bevy/crates/bevy_camera/src/primitives.rs
atlv 7aaf4bbd94
fix a couple typos in CubemapLayout (#19964)
# Objective

- Rob pointed out a couple typos in #19960 (i just did a copy paste, but
the original had an issue)

## Solution

- Fix
2025-07-05 17:05:56 +00:00

741 lines
25 KiB
Rust

use core::borrow::Borrow;
use bevy_ecs::{component::Component, entity::EntityHashMap, reflect::ReflectComponent};
use bevy_math::{Affine3A, Mat3A, Mat4, Vec3, Vec3A, Vec4, Vec4Swizzles};
use bevy_mesh::{Mesh, VertexAttributeValues};
use bevy_reflect::prelude::*;
pub trait MeshAabb {
/// Compute the Axis-Aligned Bounding Box of the mesh vertices in model space
///
/// Returns `None` if `self` doesn't have [`Mesh::ATTRIBUTE_POSITION`] of
/// type [`VertexAttributeValues::Float32x3`], or if `self` doesn't have any vertices.
fn compute_aabb(&self) -> Option<Aabb>;
}
impl MeshAabb for Mesh {
fn compute_aabb(&self) -> Option<Aabb> {
let Some(VertexAttributeValues::Float32x3(values)) =
self.attribute(Mesh::ATTRIBUTE_POSITION)
else {
return None;
};
Aabb::enclosing(values.iter().map(|p| Vec3::from_slice(p)))
}
}
/// An axis-aligned bounding box, defined by:
/// - a center,
/// - the distances from the center to each faces along the axis,
/// the faces are orthogonal to the axis.
///
/// It is typically used as a component on an entity to represent the local space
/// occupied by this entity, with faces orthogonal to its local axis.
///
/// This component is notably used during "frustum culling", a process to determine
/// if an entity should be rendered by a [`Camera`] if its bounding box intersects
/// with the camera's [`Frustum`].
///
/// It will be added automatically by the systems in [`CalculateBounds`] to entities that:
/// - could be subject to frustum culling, for example with a [`Mesh3d`]
/// or `Sprite` component,
/// - don't have the [`NoFrustumCulling`] component.
///
/// It won't be updated automatically if the space occupied by the entity changes,
/// for example if the vertex positions of a [`Mesh3d`] are updated.
///
/// [`Camera`]: crate::Camera
/// [`NoFrustumCulling`]: crate::visibility::NoFrustumCulling
/// [`CalculateBounds`]: crate::visibility::VisibilitySystems::CalculateBounds
/// [`Mesh3d`]: bevy_mesh::Mesh
#[derive(Component, Clone, Copy, Debug, Default, Reflect, PartialEq)]
#[reflect(Component, Default, Debug, PartialEq, Clone)]
pub struct Aabb {
pub center: Vec3A,
pub half_extents: Vec3A,
}
impl Aabb {
#[inline]
pub fn from_min_max(minimum: Vec3, maximum: Vec3) -> Self {
let minimum = Vec3A::from(minimum);
let maximum = Vec3A::from(maximum);
let center = 0.5 * (maximum + minimum);
let half_extents = 0.5 * (maximum - minimum);
Self {
center,
half_extents,
}
}
/// Returns a bounding box enclosing the specified set of points.
///
/// Returns `None` if the iterator is empty.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Vec3, Vec3A};
/// # use bevy_camera::primitives::Aabb;
/// let bb = Aabb::enclosing([Vec3::X, Vec3::Z * 2.0, Vec3::Y * -0.5]).unwrap();
/// assert_eq!(bb.min(), Vec3A::new(0.0, -0.5, 0.0));
/// assert_eq!(bb.max(), Vec3A::new(1.0, 0.0, 2.0));
/// ```
pub fn enclosing<T: Borrow<Vec3>>(iter: impl IntoIterator<Item = T>) -> Option<Self> {
let mut iter = iter.into_iter().map(|p| *p.borrow());
let mut min = iter.next()?;
let mut max = min;
for v in iter {
min = Vec3::min(min, v);
max = Vec3::max(max, v);
}
Some(Self::from_min_max(min, max))
}
/// Calculate the relative radius of the AABB with respect to a plane
#[inline]
pub fn relative_radius(&self, p_normal: &Vec3A, world_from_local: &Mat3A) -> f32 {
// NOTE: dot products on Vec3A use SIMD and even with the overhead of conversion are net faster than Vec3
let half_extents = self.half_extents;
Vec3A::new(
p_normal.dot(world_from_local.x_axis),
p_normal.dot(world_from_local.y_axis),
p_normal.dot(world_from_local.z_axis),
)
.abs()
.dot(half_extents)
}
#[inline]
pub fn min(&self) -> Vec3A {
self.center - self.half_extents
}
#[inline]
pub fn max(&self) -> Vec3A {
self.center + self.half_extents
}
/// Check if the AABB is at the front side of the bisecting plane.
/// Referenced from: [AABB Plane intersection](https://gdbooks.gitbooks.io/3dcollisions/content/Chapter2/static_aabb_plane.html)
#[inline]
pub fn is_in_half_space(&self, half_space: &HalfSpace, world_from_local: &Affine3A) -> bool {
// transform the half-extents into world space.
let half_extents_world = world_from_local.matrix3.abs() * self.half_extents.abs();
// collapse the half-extents onto the plane normal.
let p_normal = half_space.normal();
let r = half_extents_world.dot(p_normal.abs());
let aabb_center_world = world_from_local.transform_point3a(self.center);
let signed_distance = p_normal.dot(aabb_center_world) + half_space.d();
signed_distance > r
}
}
impl From<Sphere> for Aabb {
#[inline]
fn from(sphere: Sphere) -> Self {
Self {
center: sphere.center,
half_extents: Vec3A::splat(sphere.radius),
}
}
}
#[derive(Clone, Debug, Default)]
pub struct Sphere {
pub center: Vec3A,
pub radius: f32,
}
impl Sphere {
#[inline]
pub fn intersects_obb(&self, aabb: &Aabb, world_from_local: &Affine3A) -> bool {
let aabb_center_world = world_from_local.transform_point3a(aabb.center);
let v = aabb_center_world - self.center;
let d = v.length();
let relative_radius = aabb.relative_radius(&(v / d), &world_from_local.matrix3);
d < self.radius + relative_radius
}
}
/// A region of 3D space, specifically an open set whose border is a bisecting 2D plane.
///
/// This bisecting plane partitions 3D space into two infinite regions,
/// the half-space is one of those regions and excludes the bisecting plane.
///
/// Each instance of this type is characterized by:
/// - the bisecting plane's unit normal, normalized and pointing "inside" the half-space,
/// - the signed distance along the normal from the bisecting plane to the origin of 3D space.
///
/// The distance can also be seen as:
/// - the distance along the inverse of the normal from the origin of 3D space to the bisecting plane,
/// - the opposite of the distance along the normal from the origin of 3D space to the bisecting plane.
///
/// Any point `p` is considered to be within the `HalfSpace` when the length of the projection
/// of p on the normal is greater or equal than the opposite of the distance,
/// meaning: if the equation `normal.dot(p) + distance > 0.` is satisfied.
///
/// For example, the half-space containing all the points with a z-coordinate lesser
/// or equal than `8.0` would be defined by: `HalfSpace::new(Vec3::NEG_Z.extend(-8.0))`.
/// It includes all the points from the bisecting plane towards `NEG_Z`, and the distance
/// from the plane to the origin is `-8.0` along `NEG_Z`.
///
/// It is used to define a [`Frustum`], but is also a useful mathematical primitive for rendering tasks such as light computation.
#[derive(Clone, Copy, Debug, Default)]
pub struct HalfSpace {
normal_d: Vec4,
}
impl HalfSpace {
/// Constructs a `HalfSpace` from a 4D vector whose first 3 components
/// represent the bisecting plane's unit normal, and the last component is
/// the signed distance along the normal from the plane to the origin.
/// The constructor ensures the normal vector is normalized and the distance is appropriately scaled.
#[inline]
pub fn new(normal_d: Vec4) -> Self {
Self {
normal_d: normal_d * normal_d.xyz().length_recip(),
}
}
/// Returns the unit normal vector of the bisecting plane that characterizes the `HalfSpace`.
#[inline]
pub fn normal(&self) -> Vec3A {
Vec3A::from_vec4(self.normal_d)
}
/// Returns the signed distance from the bisecting plane to the origin along
/// the plane's unit normal vector.
#[inline]
pub fn d(&self) -> f32 {
self.normal_d.w
}
/// Returns the bisecting plane's unit normal vector and the signed distance
/// from the plane to the origin.
#[inline]
pub fn normal_d(&self) -> Vec4 {
self.normal_d
}
}
/// A region of 3D space defined by the intersection of 6 [`HalfSpace`]s.
///
/// Frustums are typically an apex-truncated square pyramid (a pyramid without the top) or a cuboid.
///
/// Half spaces are ordered left, right, top, bottom, near, far. The normal vectors
/// of the half-spaces point towards the interior of the frustum.
///
/// A frustum component is used on an entity with a [`Camera`] component to
/// determine which entities will be considered for rendering by this camera.
/// All entities with an [`Aabb`] component that are not contained by (or crossing
/// the boundary of) the frustum will not be rendered, and not be used in rendering computations.
///
/// This process is called frustum culling, and entities can opt out of it using
/// the [`NoFrustumCulling`] component.
///
/// The frustum component is typically added automatically for cameras, either `Camera2d` or `Camera3d`.
/// It is usually updated automatically by [`update_frusta`] from the
/// [`CameraProjection`] component and [`GlobalTransform`] of the camera entity.
///
/// [`Camera`]: crate::Camera
/// [`NoFrustumCulling`]: crate::visibility::NoFrustumCulling
/// [`update_frusta`]: crate::visibility::update_frusta
/// [`CameraProjection`]: crate::CameraProjection
/// [`GlobalTransform`]: bevy_transform::components::GlobalTransform
#[derive(Component, Clone, Copy, Debug, Default, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct Frustum {
#[reflect(ignore, clone)]
pub half_spaces: [HalfSpace; 6],
}
impl Frustum {
/// Returns a frustum derived from `clip_from_world`.
#[inline]
pub fn from_clip_from_world(clip_from_world: &Mat4) -> Self {
let mut frustum = Frustum::from_clip_from_world_no_far(clip_from_world);
frustum.half_spaces[5] = HalfSpace::new(clip_from_world.row(2));
frustum
}
/// Returns a frustum derived from `clip_from_world`,
/// but with a custom far plane.
#[inline]
pub fn from_clip_from_world_custom_far(
clip_from_world: &Mat4,
view_translation: &Vec3,
view_backward: &Vec3,
far: f32,
) -> Self {
let mut frustum = Frustum::from_clip_from_world_no_far(clip_from_world);
let far_center = *view_translation - far * *view_backward;
frustum.half_spaces[5] =
HalfSpace::new(view_backward.extend(-view_backward.dot(far_center)));
frustum
}
// NOTE: This approach of extracting the frustum half-space from the view
// projection matrix is from Foundations of Game Engine Development 2
// Rendering by Lengyel.
/// Returns a frustum derived from `view_projection`,
/// without a far plane.
fn from_clip_from_world_no_far(clip_from_world: &Mat4) -> Self {
let row3 = clip_from_world.row(3);
let mut half_spaces = [HalfSpace::default(); 6];
for (i, half_space) in half_spaces.iter_mut().enumerate().take(5) {
let row = clip_from_world.row(i / 2);
*half_space = HalfSpace::new(if (i & 1) == 0 && i != 4 {
row3 + row
} else {
row3 - row
});
}
Self { half_spaces }
}
/// Checks if a sphere intersects the frustum.
#[inline]
pub fn intersects_sphere(&self, sphere: &Sphere, intersect_far: bool) -> bool {
let sphere_center = sphere.center.extend(1.0);
let max = if intersect_far { 6 } else { 5 };
for half_space in &self.half_spaces[..max] {
if half_space.normal_d().dot(sphere_center) + sphere.radius <= 0.0 {
return false;
}
}
true
}
/// Checks if an Oriented Bounding Box (obb) intersects the frustum.
#[inline]
pub fn intersects_obb(
&self,
aabb: &Aabb,
world_from_local: &Affine3A,
intersect_near: bool,
intersect_far: bool,
) -> bool {
let aabb_center_world = world_from_local.transform_point3a(aabb.center).extend(1.0);
for (idx, half_space) in self.half_spaces.into_iter().enumerate() {
if idx == 4 && !intersect_near {
continue;
}
if idx == 5 && !intersect_far {
continue;
}
let p_normal = half_space.normal();
let relative_radius = aabb.relative_radius(&p_normal, &world_from_local.matrix3);
if half_space.normal_d().dot(aabb_center_world) + relative_radius <= 0.0 {
return false;
}
}
true
}
/// Check if the frustum contains the Axis-Aligned Bounding Box (AABB).
/// Referenced from: [Frustum Culling](https://learnopengl.com/Guest-Articles/2021/Scene/Frustum-Culling)
#[inline]
pub fn contains_aabb(&self, aabb: &Aabb, world_from_local: &Affine3A) -> bool {
for half_space in &self.half_spaces {
if !aabb.is_in_half_space(half_space, world_from_local) {
return false;
}
}
true
}
}
pub struct CubeMapFace {
pub target: Vec3,
pub up: Vec3,
}
// Cubemap faces are [+X, -X, +Y, -Y, +Z, -Z], per https://www.w3.org/TR/webgpu/#texture-view-creation
// Note: Cubemap coordinates are left-handed y-up, unlike the rest of Bevy.
// See https://registry.khronos.org/vulkan/specs/1.2/html/chap16.html#_cube_map_face_selection
//
// For each cubemap face, we take care to specify the appropriate target/up axis such that the rendered
// texture using Bevy's right-handed y-up coordinate space matches the expected cubemap face in
// left-handed y-up cubemap coordinates.
pub const CUBE_MAP_FACES: [CubeMapFace; 6] = [
// +X
CubeMapFace {
target: Vec3::X,
up: Vec3::Y,
},
// -X
CubeMapFace {
target: Vec3::NEG_X,
up: Vec3::Y,
},
// +Y
CubeMapFace {
target: Vec3::Y,
up: Vec3::Z,
},
// -Y
CubeMapFace {
target: Vec3::NEG_Y,
up: Vec3::NEG_Z,
},
// +Z (with left-handed conventions, pointing forwards)
CubeMapFace {
target: Vec3::NEG_Z,
up: Vec3::Y,
},
// -Z (with left-handed conventions, pointing backwards)
CubeMapFace {
target: Vec3::Z,
up: Vec3::Y,
},
];
pub fn face_index_to_name(face_index: usize) -> &'static str {
match face_index {
0 => "+x",
1 => "-x",
2 => "+y",
3 => "-y",
4 => "+z",
5 => "-z",
_ => "invalid",
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CubemapFrusta {
#[reflect(ignore, clone)]
pub frusta: [Frustum; 6],
}
impl CubemapFrusta {
pub fn iter(&self) -> impl DoubleEndedIterator<Item = &Frustum> {
self.frusta.iter()
}
pub fn iter_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut Frustum> {
self.frusta.iter_mut()
}
}
/// Cubemap layout defines the order of images in a packed cubemap image.
#[derive(Default, Reflect, Debug, Clone, Copy)]
pub enum CubemapLayout {
/// layout in a vertical cross format
/// ```text
/// +y
/// -x -z +x
/// -y
/// +z
/// ```
#[default]
CrossVertical = 0,
/// layout in a horizontal cross format
/// ```text
/// +y
/// -x -z +x +z
/// -y
/// ```
CrossHorizontal = 1,
/// layout in a vertical sequence
/// ```text
/// +x
/// -x
/// +y
/// -y
/// -z
/// +z
/// ```
SequenceVertical = 2,
/// layout in a horizontal sequence
/// ```text
/// +x -x +y -y -z +z
/// ```
SequenceHorizontal = 3,
}
#[derive(Component, Debug, Default, Reflect, Clone)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CascadesFrusta {
#[reflect(ignore, clone)]
pub frusta: EntityHashMap<Vec<Frustum>>,
}
#[cfg(test)]
mod tests {
use core::f32::consts::PI;
use bevy_math::{ops, Quat};
use bevy_transform::components::GlobalTransform;
use crate::{CameraProjection, PerspectiveProjection};
use super::*;
// A big, offset frustum
fn big_frustum() -> Frustum {
Frustum {
half_spaces: [
HalfSpace::new(Vec4::new(-0.9701, -0.2425, -0.0000, 7.7611)),
HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 4.0000)),
HalfSpace::new(Vec4::new(-0.0000, -0.2425, -0.9701, 2.9104)),
HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 4.0000)),
HalfSpace::new(Vec4::new(-0.0000, -0.2425, 0.9701, 2.9104)),
HalfSpace::new(Vec4::new(0.9701, -0.2425, -0.0000, -1.9403)),
],
}
}
#[test]
fn intersects_sphere_big_frustum_outside() {
// Sphere outside frustum
let frustum = big_frustum();
let sphere = Sphere {
center: Vec3A::new(0.9167, 0.0000, 0.0000),
radius: 0.7500,
};
assert!(!frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_big_frustum_intersect() {
// Sphere intersects frustum boundary
let frustum = big_frustum();
let sphere = Sphere {
center: Vec3A::new(7.9288, 0.0000, 2.9728),
radius: 2.0000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
// A frustum
fn frustum() -> Frustum {
Frustum {
half_spaces: [
HalfSpace::new(Vec4::new(-0.9701, -0.2425, -0.0000, 0.7276)),
HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 1.0000)),
HalfSpace::new(Vec4::new(-0.0000, -0.2425, -0.9701, 0.7276)),
HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 1.0000)),
HalfSpace::new(Vec4::new(-0.0000, -0.2425, 0.9701, 0.7276)),
HalfSpace::new(Vec4::new(0.9701, -0.2425, -0.0000, 0.7276)),
],
}
}
#[test]
fn intersects_sphere_frustum_surrounding() {
// Sphere surrounds frustum
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(0.0000, 0.0000, 0.0000),
radius: 3.0000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_contained() {
// Sphere is contained in frustum
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(0.0000, 0.0000, 0.0000),
radius: 0.7000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_intersects_plane() {
// Sphere intersects a plane
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(0.0000, 0.0000, 0.9695),
radius: 0.7000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_intersects_2_planes() {
// Sphere intersects 2 planes
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(1.2037, 0.0000, 0.9695),
radius: 0.7000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_intersects_3_planes() {
// Sphere intersects 3 planes
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(1.2037, -1.0988, 0.9695),
radius: 0.7000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_dodges_1_plane() {
// Sphere avoids intersecting the frustum by 1 plane
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(-1.7020, 0.0000, 0.0000),
radius: 0.7000,
};
assert!(!frustum.intersects_sphere(&sphere, true));
}
// A long frustum.
fn long_frustum() -> Frustum {
Frustum {
half_spaces: [
HalfSpace::new(Vec4::new(-0.9998, -0.0222, -0.0000, -1.9543)),
HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 45.1249)),
HalfSpace::new(Vec4::new(-0.0000, -0.0168, -0.9999, 2.2718)),
HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 45.1249)),
HalfSpace::new(Vec4::new(-0.0000, -0.0168, 0.9999, 2.2718)),
HalfSpace::new(Vec4::new(0.9998, -0.0222, -0.0000, 7.9528)),
],
}
}
#[test]
fn intersects_sphere_long_frustum_outside() {
// Sphere outside frustum
let frustum = long_frustum();
let sphere = Sphere {
center: Vec3A::new(-4.4889, 46.9021, 0.0000),
radius: 0.7500,
};
assert!(!frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_long_frustum_intersect() {
// Sphere intersects frustum boundary
let frustum = long_frustum();
let sphere = Sphere {
center: Vec3A::new(-4.9957, 0.0000, -0.7396),
radius: 4.4094,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn aabb_enclosing() {
assert_eq!(Aabb::enclosing(<[Vec3; 0]>::default()), None);
assert_eq!(
Aabb::enclosing(vec![Vec3::ONE]).unwrap(),
Aabb::from_min_max(Vec3::ONE, Vec3::ONE)
);
assert_eq!(
Aabb::enclosing(&[Vec3::Y, Vec3::X, Vec3::Z][..]).unwrap(),
Aabb::from_min_max(Vec3::ZERO, Vec3::ONE)
);
assert_eq!(
Aabb::enclosing([
Vec3::NEG_X,
Vec3::X * 2.0,
Vec3::NEG_Y * 5.0,
Vec3::Z,
Vec3::ZERO
])
.unwrap(),
Aabb::from_min_max(Vec3::new(-1.0, -5.0, 0.0), Vec3::new(2.0, 0.0, 1.0))
);
}
// A frustum with an offset for testing the [`Frustum::contains_aabb`] algorithm.
fn contains_aabb_test_frustum() -> Frustum {
let proj = PerspectiveProjection {
fov: 90.0_f32.to_radians(),
aspect_ratio: 1.0,
near: 1.0,
far: 100.0,
};
proj.compute_frustum(&GlobalTransform::from_translation(Vec3::new(2.0, 2.0, 0.0)))
}
fn contains_aabb_test_frustum_with_rotation() -> Frustum {
let half_extent_world = (((49.5 * 49.5) * 0.5) as f32).sqrt() + 0.5f32.sqrt();
let near = 50.5 - half_extent_world;
let far = near + 2.0 * half_extent_world;
let fov = 2.0 * ops::atan(half_extent_world / near);
let proj = PerspectiveProjection {
aspect_ratio: 1.0,
near,
far,
fov,
};
proj.compute_frustum(&GlobalTransform::IDENTITY)
}
#[test]
fn aabb_inside_frustum() {
let frustum = contains_aabb_test_frustum();
let aabb = Aabb {
center: Vec3A::ZERO,
half_extents: Vec3A::new(0.99, 0.99, 49.49),
};
let model = Affine3A::from_translation(Vec3::new(2.0, 2.0, -50.5));
assert!(frustum.contains_aabb(&aabb, &model));
}
#[test]
fn aabb_intersect_frustum() {
let frustum = contains_aabb_test_frustum();
let aabb = Aabb {
center: Vec3A::ZERO,
half_extents: Vec3A::new(0.99, 0.99, 49.6),
};
let model = Affine3A::from_translation(Vec3::new(2.0, 2.0, -50.5));
assert!(!frustum.contains_aabb(&aabb, &model));
}
#[test]
fn aabb_outside_frustum() {
let frustum = contains_aabb_test_frustum();
let aabb = Aabb {
center: Vec3A::ZERO,
half_extents: Vec3A::new(0.99, 0.99, 0.99),
};
let model = Affine3A::from_translation(Vec3::new(0.0, 0.0, 49.6));
assert!(!frustum.contains_aabb(&aabb, &model));
}
#[test]
fn aabb_inside_frustum_rotation() {
let frustum = contains_aabb_test_frustum_with_rotation();
let aabb = Aabb {
center: Vec3A::new(0.0, 0.0, 0.0),
half_extents: Vec3A::new(0.99, 0.99, 49.49),
};
let model = Affine3A::from_rotation_translation(
Quat::from_rotation_x(PI / 4.0),
Vec3::new(0.0, 0.0, -50.5),
);
assert!(frustum.contains_aabb(&aabb, &model));
}
#[test]
fn aabb_intersect_frustum_rotation() {
let frustum = contains_aabb_test_frustum_with_rotation();
let aabb = Aabb {
center: Vec3A::new(0.0, 0.0, 0.0),
half_extents: Vec3A::new(0.99, 0.99, 49.6),
};
let model = Affine3A::from_rotation_translation(
Quat::from_rotation_x(PI / 4.0),
Vec3::new(0.0, 0.0, -50.5),
);
assert!(!frustum.contains_aabb(&aabb, &model));
}
}