
# Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
788 lines
29 KiB
Rust
788 lines
29 KiB
Rust
use crate::{
|
|
archetype::{ArchetypeComponentId, ArchetypeGeneration},
|
|
component::{ComponentId, Tick},
|
|
prelude::FromWorld,
|
|
query::{Access, FilteredAccessSet},
|
|
schedule::{InternedSystemSet, SystemSet},
|
|
system::{check_system_change_tick, ReadOnlySystemParam, System, SystemParam, SystemParamItem},
|
|
world::{unsafe_world_cell::UnsafeWorldCell, DeferredWorld, World, WorldId},
|
|
};
|
|
|
|
use bevy_utils::all_tuples;
|
|
use std::{borrow::Cow, marker::PhantomData};
|
|
|
|
#[cfg(feature = "trace")]
|
|
use bevy_utils::tracing::{info_span, Span};
|
|
|
|
use super::{In, IntoSystem, ReadOnlySystem, SystemBuilder};
|
|
|
|
/// The metadata of a [`System`].
|
|
#[derive(Clone)]
|
|
pub struct SystemMeta {
|
|
pub(crate) name: Cow<'static, str>,
|
|
pub(crate) component_access_set: FilteredAccessSet<ComponentId>,
|
|
pub(crate) archetype_component_access: Access<ArchetypeComponentId>,
|
|
// NOTE: this must be kept private. making a SystemMeta non-send is irreversible to prevent
|
|
// SystemParams from overriding each other
|
|
is_send: bool,
|
|
has_deferred: bool,
|
|
pub(crate) last_run: Tick,
|
|
#[cfg(feature = "trace")]
|
|
pub(crate) system_span: Span,
|
|
#[cfg(feature = "trace")]
|
|
pub(crate) commands_span: Span,
|
|
}
|
|
|
|
impl SystemMeta {
|
|
pub(crate) fn new<T>() -> Self {
|
|
let name = std::any::type_name::<T>();
|
|
Self {
|
|
name: name.into(),
|
|
archetype_component_access: Access::default(),
|
|
component_access_set: FilteredAccessSet::default(),
|
|
is_send: true,
|
|
has_deferred: false,
|
|
last_run: Tick::new(0),
|
|
#[cfg(feature = "trace")]
|
|
system_span: info_span!("system", name = name),
|
|
#[cfg(feature = "trace")]
|
|
commands_span: info_span!("system_commands", name = name),
|
|
}
|
|
}
|
|
|
|
/// Returns the system's name
|
|
#[inline]
|
|
pub fn name(&self) -> &str {
|
|
&self.name
|
|
}
|
|
|
|
/// Returns true if the system is [`Send`].
|
|
#[inline]
|
|
pub fn is_send(&self) -> bool {
|
|
self.is_send
|
|
}
|
|
|
|
/// Sets the system to be not [`Send`].
|
|
///
|
|
/// This is irreversible.
|
|
#[inline]
|
|
pub fn set_non_send(&mut self) {
|
|
self.is_send = false;
|
|
}
|
|
|
|
/// Returns true if the system has deferred [`SystemParam`]'s
|
|
#[inline]
|
|
pub fn has_deferred(&self) -> bool {
|
|
self.has_deferred
|
|
}
|
|
|
|
/// Marks the system as having deferred buffers like [`Commands`](`super::Commands`)
|
|
/// This lets the scheduler insert [`apply_deferred`](`crate::prelude::apply_deferred`) systems automatically.
|
|
pub fn set_has_deferred(&mut self) {
|
|
self.has_deferred = true;
|
|
}
|
|
}
|
|
|
|
// TODO: Actually use this in FunctionSystem. We should probably only do this once Systems are constructed using a World reference
|
|
// (to avoid the need for unwrapping to retrieve SystemMeta)
|
|
/// Holds on to persistent state required to drive [`SystemParam`] for a [`System`].
|
|
///
|
|
/// This is a powerful and convenient tool for working with exclusive world access,
|
|
/// allowing you to fetch data from the [`World`] as if you were running a [`System`].
|
|
/// However, simply calling `world::run_system(my_system)` using a [`World::run_system`](World::run_system)
|
|
/// can be significantly simpler and ensures that change detection and command flushing work as expected.
|
|
///
|
|
/// Borrow-checking is handled for you, allowing you to mutably access multiple compatible system parameters at once,
|
|
/// and arbitrary system parameters (like [`EventWriter`](crate::event::EventWriter)) can be conveniently fetched.
|
|
///
|
|
/// For an alternative approach to split mutable access to the world, see [`World::resource_scope`].
|
|
///
|
|
/// # Warning
|
|
///
|
|
/// [`SystemState`] values created can be cached to improve performance,
|
|
/// and *must* be cached and reused in order for system parameters that rely on local state to work correctly.
|
|
/// These include:
|
|
/// - [`Added`](crate::query::Added) and [`Changed`](crate::query::Changed) query filters
|
|
/// - [`Local`](crate::system::Local) variables that hold state
|
|
/// - [`EventReader`](crate::event::EventReader) system parameters, which rely on a [`Local`](crate::system::Local) to track which events have been seen
|
|
///
|
|
/// Note that this is automatically handled for you when using a [`World::run_system`](World::run_system).
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Basic usage:
|
|
/// ```
|
|
/// # use bevy_ecs::prelude::*;
|
|
/// # use bevy_ecs::system::SystemState;
|
|
/// # use bevy_ecs::event::Events;
|
|
/// #
|
|
/// # #[derive(Event)]
|
|
/// # struct MyEvent;
|
|
/// # #[derive(Resource)]
|
|
/// # struct MyResource(u32);
|
|
/// #
|
|
/// # #[derive(Component)]
|
|
/// # struct MyComponent;
|
|
/// #
|
|
/// // Work directly on the `World`
|
|
/// let mut world = World::new();
|
|
/// world.init_resource::<Events<MyEvent>>();
|
|
///
|
|
/// // Construct a `SystemState` struct, passing in a tuple of `SystemParam`
|
|
/// // as if you were writing an ordinary system.
|
|
/// let mut system_state: SystemState<(
|
|
/// EventWriter<MyEvent>,
|
|
/// Option<ResMut<MyResource>>,
|
|
/// Query<&MyComponent>,
|
|
/// )> = SystemState::new(&mut world);
|
|
///
|
|
/// // Use system_state.get_mut(&mut world) and unpack your system parameters into variables!
|
|
/// // system_state.get(&world) provides read-only versions of your system parameters instead.
|
|
/// let (event_writer, maybe_resource, query) = system_state.get_mut(&mut world);
|
|
///
|
|
/// // If you are using `Commands`, you can choose when you want to apply them to the world.
|
|
/// // You need to manually call `.apply(world)` on the `SystemState` to apply them.
|
|
/// ```
|
|
/// Caching:
|
|
/// ```
|
|
/// # use bevy_ecs::prelude::*;
|
|
/// # use bevy_ecs::system::SystemState;
|
|
/// # use bevy_ecs::event::Events;
|
|
/// #
|
|
/// # #[derive(Event)]
|
|
/// # struct MyEvent;
|
|
/// #[derive(Resource)]
|
|
/// struct CachedSystemState {
|
|
/// event_state: SystemState<EventReader<'static, 'static, MyEvent>>,
|
|
/// }
|
|
///
|
|
/// // Create and store a system state once
|
|
/// let mut world = World::new();
|
|
/// world.init_resource::<Events<MyEvent>>();
|
|
/// let initial_state: SystemState<EventReader<MyEvent>> = SystemState::new(&mut world);
|
|
///
|
|
/// // The system state is cached in a resource
|
|
/// world.insert_resource(CachedSystemState {
|
|
/// event_state: initial_state,
|
|
/// });
|
|
///
|
|
/// // Later, fetch the cached system state, saving on overhead
|
|
/// world.resource_scope(|world, mut cached_state: Mut<CachedSystemState>| {
|
|
/// let mut event_reader = cached_state.event_state.get_mut(world);
|
|
///
|
|
/// for events in event_reader.read() {
|
|
/// println!("Hello World!");
|
|
/// }
|
|
/// });
|
|
/// ```
|
|
pub struct SystemState<Param: SystemParam + 'static> {
|
|
meta: SystemMeta,
|
|
param_state: Param::State,
|
|
world_id: WorldId,
|
|
archetype_generation: ArchetypeGeneration,
|
|
}
|
|
|
|
impl<Param: SystemParam> SystemState<Param> {
|
|
/// Creates a new [`SystemState`] with default state.
|
|
///
|
|
/// ## Note
|
|
/// For users of [`SystemState::get_manual`] or [`get_manual_mut`](SystemState::get_manual_mut):
|
|
///
|
|
/// `new` does not cache any of the world's archetypes, so you must call [`SystemState::update_archetypes`]
|
|
/// manually before calling `get_manual{_mut}`.
|
|
pub fn new(world: &mut World) -> Self {
|
|
let mut meta = SystemMeta::new::<Param>();
|
|
meta.last_run = world.change_tick().relative_to(Tick::MAX);
|
|
let param_state = Param::init_state(world, &mut meta);
|
|
Self {
|
|
meta,
|
|
param_state,
|
|
world_id: world.id(),
|
|
archetype_generation: ArchetypeGeneration::initial(),
|
|
}
|
|
}
|
|
|
|
// Create a [`SystemState`] from a [`SystemBuilder`]
|
|
pub(crate) fn from_builder(builder: SystemBuilder<Param>) -> Self {
|
|
Self {
|
|
meta: builder.meta,
|
|
param_state: builder.state,
|
|
world_id: builder.world.id(),
|
|
archetype_generation: ArchetypeGeneration::initial(),
|
|
}
|
|
}
|
|
|
|
/// Gets the metadata for this instance.
|
|
#[inline]
|
|
pub fn meta(&self) -> &SystemMeta {
|
|
&self.meta
|
|
}
|
|
|
|
/// Retrieve the [`SystemParam`] values. This can only be called when all parameters are read-only.
|
|
#[inline]
|
|
pub fn get<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param>
|
|
where
|
|
Param: ReadOnlySystemParam,
|
|
{
|
|
self.validate_world(world.id());
|
|
self.update_archetypes(world);
|
|
// SAFETY: Param is read-only and doesn't allow mutable access to World.
|
|
// It also matches the World this SystemState was created with.
|
|
unsafe { self.get_unchecked_manual(world.as_unsafe_world_cell_readonly()) }
|
|
}
|
|
|
|
/// Retrieve the mutable [`SystemParam`] values.
|
|
#[inline]
|
|
pub fn get_mut<'w, 's>(&'s mut self, world: &'w mut World) -> SystemParamItem<'w, 's, Param> {
|
|
self.validate_world(world.id());
|
|
self.update_archetypes(world);
|
|
// SAFETY: World is uniquely borrowed and matches the World this SystemState was created with.
|
|
unsafe { self.get_unchecked_manual(world.as_unsafe_world_cell()) }
|
|
}
|
|
|
|
/// Applies all state queued up for [`SystemParam`] values. For example, this will apply commands queued up
|
|
/// by a [`Commands`](`super::Commands`) parameter to the given [`World`].
|
|
/// This function should be called manually after the values returned by [`SystemState::get`] and [`SystemState::get_mut`]
|
|
/// are finished being used.
|
|
pub fn apply(&mut self, world: &mut World) {
|
|
Param::apply(&mut self.param_state, &self.meta, world);
|
|
}
|
|
|
|
/// Returns `true` if `world_id` matches the [`World`] that was used to call [`SystemState::new`].
|
|
/// Otherwise, this returns false.
|
|
#[inline]
|
|
pub fn matches_world(&self, world_id: WorldId) -> bool {
|
|
self.world_id == world_id
|
|
}
|
|
|
|
/// Asserts that the [`SystemState`] matches the provided world.
|
|
#[inline]
|
|
#[track_caller]
|
|
fn validate_world(&self, world_id: WorldId) {
|
|
#[inline(never)]
|
|
#[track_caller]
|
|
#[cold]
|
|
fn panic_mismatched(this: WorldId, other: WorldId) -> ! {
|
|
panic!("Encountered a mismatched World. This SystemState was created from {this:?}, but a method was called using {other:?}.");
|
|
}
|
|
|
|
if !self.matches_world(world_id) {
|
|
panic_mismatched(self.world_id, world_id);
|
|
}
|
|
}
|
|
|
|
/// Updates the state's internal view of the [`World`]'s archetypes. If this is not called before fetching the parameters,
|
|
/// the results may not accurately reflect what is in the `world`.
|
|
///
|
|
/// This is only required if [`SystemState::get_manual`] or [`SystemState::get_manual_mut`] is being called, and it only needs to
|
|
/// be called if the `world` has been structurally mutated (i.e. added/removed a component or resource). Users using
|
|
/// [`SystemState::get`] or [`SystemState::get_mut`] do not need to call this as it will be automatically called for them.
|
|
#[inline]
|
|
pub fn update_archetypes(&mut self, world: &World) {
|
|
self.update_archetypes_unsafe_world_cell(world.as_unsafe_world_cell_readonly());
|
|
}
|
|
|
|
/// Updates the state's internal view of the `world`'s archetypes. If this is not called before fetching the parameters,
|
|
/// the results may not accurately reflect what is in the `world`.
|
|
///
|
|
/// This is only required if [`SystemState::get_manual`] or [`SystemState::get_manual_mut`] is being called, and it only needs to
|
|
/// be called if the `world` has been structurally mutated (i.e. added/removed a component or resource). Users using
|
|
/// [`SystemState::get`] or [`SystemState::get_mut`] do not need to call this as it will be automatically called for them.
|
|
///
|
|
/// # Note
|
|
///
|
|
/// This method only accesses world metadata.
|
|
#[inline]
|
|
pub fn update_archetypes_unsafe_world_cell(&mut self, world: UnsafeWorldCell) {
|
|
assert_eq!(self.world_id, world.id(), "Encountered a mismatched World. A System cannot be used with Worlds other than the one it was initialized with.");
|
|
|
|
let archetypes = world.archetypes();
|
|
let old_generation =
|
|
std::mem::replace(&mut self.archetype_generation, archetypes.generation());
|
|
|
|
for archetype in &archetypes[old_generation..] {
|
|
// SAFETY: The assertion above ensures that the param_state was initialized from `world`.
|
|
unsafe { Param::new_archetype(&mut self.param_state, archetype, &mut self.meta) };
|
|
}
|
|
}
|
|
|
|
/// Retrieve the [`SystemParam`] values. This can only be called when all parameters are read-only.
|
|
/// This will not update the state's view of the world's archetypes automatically nor increment the
|
|
/// world's change tick.
|
|
///
|
|
/// For this to return accurate results, ensure [`SystemState::update_archetypes`] is called before this
|
|
/// function.
|
|
///
|
|
/// Users should strongly prefer to use [`SystemState::get`] over this function.
|
|
#[inline]
|
|
pub fn get_manual<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param>
|
|
where
|
|
Param: ReadOnlySystemParam,
|
|
{
|
|
self.validate_world(world.id());
|
|
let change_tick = world.read_change_tick();
|
|
// SAFETY: Param is read-only and doesn't allow mutable access to World.
|
|
// It also matches the World this SystemState was created with.
|
|
unsafe { self.fetch(world.as_unsafe_world_cell_readonly(), change_tick) }
|
|
}
|
|
|
|
/// Retrieve the mutable [`SystemParam`] values. This will not update the state's view of the world's archetypes
|
|
/// automatically nor increment the world's change tick.
|
|
///
|
|
/// For this to return accurate results, ensure [`SystemState::update_archetypes`] is called before this
|
|
/// function.
|
|
///
|
|
/// Users should strongly prefer to use [`SystemState::get_mut`] over this function.
|
|
#[inline]
|
|
pub fn get_manual_mut<'w, 's>(
|
|
&'s mut self,
|
|
world: &'w mut World,
|
|
) -> SystemParamItem<'w, 's, Param> {
|
|
self.validate_world(world.id());
|
|
let change_tick = world.change_tick();
|
|
// SAFETY: World is uniquely borrowed and matches the World this SystemState was created with.
|
|
unsafe { self.fetch(world.as_unsafe_world_cell(), change_tick) }
|
|
}
|
|
|
|
/// Retrieve the [`SystemParam`] values. This will not update archetypes automatically.
|
|
///
|
|
/// # Safety
|
|
/// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data
|
|
/// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was
|
|
/// created with.
|
|
#[inline]
|
|
pub unsafe fn get_unchecked_manual<'w, 's>(
|
|
&'s mut self,
|
|
world: UnsafeWorldCell<'w>,
|
|
) -> SystemParamItem<'w, 's, Param> {
|
|
let change_tick = world.increment_change_tick();
|
|
// SAFETY: The invariants are uphold by the caller.
|
|
unsafe { self.fetch(world, change_tick) }
|
|
}
|
|
|
|
/// # Safety
|
|
/// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data
|
|
/// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was
|
|
/// created with.
|
|
#[inline]
|
|
unsafe fn fetch<'w, 's>(
|
|
&'s mut self,
|
|
world: UnsafeWorldCell<'w>,
|
|
change_tick: Tick,
|
|
) -> SystemParamItem<'w, 's, Param> {
|
|
// SAFETY: The invariants are uphold by the caller.
|
|
let param =
|
|
unsafe { Param::get_param(&mut self.param_state, &self.meta, world, change_tick) };
|
|
self.meta.last_run = change_tick;
|
|
param
|
|
}
|
|
}
|
|
|
|
impl<Param: SystemParam> FromWorld for SystemState<Param> {
|
|
fn from_world(world: &mut World) -> Self {
|
|
Self::new(world)
|
|
}
|
|
}
|
|
|
|
/// The [`System`] counter part of an ordinary function.
|
|
///
|
|
/// You get this by calling [`IntoSystem::into_system`] on a function that only accepts
|
|
/// [`SystemParam`]s. The output of the system becomes the functions return type, while the input
|
|
/// becomes the functions [`In`] tagged parameter or `()` if no such parameter exists.
|
|
///
|
|
/// [`FunctionSystem`] must be `.initialized` before they can be run.
|
|
///
|
|
/// The [`Clone`] implementation for [`FunctionSystem`] returns a new instance which
|
|
/// is NOT initialized. The cloned system must also be `.initialized` before it can be run.
|
|
pub struct FunctionSystem<Marker, F>
|
|
where
|
|
F: SystemParamFunction<Marker>,
|
|
{
|
|
func: F,
|
|
pub(crate) param_state: Option<<F::Param as SystemParam>::State>,
|
|
pub(crate) system_meta: SystemMeta,
|
|
world_id: Option<WorldId>,
|
|
archetype_generation: ArchetypeGeneration,
|
|
// NOTE: PhantomData<fn()-> T> gives this safe Send/Sync impls
|
|
marker: PhantomData<fn() -> Marker>,
|
|
}
|
|
|
|
impl<Marker, F> FunctionSystem<Marker, F>
|
|
where
|
|
F: SystemParamFunction<Marker>,
|
|
{
|
|
// Create a [`FunctionSystem`] from a [`SystemBuilder`]
|
|
pub(crate) fn from_builder(builder: SystemBuilder<F::Param>, func: F) -> Self {
|
|
Self {
|
|
func,
|
|
param_state: Some(builder.state),
|
|
system_meta: builder.meta,
|
|
world_id: Some(builder.world.id()),
|
|
archetype_generation: ArchetypeGeneration::initial(),
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
// De-initializes the cloned system.
|
|
impl<Marker, F> Clone for FunctionSystem<Marker, F>
|
|
where
|
|
F: SystemParamFunction<Marker> + Clone,
|
|
{
|
|
fn clone(&self) -> Self {
|
|
Self {
|
|
func: self.func.clone(),
|
|
param_state: None,
|
|
system_meta: SystemMeta::new::<F>(),
|
|
world_id: None,
|
|
archetype_generation: ArchetypeGeneration::initial(),
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A marker type used to distinguish regular function systems from exclusive function systems.
|
|
#[doc(hidden)]
|
|
pub struct IsFunctionSystem;
|
|
|
|
impl<Marker, F> IntoSystem<F::In, F::Out, (IsFunctionSystem, Marker)> for F
|
|
where
|
|
Marker: 'static,
|
|
F: SystemParamFunction<Marker>,
|
|
{
|
|
type System = FunctionSystem<Marker, F>;
|
|
fn into_system(func: Self) -> Self::System {
|
|
FunctionSystem {
|
|
func,
|
|
param_state: None,
|
|
system_meta: SystemMeta::new::<F>(),
|
|
world_id: None,
|
|
archetype_generation: ArchetypeGeneration::initial(),
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<Marker, F> FunctionSystem<Marker, F>
|
|
where
|
|
F: SystemParamFunction<Marker>,
|
|
{
|
|
/// Message shown when a system isn't initialised
|
|
// When lines get too long, rustfmt can sometimes refuse to format them.
|
|
// Work around this by storing the message separately.
|
|
const PARAM_MESSAGE: &'static str = "System's param_state was not found. Did you forget to initialize this system before running it?";
|
|
}
|
|
|
|
impl<Marker, F> System for FunctionSystem<Marker, F>
|
|
where
|
|
Marker: 'static,
|
|
F: SystemParamFunction<Marker>,
|
|
{
|
|
type In = F::In;
|
|
type Out = F::Out;
|
|
|
|
#[inline]
|
|
fn name(&self) -> Cow<'static, str> {
|
|
self.system_meta.name.clone()
|
|
}
|
|
|
|
#[inline]
|
|
fn component_access(&self) -> &Access<ComponentId> {
|
|
self.system_meta.component_access_set.combined_access()
|
|
}
|
|
|
|
#[inline]
|
|
fn archetype_component_access(&self) -> &Access<ArchetypeComponentId> {
|
|
&self.system_meta.archetype_component_access
|
|
}
|
|
|
|
#[inline]
|
|
fn is_send(&self) -> bool {
|
|
self.system_meta.is_send
|
|
}
|
|
|
|
#[inline]
|
|
fn is_exclusive(&self) -> bool {
|
|
false
|
|
}
|
|
|
|
#[inline]
|
|
fn has_deferred(&self) -> bool {
|
|
self.system_meta.has_deferred
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn run_unsafe(&mut self, input: Self::In, world: UnsafeWorldCell) -> Self::Out {
|
|
#[cfg(feature = "trace")]
|
|
let _span_guard = self.system_meta.system_span.enter();
|
|
|
|
let change_tick = world.increment_change_tick();
|
|
|
|
// SAFETY:
|
|
// - The caller has invoked `update_archetype_component_access`, which will panic
|
|
// if the world does not match.
|
|
// - All world accesses used by `F::Param` have been registered, so the caller
|
|
// will ensure that there are no data access conflicts.
|
|
let params = unsafe {
|
|
F::Param::get_param(
|
|
self.param_state.as_mut().expect(Self::PARAM_MESSAGE),
|
|
&self.system_meta,
|
|
world,
|
|
change_tick,
|
|
)
|
|
};
|
|
let out = self.func.run(input, params);
|
|
self.system_meta.last_run = change_tick;
|
|
out
|
|
}
|
|
|
|
#[inline]
|
|
fn apply_deferred(&mut self, world: &mut World) {
|
|
let param_state = self.param_state.as_mut().expect(Self::PARAM_MESSAGE);
|
|
F::Param::apply(param_state, &self.system_meta, world);
|
|
}
|
|
|
|
#[inline]
|
|
fn queue_deferred(&mut self, world: DeferredWorld) {
|
|
let param_state = self.param_state.as_mut().expect(Self::PARAM_MESSAGE);
|
|
F::Param::queue(param_state, &self.system_meta, world);
|
|
}
|
|
|
|
#[inline]
|
|
fn initialize(&mut self, world: &mut World) {
|
|
if let Some(id) = self.world_id {
|
|
assert_eq!(
|
|
id,
|
|
world.id(),
|
|
"System built with a different world than the one it was added to.",
|
|
);
|
|
} else {
|
|
self.world_id = Some(world.id());
|
|
self.param_state = Some(F::Param::init_state(world, &mut self.system_meta));
|
|
}
|
|
self.system_meta.last_run = world.change_tick().relative_to(Tick::MAX);
|
|
}
|
|
|
|
fn update_archetype_component_access(&mut self, world: UnsafeWorldCell) {
|
|
assert_eq!(self.world_id, Some(world.id()), "Encountered a mismatched World. A System cannot be used with Worlds other than the one it was initialized with.");
|
|
let archetypes = world.archetypes();
|
|
let old_generation =
|
|
std::mem::replace(&mut self.archetype_generation, archetypes.generation());
|
|
|
|
for archetype in &archetypes[old_generation..] {
|
|
let param_state = self.param_state.as_mut().unwrap();
|
|
// SAFETY: The assertion above ensures that the param_state was initialized from `world`.
|
|
unsafe { F::Param::new_archetype(param_state, archetype, &mut self.system_meta) };
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn check_change_tick(&mut self, change_tick: Tick) {
|
|
check_system_change_tick(
|
|
&mut self.system_meta.last_run,
|
|
change_tick,
|
|
self.system_meta.name.as_ref(),
|
|
);
|
|
}
|
|
|
|
fn default_system_sets(&self) -> Vec<InternedSystemSet> {
|
|
let set = crate::schedule::SystemTypeSet::<Self>::new();
|
|
vec![set.intern()]
|
|
}
|
|
|
|
fn get_last_run(&self) -> Tick {
|
|
self.system_meta.last_run
|
|
}
|
|
|
|
fn set_last_run(&mut self, last_run: Tick) {
|
|
self.system_meta.last_run = last_run;
|
|
}
|
|
}
|
|
|
|
/// SAFETY: `F`'s param is [`ReadOnlySystemParam`], so this system will only read from the world.
|
|
unsafe impl<Marker, F> ReadOnlySystem for FunctionSystem<Marker, F>
|
|
where
|
|
Marker: 'static,
|
|
F: SystemParamFunction<Marker>,
|
|
F::Param: ReadOnlySystemParam,
|
|
{
|
|
}
|
|
|
|
/// A trait implemented for all functions that can be used as [`System`]s.
|
|
///
|
|
/// This trait can be useful for making your own systems which accept other systems,
|
|
/// sometimes called higher order systems.
|
|
///
|
|
/// This should be used in combination with [`ParamSet`] when calling other systems
|
|
/// within your system.
|
|
/// Using [`ParamSet`] in this case avoids [`SystemParam`] collisions.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// To create something like [`PipeSystem`], but in entirely safe code.
|
|
///
|
|
/// ```
|
|
/// use std::num::ParseIntError;
|
|
///
|
|
/// use bevy_ecs::prelude::*;
|
|
///
|
|
/// /// Pipe creates a new system which calls `a`, then calls `b` with the output of `a`
|
|
/// pub fn pipe<A, B, AMarker, BMarker>(
|
|
/// mut a: A,
|
|
/// mut b: B,
|
|
/// ) -> impl FnMut(In<A::In>, ParamSet<(A::Param, B::Param)>) -> B::Out
|
|
/// where
|
|
/// // We need A and B to be systems, add those bounds
|
|
/// A: SystemParamFunction<AMarker>,
|
|
/// B: SystemParamFunction<BMarker, In = A::Out>,
|
|
/// {
|
|
/// // The type of `params` is inferred based on the return of this function above
|
|
/// move |In(a_in), mut params| {
|
|
/// let shared = a.run(a_in, params.p0());
|
|
/// b.run(shared, params.p1())
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // Usage example for `pipe`:
|
|
/// fn main() {
|
|
/// let mut world = World::default();
|
|
/// world.insert_resource(Message("42".to_string()));
|
|
///
|
|
/// // pipe the `parse_message_system`'s output into the `filter_system`s input
|
|
/// let mut piped_system = IntoSystem::into_system(pipe(parse_message, filter));
|
|
/// piped_system.initialize(&mut world);
|
|
/// assert_eq!(piped_system.run((), &mut world), Some(42));
|
|
/// }
|
|
///
|
|
/// #[derive(Resource)]
|
|
/// struct Message(String);
|
|
///
|
|
/// fn parse_message(message: Res<Message>) -> Result<usize, ParseIntError> {
|
|
/// message.0.parse::<usize>()
|
|
/// }
|
|
///
|
|
/// fn filter(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
|
|
/// result.ok().filter(|&n| n < 100)
|
|
/// }
|
|
/// ```
|
|
/// [`PipeSystem`]: crate::system::PipeSystem
|
|
/// [`ParamSet`]: crate::system::ParamSet
|
|
#[diagnostic::on_unimplemented(
|
|
message = "`{Self}` is not a valid system",
|
|
label = "invalid system"
|
|
)]
|
|
pub trait SystemParamFunction<Marker>: Send + Sync + 'static {
|
|
/// The input type to this system. See [`System::In`].
|
|
type In;
|
|
|
|
/// The return type of this system. See [`System::Out`].
|
|
type Out;
|
|
|
|
/// The [`SystemParam`]/s used by this system to access the [`World`].
|
|
type Param: SystemParam;
|
|
|
|
/// Executes this system once. See [`System::run`] or [`System::run_unsafe`].
|
|
fn run(&mut self, input: Self::In, param_value: SystemParamItem<Self::Param>) -> Self::Out;
|
|
}
|
|
|
|
macro_rules! impl_system_function {
|
|
($($param: ident),*) => {
|
|
#[allow(non_snake_case)]
|
|
impl<Out, Func: Send + Sync + 'static, $($param: SystemParam),*> SystemParamFunction<fn($($param,)*) -> Out> for Func
|
|
where
|
|
for <'a> &'a mut Func:
|
|
FnMut($($param),*) -> Out +
|
|
FnMut($(SystemParamItem<$param>),*) -> Out, Out: 'static
|
|
{
|
|
type In = ();
|
|
type Out = Out;
|
|
type Param = ($($param,)*);
|
|
#[inline]
|
|
fn run(&mut self, _input: (), param_value: SystemParamItem< ($($param,)*)>) -> Out {
|
|
// Yes, this is strange, but `rustc` fails to compile this impl
|
|
// without using this function. It fails to recognize that `func`
|
|
// is a function, potentially because of the multiple impls of `FnMut`
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn call_inner<Out, $($param,)*>(
|
|
mut f: impl FnMut($($param,)*)->Out,
|
|
$($param: $param,)*
|
|
)->Out{
|
|
f($($param,)*)
|
|
}
|
|
let ($($param,)*) = param_value;
|
|
call_inner(self, $($param),*)
|
|
}
|
|
}
|
|
|
|
#[allow(non_snake_case)]
|
|
impl<Input, Out, Func: Send + Sync + 'static, $($param: SystemParam),*> SystemParamFunction<fn(In<Input>, $($param,)*) -> Out> for Func
|
|
where
|
|
for <'a> &'a mut Func:
|
|
FnMut(In<Input>, $($param),*) -> Out +
|
|
FnMut(In<Input>, $(SystemParamItem<$param>),*) -> Out, Out: 'static
|
|
{
|
|
type In = Input;
|
|
type Out = Out;
|
|
type Param = ($($param,)*);
|
|
#[inline]
|
|
fn run(&mut self, input: Input, param_value: SystemParamItem< ($($param,)*)>) -> Out {
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn call_inner<Input, Out, $($param,)*>(
|
|
mut f: impl FnMut(In<Input>, $($param,)*)->Out,
|
|
input: In<Input>,
|
|
$($param: $param,)*
|
|
)->Out{
|
|
f(input, $($param,)*)
|
|
}
|
|
let ($($param,)*) = param_value;
|
|
call_inner(self, In(input), $($param),*)
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
// Note that we rely on the highest impl to be <= the highest order of the tuple impls
|
|
// of `SystemParam` created.
|
|
all_tuples!(impl_system_function, 0, 16, F);
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn into_system_type_id_consistency() {
|
|
fn test<T, In, Out, Marker>(function: T)
|
|
where
|
|
T: IntoSystem<In, Out, Marker> + Copy,
|
|
{
|
|
fn reference_system() {}
|
|
|
|
use std::any::TypeId;
|
|
|
|
let system = IntoSystem::into_system(function);
|
|
|
|
assert_eq!(
|
|
system.type_id(),
|
|
function.system_type_id(),
|
|
"System::type_id should be consistent with IntoSystem::system_type_id"
|
|
);
|
|
|
|
assert_eq!(
|
|
system.type_id(),
|
|
TypeId::of::<T::System>(),
|
|
"System::type_id should be consistent with TypeId::of::<T::System>()"
|
|
);
|
|
|
|
assert_ne!(
|
|
system.type_id(),
|
|
IntoSystem::into_system(reference_system).type_id(),
|
|
"Different systems should have different TypeIds"
|
|
);
|
|
}
|
|
|
|
fn function_system() {}
|
|
|
|
test(function_system);
|
|
}
|
|
}
|