bevy/crates/bevy_ecs/src/system/function_system.rs
JoJoJet ee4c8c5ecd Use consistent names for marker generics (#7788)
# Objective

Several places in the ECS use marker generics to avoid overlapping trait implementations, but different places alternately refer to it as `Params` and `Marker`. This is potentially confusing, since it might not be clear that the same pattern is being used. Additionally, users might be misled into thinking that the `Params` type corresponds to the `SystemParam`s of a system.

## Solution

Rename `Params` to `Marker`.
2023-02-23 04:37:08 +00:00

670 lines
24 KiB
Rust

use crate::{
archetype::{ArchetypeComponentId, ArchetypeGeneration, ArchetypeId},
change_detection::MAX_CHANGE_AGE,
component::ComponentId,
prelude::FromWorld,
query::{Access, FilteredAccessSet},
system::{check_system_change_tick, ReadOnlySystemParam, System, SystemParam, SystemParamItem},
world::{World, WorldId},
};
use bevy_utils::all_tuples;
use std::{any::TypeId, borrow::Cow, marker::PhantomData};
use super::ReadOnlySystem;
/// The metadata of a [`System`].
#[derive(Clone)]
pub struct SystemMeta {
pub(crate) name: Cow<'static, str>,
pub(crate) component_access_set: FilteredAccessSet<ComponentId>,
pub(crate) archetype_component_access: Access<ArchetypeComponentId>,
// NOTE: this must be kept private. making a SystemMeta non-send is irreversible to prevent
// SystemParams from overriding each other
is_send: bool,
pub(crate) last_change_tick: u32,
}
impl SystemMeta {
pub(crate) fn new<T>() -> Self {
Self {
name: std::any::type_name::<T>().into(),
archetype_component_access: Access::default(),
component_access_set: FilteredAccessSet::default(),
is_send: true,
last_change_tick: 0,
}
}
/// Returns the system's name
#[inline]
pub fn name(&self) -> &str {
&self.name
}
/// Returns true if the system is [`Send`].
#[inline]
pub fn is_send(&self) -> bool {
self.is_send
}
/// Sets the system to be not [`Send`].
///
/// This is irreversible.
#[inline]
pub fn set_non_send(&mut self) {
self.is_send = false;
}
}
// TODO: Actually use this in FunctionSystem. We should probably only do this once Systems are constructed using a World reference
// (to avoid the need for unwrapping to retrieve SystemMeta)
/// Holds on to persistent state required to drive [`SystemParam`] for a [`System`].
///
/// This is a very powerful and convenient tool for working with exclusive world access,
/// allowing you to fetch data from the [`World`] as if you were running a [`System`].
///
/// Borrow-checking is handled for you, allowing you to mutably access multiple compatible system parameters at once,
/// and arbitrary system parameters (like [`EventWriter`](crate::event::EventWriter)) can be conveniently fetched.
///
/// For an alternative approach to split mutable access to the world, see [`World::resource_scope`].
///
/// # Warning
///
/// [`SystemState`] values created can be cached to improve performance,
/// and *must* be cached and reused in order for system parameters that rely on local state to work correctly.
/// These include:
/// - [`Added`](crate::query::Added) and [`Changed`](crate::query::Changed) query filters
/// - [`Local`](crate::system::Local) variables that hold state
/// - [`EventReader`](crate::event::EventReader) system parameters, which rely on a [`Local`](crate::system::Local) to track which events have been seen
///
/// # Example
///
/// Basic usage:
/// ```rust
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::{system::SystemState};
/// use bevy_ecs::event::Events;
///
/// struct MyEvent;
/// #[derive(Resource)]
/// struct MyResource(u32);
///
/// #[derive(Component)]
/// struct MyComponent;
///
/// // Work directly on the `World`
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
///
/// // Construct a `SystemState` struct, passing in a tuple of `SystemParam`
/// // as if you were writing an ordinary system.
/// let mut system_state: SystemState<(
/// EventWriter<MyEvent>,
/// Option<ResMut<MyResource>>,
/// Query<&MyComponent>,
/// )> = SystemState::new(&mut world);
///
/// // Use system_state.get_mut(&mut world) and unpack your system parameters into variables!
/// // system_state.get(&world) provides read-only versions of your system parameters instead.
/// let (event_writer, maybe_resource, query) = system_state.get_mut(&mut world);
///
/// // If you are using [`Commands`], you can choose when you want to apply them to the world.
/// // You need to manually call `.apply(world)` on the [`SystemState`] to apply them.
/// ```
/// Caching:
/// ```rust
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::{system::SystemState};
/// use bevy_ecs::event::Events;
///
/// struct MyEvent;
/// #[derive(Resource)]
/// struct CachedSystemState {
/// event_state: SystemState<EventReader<'static, 'static, MyEvent>>
/// }
///
/// // Create and store a system state once
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
/// let initial_state: SystemState<EventReader<MyEvent>> = SystemState::new(&mut world);
///
/// // The system state is cached in a resource
/// world.insert_resource(CachedSystemState{event_state: initial_state});
///
/// // Later, fetch the cached system state, saving on overhead
/// world.resource_scope(|world, mut cached_state: Mut<CachedSystemState>| {
/// let mut event_reader = cached_state.event_state.get_mut(world);
///
/// for events in event_reader.iter() {
/// println!("Hello World!");
/// };
/// });
/// ```
pub struct SystemState<Param: SystemParam + 'static> {
meta: SystemMeta,
param_state: Param::State,
world_id: WorldId,
archetype_generation: ArchetypeGeneration,
}
impl<Param: SystemParam> SystemState<Param> {
pub fn new(world: &mut World) -> Self {
let mut meta = SystemMeta::new::<Param>();
meta.last_change_tick = world.change_tick().wrapping_sub(MAX_CHANGE_AGE);
let param_state = Param::init_state(world, &mut meta);
Self {
meta,
param_state,
world_id: world.id(),
archetype_generation: ArchetypeGeneration::initial(),
}
}
#[inline]
pub fn meta(&self) -> &SystemMeta {
&self.meta
}
/// Retrieve the [`SystemParam`] values. This can only be called when all parameters are read-only.
#[inline]
pub fn get<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param>
where
Param: ReadOnlySystemParam,
{
self.validate_world(world);
self.update_archetypes(world);
// SAFETY: Param is read-only and doesn't allow mutable access to World. It also matches the World this SystemState was created with.
unsafe { self.get_unchecked_manual(world) }
}
/// Retrieve the mutable [`SystemParam`] values.
#[inline]
pub fn get_mut<'w, 's>(&'s mut self, world: &'w mut World) -> SystemParamItem<'w, 's, Param> {
self.validate_world(world);
self.update_archetypes(world);
// SAFETY: World is uniquely borrowed and matches the World this SystemState was created with.
unsafe { self.get_unchecked_manual(world) }
}
/// Applies all state queued up for [`SystemParam`] values. For example, this will apply commands queued up
/// by a [`Commands`](`super::Commands`) parameter to the given [`World`].
/// This function should be called manually after the values returned by [`SystemState::get`] and [`SystemState::get_mut`]
/// are finished being used.
pub fn apply(&mut self, world: &mut World) {
Param::apply(&mut self.param_state, &self.meta, world);
}
#[inline]
pub fn matches_world(&self, world: &World) -> bool {
self.world_id == world.id()
}
/// Asserts that the [`SystemState`] matches the provided [`World`].
#[inline]
fn validate_world(&self, world: &World) {
assert!(self.matches_world(world), "Encountered a mismatched World. A SystemState cannot be used with Worlds other than the one it was created with.");
}
/// Updates the state's internal view of the `world`'s archetypes. If this is not called before fetching the parameters,
/// the results may not accurately reflect what is in the `world`.
///
/// This is only required if [`SystemState::get_manual`] or [`SystemState::get_manual_mut`] is being called, and it only needs to
/// be called if the `world` has been structurally mutated (i.e. added/removed a component or resource). Users using
/// [`SystemState::get`] or [`SystemState::get_mut`] do not need to call this as it will be automatically called for them.
#[inline]
pub fn update_archetypes(&mut self, world: &World) {
let archetypes = world.archetypes();
let new_generation = archetypes.generation();
let old_generation = std::mem::replace(&mut self.archetype_generation, new_generation);
let archetype_index_range = old_generation.value()..new_generation.value();
for archetype_index in archetype_index_range {
Param::new_archetype(
&mut self.param_state,
&archetypes[ArchetypeId::new(archetype_index)],
&mut self.meta,
);
}
}
/// Retrieve the [`SystemParam`] values. This can only be called when all parameters are read-only.
/// This will not update the state's view of the world's archetypes automatically nor increment the
/// world's change tick.
///
/// For this to return accurate results, ensure [`SystemState::update_archetypes`] is called before this
/// function.
///
/// Users should strongly prefer to use [`SystemState::get`] over this function.
#[inline]
pub fn get_manual<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param>
where
Param: ReadOnlySystemParam,
{
self.validate_world(world);
let change_tick = world.read_change_tick();
// SAFETY: Param is read-only and doesn't allow mutable access to World. It also matches the World this SystemState was created with.
unsafe { self.fetch(world, change_tick) }
}
/// Retrieve the mutable [`SystemParam`] values. This will not update the state's view of the world's archetypes
/// automatically nor increment the world's change tick.
///
/// For this to return accurate results, ensure [`SystemState::update_archetypes`] is called before this
/// function.
///
/// Users should strongly prefer to use [`SystemState::get_mut`] over this function.
#[inline]
pub fn get_manual_mut<'w, 's>(
&'s mut self,
world: &'w mut World,
) -> SystemParamItem<'w, 's, Param> {
self.validate_world(world);
let change_tick = world.change_tick();
// SAFETY: World is uniquely borrowed and matches the World this SystemState was created with.
unsafe { self.fetch(world, change_tick) }
}
/// Retrieve the [`SystemParam`] values. This will not update archetypes automatically.
///
/// # Safety
/// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data
/// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was
/// created with.
#[inline]
pub unsafe fn get_unchecked_manual<'w, 's>(
&'s mut self,
world: &'w World,
) -> SystemParamItem<'w, 's, Param> {
let change_tick = world.increment_change_tick();
self.fetch(world, change_tick)
}
/// # Safety
/// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data
/// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was
/// created with.
#[inline]
unsafe fn fetch<'w, 's>(
&'s mut self,
world: &'w World,
change_tick: u32,
) -> SystemParamItem<'w, 's, Param> {
let param = Param::get_param(&mut self.param_state, &self.meta, world, change_tick);
self.meta.last_change_tick = change_tick;
param
}
}
impl<Param: SystemParam> FromWorld for SystemState<Param> {
fn from_world(world: &mut World) -> Self {
Self::new(world)
}
}
/// Conversion trait to turn something into a [`System`].
///
/// Use this to get a system from a function. Also note that every system implements this trait as
/// well.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn my_system_function(a_usize_local: Local<usize>) {}
///
/// let system = IntoSystem::into_system(my_system_function);
/// ```
// This trait has to be generic because we have potentially overlapping impls, in particular
// because Rust thinks a type could impl multiple different `FnMut` combinations
// even though none can currently
pub trait IntoSystem<In, Out, Marker>: Sized {
type System: System<In = In, Out = Out>;
/// Turns this value into its corresponding [`System`].
fn into_system(this: Self) -> Self::System;
}
pub struct AlreadyWasSystem;
// Systems implicitly implement IntoSystem
impl<In, Out, Sys: System<In = In, Out = Out>> IntoSystem<In, Out, AlreadyWasSystem> for Sys {
type System = Sys;
fn into_system(this: Self) -> Sys {
this
}
}
/// Wrapper type to mark a [`SystemParam`] as an input.
///
/// [`System`]s may take an optional input which they require to be passed to them when they
/// are being [`run`](System::run). For [`FunctionSystems`](FunctionSystem) the input may be marked
/// with this `In` type, but only the first param of a function may be tagged as an input. This also
/// means a system can only have one or zero input parameters.
///
/// # Examples
///
/// Here is a simple example of a system that takes a [`usize`] returning the square of it.
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn main() {
/// let mut square_system = IntoSystem::into_system(square);
///
/// let mut world = World::default();
/// square_system.initialize(&mut world);
/// assert_eq!(square_system.run(12, &mut world), 144);
/// }
///
/// fn square(In(input): In<usize>) -> usize {
/// input * input
/// }
/// ```
pub struct In<In>(pub In);
#[doc(hidden)]
pub struct InputMarker;
/// The [`System`] counter part of an ordinary function.
///
/// You get this by calling [`IntoSystem::into_system`] on a function that only accepts
/// [`SystemParam`]s. The output of the system becomes the functions return type, while the input
/// becomes the functions [`In`] tagged parameter or `()` if no such parameter exists.
///
/// [`FunctionSystem`] must be `.initialized` before they can be run.
pub struct FunctionSystem<Marker, F>
where
F: SystemParamFunction<Marker>,
{
func: F,
param_state: Option<<F::Param as SystemParam>::State>,
system_meta: SystemMeta,
world_id: Option<WorldId>,
archetype_generation: ArchetypeGeneration,
// NOTE: PhantomData<fn()-> T> gives this safe Send/Sync impls
marker: PhantomData<fn() -> Marker>,
}
pub struct IsFunctionSystem;
impl<Marker, F> IntoSystem<F::In, F::Out, (IsFunctionSystem, Marker)> for F
where
Marker: 'static,
F: SystemParamFunction<Marker>,
{
type System = FunctionSystem<Marker, F>;
fn into_system(func: Self) -> Self::System {
FunctionSystem {
func,
param_state: None,
system_meta: SystemMeta::new::<F>(),
world_id: None,
archetype_generation: ArchetypeGeneration::initial(),
marker: PhantomData,
}
}
}
impl<Marker, F> FunctionSystem<Marker, F>
where
F: SystemParamFunction<Marker>,
{
/// Message shown when a system isn't initialised
// When lines get too long, rustfmt can sometimes refuse to format them.
// Work around this by storing the message separately.
const PARAM_MESSAGE: &'static str = "System's param_state was not found. Did you forget to initialize this system before running it?";
}
impl<Marker, F> System for FunctionSystem<Marker, F>
where
Marker: 'static,
F: SystemParamFunction<Marker>,
{
type In = F::In;
type Out = F::Out;
#[inline]
fn name(&self) -> Cow<'static, str> {
self.system_meta.name.clone()
}
#[inline]
fn type_id(&self) -> TypeId {
TypeId::of::<F>()
}
#[inline]
fn component_access(&self) -> &Access<ComponentId> {
self.system_meta.component_access_set.combined_access()
}
#[inline]
fn archetype_component_access(&self) -> &Access<ArchetypeComponentId> {
&self.system_meta.archetype_component_access
}
#[inline]
fn is_send(&self) -> bool {
self.system_meta.is_send
}
#[inline]
fn is_exclusive(&self) -> bool {
false
}
#[inline]
unsafe fn run_unsafe(&mut self, input: Self::In, world: &World) -> Self::Out {
let change_tick = world.increment_change_tick();
// Safety:
// We update the archetype component access correctly based on `Param`'s requirements
// in `update_archetype_component_access`.
// Our caller upholds the requirements.
let params = F::Param::get_param(
self.param_state.as_mut().expect(Self::PARAM_MESSAGE),
&self.system_meta,
world,
change_tick,
);
let out = self.func.run(input, params);
self.system_meta.last_change_tick = change_tick;
out
}
fn get_last_change_tick(&self) -> u32 {
self.system_meta.last_change_tick
}
fn set_last_change_tick(&mut self, last_change_tick: u32) {
self.system_meta.last_change_tick = last_change_tick;
}
#[inline]
fn apply_buffers(&mut self, world: &mut World) {
let param_state = self.param_state.as_mut().expect(Self::PARAM_MESSAGE);
F::Param::apply(param_state, &self.system_meta, world);
}
#[inline]
fn initialize(&mut self, world: &mut World) {
self.world_id = Some(world.id());
self.system_meta.last_change_tick = world.change_tick().wrapping_sub(MAX_CHANGE_AGE);
self.param_state = Some(F::Param::init_state(world, &mut self.system_meta));
}
fn update_archetype_component_access(&mut self, world: &World) {
assert!(self.world_id == Some(world.id()), "Encountered a mismatched World. A System cannot be used with Worlds other than the one it was initialized with.");
let archetypes = world.archetypes();
let new_generation = archetypes.generation();
let old_generation = std::mem::replace(&mut self.archetype_generation, new_generation);
let archetype_index_range = old_generation.value()..new_generation.value();
for archetype_index in archetype_index_range {
let param_state = self.param_state.as_mut().unwrap();
F::Param::new_archetype(
param_state,
&archetypes[ArchetypeId::new(archetype_index)],
&mut self.system_meta,
);
}
}
#[inline]
fn check_change_tick(&mut self, change_tick: u32) {
check_system_change_tick(
&mut self.system_meta.last_change_tick,
change_tick,
self.system_meta.name.as_ref(),
);
}
fn default_system_sets(&self) -> Vec<Box<dyn crate::schedule::SystemSet>> {
let set = crate::schedule::SystemTypeSet::<F>::new();
vec![Box::new(set)]
}
}
/// SAFETY: `F`'s param is `ReadOnlySystemParam`, so this system will only read from the world.
unsafe impl<Marker, F> ReadOnlySystem for FunctionSystem<Marker, F>
where
Marker: 'static,
F: SystemParamFunction<Marker>,
F::Param: ReadOnlySystemParam,
{
}
/// A trait implemented for all functions that can be used as [`System`]s.
///
/// This trait can be useful for making your own systems which accept other systems,
/// sometimes called higher order systems.
///
/// This should be used in combination with [`ParamSet`] when calling other systems
/// within your system.
/// Using [`ParamSet`] in this case avoids [`SystemParam`] collisions.
///
/// # Example
///
/// To create something like [`PipeSystem`], but in entirely safe code.
///
/// ```rust
/// use std::num::ParseIntError;
///
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::system::{SystemParam, SystemParamItem};
///
/// /// Pipe creates a new system which calls `a`, then calls `b` with the output of `a`
/// pub fn pipe<A, B, AMarker, BMarker>(
/// mut a: A,
/// mut b: B,
/// ) -> impl FnMut(In<A::In>, ParamSet<(A::Param, B::Param)>) -> B::Out
/// where
/// // We need A and B to be systems, add those bounds
/// A: SystemParamFunction<AMarker>,
/// B: SystemParamFunction<BMarker, In = A::Out>,
/// {
/// // The type of `params` is inferred based on the return of this function above
/// move |In(a_in), mut params| {
/// let shared = a.run(a_in, params.p0());
/// b.run(shared, params.p1())
/// }
/// }
///
/// // Usage example for `pipe`:
/// fn main() {
/// let mut world = World::default();
/// world.insert_resource(Message("42".to_string()));
///
/// // pipe the `parse_message_system`'s output into the `filter_system`s input
/// let mut piped_system = IntoSystem::into_system(pipe(parse_message, filter));
/// piped_system.initialize(&mut world);
/// assert_eq!(piped_system.run((), &mut world), Some(42));
/// }
///
/// #[derive(Resource)]
/// struct Message(String);
///
/// fn parse_message(message: Res<Message>) -> Result<usize, ParseIntError> {
/// message.0.parse::<usize>()
/// }
///
/// fn filter(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
/// result.ok().filter(|&n| n < 100)
/// }
/// ```
/// [`PipeSystem`]: crate::system::PipeSystem
/// [`ParamSet`]: crate::system::ParamSet
pub trait SystemParamFunction<Marker>: Send + Sync + 'static {
/// The input type to this system. See [`System::In`].
type In;
/// The return type of this system. See [`System::Out`].
type Out;
/// The [`SystemParam`]/s used by this system to access the [`World`].
type Param: SystemParam;
/// Executes this system once. See [`System::run`] or [`System::run_unsafe`].
fn run(&mut self, input: Self::In, param_value: SystemParamItem<Self::Param>) -> Self::Out;
}
macro_rules! impl_system_function {
($($param: ident),*) => {
#[allow(non_snake_case)]
impl<Out, Func: Send + Sync + 'static, $($param: SystemParam),*> SystemParamFunction<((), Out, $($param,)*)> for Func
where
for <'a> &'a mut Func:
FnMut($($param),*) -> Out +
FnMut($(SystemParamItem<$param>),*) -> Out, Out: 'static
{
type In = ();
type Out = Out;
type Param = ($($param,)*);
#[inline]
fn run(&mut self, _input: (), param_value: SystemParamItem< ($($param,)*)>) -> Out {
// Yes, this is strange, but `rustc` fails to compile this impl
// without using this function. It fails to recognise that `func`
// is a function, potentially because of the multiple impls of `FnMut`
#[allow(clippy::too_many_arguments)]
fn call_inner<Out, $($param,)*>(
mut f: impl FnMut($($param,)*)->Out,
$($param: $param,)*
)->Out{
f($($param,)*)
}
let ($($param,)*) = param_value;
call_inner(self, $($param),*)
}
}
#[allow(non_snake_case)]
impl<Input, Out, Func: Send + Sync + 'static, $($param: SystemParam),*> SystemParamFunction<(Input, Out, $($param,)* InputMarker)> for Func
where
for <'a> &'a mut Func:
FnMut(In<Input>, $($param),*) -> Out +
FnMut(In<Input>, $(SystemParamItem<$param>),*) -> Out, Out: 'static
{
type In = Input;
type Out = Out;
type Param = ($($param,)*);
#[inline]
fn run(&mut self, input: Input, param_value: SystemParamItem< ($($param,)*)>) -> Out {
#[allow(clippy::too_many_arguments)]
fn call_inner<Input, Out, $($param,)*>(
mut f: impl FnMut(In<Input>, $($param,)*)->Out,
input: In<Input>,
$($param: $param,)*
)->Out{
f(input, $($param,)*)
}
let ($($param,)*) = param_value;
call_inner(self, In(input), $($param),*)
}
}
};
}
// Note that we rely on the highest impl to be <= the highest order of the tuple impls
// of `SystemParam` created.
all_tuples!(impl_system_function, 0, 16, F);