 5876352206
			
		
	
	
		5876352206
		
			
		
	
	
	
	
		
			
			# Objective
The `AssetReader` trait allows customizing the behavior of fetching
bytes for an `AssetPath`, and expects implementors to return `dyn
AsyncRead + AsyncSeek`. This gives implementors of `AssetLoader` great
flexibility to tightly integrate their asset loading behavior with the
asynchronous task system.
However, almost all implementors of `AssetLoader` don't use the async
functionality at all, and just call `AsyncReadExt::read_to_end(&mut
Vec<u8>)`. This is incredibly inefficient, as this method repeatedly
calls `poll_read` on the trait object, filling the vector 32 bytes at a
time. At my work we have assets that are hundreds of megabytes which
makes this a meaningful overhead.
## Solution
Turn the `Reader` type alias into an actual trait, with a provided
method `read_to_end`. This provided method should be more efficient than
the existing extension method, as the compiler will know the underlying
type of `Reader` when generating this function, which removes the
repeated dynamic dispatches and allows the compiler to make further
optimizations after inlining. Individual implementors are able to
override the provided implementation -- for simple asset readers that
just copy bytes from one buffer to another, this allows removing a large
amount of overhead from the provided implementation.
Now that `Reader` is an actual trait, I also improved the ergonomics for
implementing `AssetReader`. Currently, implementors are expected to box
their reader and return it as a trait object, which adds unnecessary
boilerplate to implementations. This PR changes that trait method to
return a pseudo trait alias, which allows implementors to return `impl
Reader` instead of `Box<dyn Reader>`. Now, the boilerplate for boxing
occurs in `ErasedAssetReader`.
## Testing
I made identical changes to my company's fork of bevy. Our app, which
makes heavy use of `read_to_end` for asset loading, still worked
properly after this. I am not aware if we have a more systematic way of
testing asset loading for correctness.
---
## Migration Guide
The trait method `bevy_asset::io::AssetReader::read` (and `read_meta`)
now return an opaque type instead of a boxed trait object. Implementors
of these methods should change the type signatures appropriately
```rust
impl AssetReader for MyReader {
    // Before
    async fn read<'a>(&'a self, path: &'a Path) -> Result<Box<Reader<'a>>, AssetReaderError> {
        let reader = // construct a reader
        Box::new(reader) as Box<Reader<'a>>
    }
    // After
    async fn read<'a>(&'a self, path: &'a Path) -> Result<impl Reader + 'a, AssetReaderError> {
        // create a reader
    }
}
```
`bevy::asset::io::Reader` is now a trait, rather than a type alias for a
trait object. Implementors of `AssetLoader::load` will need to adjust
the method signature accordingly
```rust
impl AssetLoader for MyLoader {
    async fn load<'a>(
        &'a self,
        // Before:
        reader: &'a mut bevy::asset::io::Reader,
        // After:
        reader: &'a mut dyn bevy::asset::io::Reader,
        _: &'a Self::Settings,
        load_context: &'a mut LoadContext<'_>,
    ) -> Result<Self::Asset, Self::Error> {
}
```
Additionally, implementors of `AssetReader` that return a type
implementing `futures_io::AsyncRead` and `AsyncSeek` might need to
explicitly implement `bevy::asset::io::Reader` for that type.
```rust
impl bevy::asset::io::Reader for MyAsyncReadAndSeek {}
```
		
	
			
		
			
				
	
	
		
			69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Implements a custom asset io loader.
 | |
| //! An [`AssetReader`] is what the asset server uses to read the raw bytes of assets.
 | |
| //! It does not know anything about the asset formats, only how to talk to the underlying storage.
 | |
| 
 | |
| use bevy::{
 | |
|     asset::io::{
 | |
|         AssetReader, AssetReaderError, AssetSource, AssetSourceId, ErasedAssetReader, PathStream,
 | |
|         Reader,
 | |
|     },
 | |
|     prelude::*,
 | |
| };
 | |
| use std::path::Path;
 | |
| 
 | |
| /// A custom asset reader implementation that wraps a given asset reader implementation
 | |
| struct CustomAssetReader(Box<dyn ErasedAssetReader>);
 | |
| 
 | |
| impl AssetReader for CustomAssetReader {
 | |
|     async fn read<'a>(&'a self, path: &'a Path) -> Result<impl Reader + 'a, AssetReaderError> {
 | |
|         info!("Reading {:?}", path);
 | |
|         self.0.read(path).await
 | |
|     }
 | |
|     async fn read_meta<'a>(&'a self, path: &'a Path) -> Result<impl Reader + 'a, AssetReaderError> {
 | |
|         self.0.read_meta(path).await
 | |
|     }
 | |
| 
 | |
|     async fn read_directory<'a>(
 | |
|         &'a self,
 | |
|         path: &'a Path,
 | |
|     ) -> Result<Box<PathStream>, AssetReaderError> {
 | |
|         self.0.read_directory(path).await
 | |
|     }
 | |
| 
 | |
|     async fn is_directory<'a>(&'a self, path: &'a Path) -> Result<bool, AssetReaderError> {
 | |
|         self.0.is_directory(path).await
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// A plugins that registers our new asset reader
 | |
| struct CustomAssetReaderPlugin;
 | |
| 
 | |
| impl Plugin for CustomAssetReaderPlugin {
 | |
|     fn build(&self, app: &mut App) {
 | |
|         app.register_asset_source(
 | |
|             AssetSourceId::Default,
 | |
|             AssetSource::build().with_reader(|| {
 | |
|                 Box::new(CustomAssetReader(
 | |
|                     // This is the default reader for the current platform
 | |
|                     AssetSource::get_default_reader("assets".to_string())(),
 | |
|                 ))
 | |
|             }),
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn main() {
 | |
|     App::new()
 | |
|         .add_plugins((CustomAssetReaderPlugin, DefaultPlugins))
 | |
|         .add_systems(Startup, setup)
 | |
|         .run();
 | |
| }
 | |
| 
 | |
| fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
 | |
|     commands.spawn(Camera2dBundle::default());
 | |
|     commands.spawn(SpriteBundle {
 | |
|         texture: asset_server.load("branding/icon.png"),
 | |
|         ..default()
 | |
|     });
 | |
| }
 |