|
|
|
let count = Arc::new(AtomicI32::new(0));
|
|
|
|
let outputs: Vec<i32> = pool.scope(|scope| {
|
|
for _ in 0..10 {
|
|
let count_clone = count.clone();
|
|
scope.spawn(async move {
|
|
for _ in 0..10 {
|
|
let count_clone_clone = count_clone.clone();
|
|
scope.spawn(async move {
|
|
if *foo != 42 {
|
|
panic!("not 42!?!?")
|
|
} else {
|
|
count_clone_clone.fetch_add(1, Ordering::Relaxed);
|
|
*foo
|
|
}
|
|
});
|
|
}
|
|
*foo
|
|
});
|
|
}
|
|
});
|
|
|
|
for output in &outputs {
|
|
assert_eq!(*output, 42);
|
|
}
|
|
|
|
// the inner loop runs 100 times and the outer one runs 10. 100 + 10
|
|
assert_eq!(outputs.len(), 110);
|
|
assert_eq!(count.load(Ordering::Relaxed), 100);
|
|
}
|
|
|
|
#[test]
|
|
fn test_nested_locality() {
|
|
let pool = Arc::new(TaskPool::new());
|
|
let count = Arc::new(AtomicI32::new(0));
|
|
let barrier = Arc::new(Barrier::new(101));
|
|
let thread_check_failed = Arc::new(AtomicBool::new(false));
|
|
|
|
for _ in 0..100 {
|
|
let inner_barrier = barrier.clone();
|
|
let count_clone = count.clone();
|
|
let inner_pool = pool.clone();
|
|
let inner_thread_check_failed = thread_check_failed.clone();
|
|
std::thread::spawn(move || {
|
|
inner_pool.scope(|scope| {
|
|
let spawner = std::thread::current().id();
|
|
let inner_count_clone = count_clone.clone();
|
|
scope.spawn(async move {
|
|
inner_count_clone.fetch_add(1, Ordering::Release);
|
|
|
|
// spawning on the scope from another thread runs the futures on the scope's thread
|
|
scope.spawn_on_scope(async move {
|
|
inner_count_clone.fetch_add(1, Ordering::Release);
|
|
if std::thread::current().id() != spawner {
|
|
// NOTE: This check is using an atomic rather than simply panicking the
|
|
// thread to avoid deadlocking the barrier on failure
|
|
inner_thread_check_failed.store(true, Ordering::Release);
|
|
}
|
|
});
|
|
});
|
|
});
|
|
inner_barrier.wait();
|
|
});
|
|
}
|
|
barrier.wait();
|
|
assert!(!thread_check_failed.load(Ordering::Acquire));
|
|
assert_eq!(count.load(Ordering::Acquire), 200);
|
|
}
|
|
}
|