
This PR adds support for *mixed lighting* to Bevy, whereby some parts of the scene are lightmapped, while others take part in real-time lighting. (Here *real-time lighting* means lighting at runtime via the PBR shader, as opposed to precomputed light using lightmaps.) It does so by adding a new field, `affects_lightmapped_meshes` to `IrradianceVolume` and `AmbientLight`, and a corresponding field `affects_lightmapped_mesh_diffuse` to `DirectionalLight`, `PointLight`, `SpotLight`, and `EnvironmentMapLight`. By default, this value is set to true; when set to false, the light contributes nothing to the diffuse irradiance component to meshes with lightmaps. Note that specular light is unaffected. This is because the correct way to bake specular lighting is *directional lightmaps*, which we have no support for yet. There are two general ways I expect this field to be used: 1. When diffuse indirect light is baked into lightmaps, irradiance volumes and reflection probes shouldn't contribute any diffuse light to the static geometry that has a lightmap. That's because the baking tool should have already accounted for it, and in a higher-quality fashion, as lightmaps typically offer a higher effective texture resolution than the light probe does. 2. When direct diffuse light is baked into a lightmap, punctual lights shouldn't contribute any diffuse light to static geometry with a lightmap, to avoid double-counting. It may seem odd to bake *direct* light into a lightmap, as opposed to indirect light. But there is a use case: in a scene with many lights, avoiding light leaks requires shadow mapping, which quickly becomes prohibitive when many lights are involved. Baking lightmaps allows light leaks to be eliminated on static geometry. A new example, `mixed_lighting`, has been added. It demonstrates a sofa (model from the [glTF Sample Assets]) that has been lightmapped offline using [Bakery]. It has four modes: 1. In *baked* mode, all objects are locked in place, and all the diffuse direct and indirect light has been calculated ahead of time. Note that the bottom of the sphere has a red tint from the sofa, illustrating that the baking tool captured indirect light for it. 2. In *mixed direct* mode, lightmaps capturing diffuse direct and indirect light have been pre-calculated for the static objects, but the dynamic sphere has real-time lighting. Note that, because the diffuse lighting has been entirely pre-calculated for the scenery, the dynamic sphere casts no shadow. In a real app, you would typically use real-time lighting for the most important light so that dynamic objects can shadow the scenery and relegate baked lighting to the less important lights for which shadows aren't as important. Also note that there is no red tint on the sphere, because there is no global illumination applied to it. In an actual game, you could fix this problem by supplementing the lightmapped objects with an irradiance volume. 3. In *mixed indirect* mode, all direct light is calculated in real-time, and the static objects have pre-calculated indirect lighting. This corresponds to the mode that most applications are expected to use. Because direct light on the scenery is computed dynamically, shadows are fully supported. As in mixed direct mode, there is no global illumination on the sphere; in a real application, irradiance volumes could be used to supplement the lightmaps. 4. In *real-time* mode, no lightmaps are used at all, and all punctual lights are rendered in real-time. No global illumination exists. In the example, you can click around to move the sphere, unless you're in baked mode, in which case the sphere must be locked in place to be lit correctly. ## Showcase Baked mode:  Mixed direct mode:  Mixed indirect mode (default):  Real-time mode:  ## Migration guide * The `AmbientLight` resource, the `IrradianceVolume` component, and the `EnvironmentMapLight` component now have `affects_lightmapped_meshes` fields. If you don't need to use that field (for example, if you aren't using lightmaps), you can safely set the field to true. * `DirectionalLight`, `PointLight`, and `SpotLight` now have `affects_lightmapped_mesh_diffuse` fields. If you don't need to use that field (for example, if you aren't using lightmaps), you can safely set the field to true. [glTF Sample Assets]: https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main [Bakery]: https://geom.io/bakery/wiki/index.php?title=Bakery_-_GPU_Lightmapper
278 lines
8.7 KiB
Rust
278 lines
8.7 KiB
Rust
//! This example illustrates how to wait for multiple assets to be loaded.
|
|
|
|
use std::{
|
|
f32::consts::PI,
|
|
ops::Drop,
|
|
sync::{
|
|
atomic::{AtomicBool, AtomicU32, Ordering},
|
|
Arc,
|
|
},
|
|
};
|
|
|
|
use bevy::{gltf::Gltf, prelude::*, tasks::AsyncComputeTaskPool};
|
|
use event_listener::Event;
|
|
use futures_lite::Future;
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.init_state::<LoadingState>()
|
|
.insert_resource(AmbientLight {
|
|
color: Color::WHITE,
|
|
brightness: 2000.,
|
|
..default()
|
|
})
|
|
.add_systems(Startup, setup_assets)
|
|
.add_systems(Startup, setup_scene)
|
|
.add_systems(Startup, setup_ui)
|
|
// This showcases how to wait for assets using sync code.
|
|
// This approach polls a value in a system.
|
|
.add_systems(Update, wait_on_load.run_if(assets_loaded))
|
|
// This showcases how to wait for assets using async
|
|
// by spawning a `Future` in `AsyncComputeTaskPool`.
|
|
.add_systems(
|
|
Update,
|
|
get_async_loading_state.run_if(in_state(LoadingState::Loading)),
|
|
)
|
|
// This showcases how to react to asynchronous world mutation synchronously.
|
|
.add_systems(
|
|
OnExit(LoadingState::Loading),
|
|
despawn_loading_state_entities,
|
|
)
|
|
.run();
|
|
}
|
|
|
|
/// [`States`] of asset loading.
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, States, Default)]
|
|
pub enum LoadingState {
|
|
/// Is loading.
|
|
#[default]
|
|
Loading,
|
|
/// Loading completed.
|
|
Loaded,
|
|
}
|
|
|
|
/// Holds a bunch of [`Gltf`]s that takes time to load.
|
|
#[derive(Debug, Resource)]
|
|
pub struct OneHundredThings([Handle<Gltf>; 100]);
|
|
|
|
/// This is required to support both sync and async.
|
|
///
|
|
/// For sync only the easiest implementation is
|
|
/// [`Arc<()>`] and use [`Arc::strong_count`] for completion.
|
|
/// [`Arc<Atomic>`] is a more robust alternative.
|
|
#[derive(Debug, Resource, Deref)]
|
|
pub struct AssetBarrier(Arc<AssetBarrierInner>);
|
|
|
|
/// This guard is to be acquired by [`AssetServer::load_acquire`]
|
|
/// and dropped once finished.
|
|
#[derive(Debug, Deref)]
|
|
pub struct AssetBarrierGuard(Arc<AssetBarrierInner>);
|
|
|
|
/// Tracks how many guards are remaining.
|
|
#[derive(Debug, Resource)]
|
|
pub struct AssetBarrierInner {
|
|
count: AtomicU32,
|
|
/// This can be omitted if async is not needed.
|
|
notify: Event,
|
|
}
|
|
|
|
/// State of loading asynchronously.
|
|
#[derive(Debug, Resource)]
|
|
pub struct AsyncLoadingState(Arc<AtomicBool>);
|
|
|
|
/// Entities that are to be removed once loading finished
|
|
#[derive(Debug, Component)]
|
|
pub struct Loading;
|
|
|
|
/// Marker for the "Loading..." Text component.
|
|
#[derive(Debug, Component)]
|
|
pub struct LoadingText;
|
|
|
|
impl AssetBarrier {
|
|
/// Create an [`AssetBarrier`] with a [`AssetBarrierGuard`].
|
|
pub fn new() -> (AssetBarrier, AssetBarrierGuard) {
|
|
let inner = Arc::new(AssetBarrierInner {
|
|
count: AtomicU32::new(1),
|
|
notify: Event::new(),
|
|
});
|
|
(AssetBarrier(inner.clone()), AssetBarrierGuard(inner))
|
|
}
|
|
|
|
/// Returns true if all [`AssetBarrierGuard`] is dropped.
|
|
pub fn is_ready(&self) -> bool {
|
|
self.count.load(Ordering::Acquire) == 0
|
|
}
|
|
|
|
/// Wait for all [`AssetBarrierGuard`]s to be dropped asynchronously.
|
|
pub fn wait_async(&self) -> impl Future<Output = ()> + 'static {
|
|
let shared = self.0.clone();
|
|
async move {
|
|
loop {
|
|
// Acquire an event listener.
|
|
let listener = shared.notify.listen();
|
|
// If all barrier guards are dropped, return
|
|
if shared.count.load(Ordering::Acquire) == 0 {
|
|
return;
|
|
}
|
|
// Wait for the last barrier guard to notify us
|
|
listener.await;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Increment count on clone.
|
|
impl Clone for AssetBarrierGuard {
|
|
fn clone(&self) -> Self {
|
|
self.count.fetch_add(1, Ordering::AcqRel);
|
|
AssetBarrierGuard(self.0.clone())
|
|
}
|
|
}
|
|
|
|
// Decrement count on drop.
|
|
impl Drop for AssetBarrierGuard {
|
|
fn drop(&mut self) {
|
|
let prev = self.count.fetch_sub(1, Ordering::AcqRel);
|
|
if prev == 1 {
|
|
// Notify all listeners if count reaches 0.
|
|
self.notify.notify(usize::MAX);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn setup_assets(mut commands: Commands, asset_server: Res<AssetServer>) {
|
|
let (barrier, guard) = AssetBarrier::new();
|
|
commands.insert_resource(OneHundredThings(std::array::from_fn(|i| match i % 5 {
|
|
0 => asset_server.load_acquire("models/GolfBall/GolfBall.glb", guard.clone()),
|
|
1 => asset_server.load_acquire("models/AlienCake/alien.glb", guard.clone()),
|
|
2 => asset_server.load_acquire("models/AlienCake/cakeBirthday.glb", guard.clone()),
|
|
3 => asset_server.load_acquire("models/FlightHelmet/FlightHelmet.gltf", guard.clone()),
|
|
4 => asset_server.load_acquire("models/torus/torus.gltf", guard.clone()),
|
|
_ => unreachable!(),
|
|
})));
|
|
let future = barrier.wait_async();
|
|
commands.insert_resource(barrier);
|
|
|
|
let loading_state = Arc::new(AtomicBool::new(false));
|
|
commands.insert_resource(AsyncLoadingState(loading_state.clone()));
|
|
|
|
// await the `AssetBarrierFuture`.
|
|
AsyncComputeTaskPool::get()
|
|
.spawn(async move {
|
|
future.await;
|
|
// Notify via `AsyncLoadingState`
|
|
loading_state.store(true, Ordering::Release);
|
|
})
|
|
.detach();
|
|
}
|
|
|
|
fn setup_ui(mut commands: Commands) {
|
|
// Display the result of async loading.
|
|
|
|
commands.spawn((
|
|
LoadingText,
|
|
Text::new("Loading...".to_owned()),
|
|
Node {
|
|
position_type: PositionType::Absolute,
|
|
left: Val::Px(12.0),
|
|
top: Val::Px(12.0),
|
|
..default()
|
|
},
|
|
));
|
|
}
|
|
|
|
fn setup_scene(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
) {
|
|
// Camera
|
|
commands.spawn((
|
|
Camera3d::default(),
|
|
Transform::from_xyz(10.0, 10.0, 15.0).looking_at(Vec3::new(0.0, 0.0, 0.0), Vec3::Y),
|
|
));
|
|
|
|
// Light
|
|
commands.spawn((
|
|
DirectionalLight {
|
|
shadows_enabled: true,
|
|
..default()
|
|
},
|
|
Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
|
|
));
|
|
|
|
// Plane
|
|
commands.spawn((
|
|
Mesh3d(meshes.add(Plane3d::default().mesh().size(50000.0, 50000.0))),
|
|
MeshMaterial3d(materials.add(Color::srgb(0.7, 0.2, 0.2))),
|
|
Loading,
|
|
));
|
|
}
|
|
|
|
// A run condition for all assets being loaded.
|
|
fn assets_loaded(barrier: Option<Res<AssetBarrier>>) -> bool {
|
|
// If our barrier isn't ready, return early and wait another cycle
|
|
barrier.map(|b| b.is_ready()) == Some(true)
|
|
}
|
|
|
|
// This showcases how to wait for assets using sync code and systems.
|
|
//
|
|
// This function only runs if `assets_loaded` returns true.
|
|
fn wait_on_load(
|
|
mut commands: Commands,
|
|
foxes: Res<OneHundredThings>,
|
|
gltfs: Res<Assets<Gltf>>,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
) {
|
|
// Change color of plane to green
|
|
commands.spawn((
|
|
Mesh3d(meshes.add(Plane3d::default().mesh().size(50000.0, 50000.0))),
|
|
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
|
|
Transform::from_translation(Vec3::Z * -0.01),
|
|
));
|
|
|
|
// Spawn our scenes.
|
|
for i in 0..10 {
|
|
for j in 0..10 {
|
|
let index = i * 10 + j;
|
|
let position = Vec3::new(i as f32 - 5.0, 0.0, j as f32 - 5.0);
|
|
// All gltfs must exist because this is guarded by the `AssetBarrier`.
|
|
let gltf = gltfs.get(&foxes.0[index]).unwrap();
|
|
let scene = gltf.scenes.first().unwrap().clone();
|
|
commands.spawn((SceneRoot(scene), Transform::from_translation(position)));
|
|
}
|
|
}
|
|
}
|
|
|
|
// This showcases how to wait for assets using async.
|
|
fn get_async_loading_state(
|
|
state: Res<AsyncLoadingState>,
|
|
mut next_loading_state: ResMut<NextState<LoadingState>>,
|
|
mut text: Query<&mut Text, With<LoadingText>>,
|
|
) {
|
|
// Load the value written by the `Future`.
|
|
let is_loaded = state.0.load(Ordering::Acquire);
|
|
|
|
// If loaded, change the state.
|
|
if is_loaded {
|
|
next_loading_state.set(LoadingState::Loaded);
|
|
if let Ok(mut text) = text.get_single_mut() {
|
|
"Loaded!".clone_into(&mut **text);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This showcases how to react to asynchronous world mutations synchronously.
|
|
fn despawn_loading_state_entities(mut commands: Commands, loading: Query<Entity, With<Loading>>) {
|
|
// Despawn entities in the loading phase.
|
|
for entity in loading.iter() {
|
|
commands.entity(entity).despawn_recursive();
|
|
}
|
|
|
|
// Despawn resources used in the loading phase.
|
|
commands.remove_resource::<AssetBarrier>();
|
|
commands.remove_resource::<AsyncLoadingState>();
|
|
}
|