
# Objective Fixes #12388 ## Solution - Removing the plane3d and adding rect3d primitive mesh
181 lines
5.4 KiB
Rust
181 lines
5.4 KiB
Rust
use crate::{
|
|
primitives::{InfinitePlane3d, Plane2d},
|
|
Dir2, Dir3, Vec2, Vec3,
|
|
};
|
|
|
|
/// An infinite half-line starting at `origin` and going in `direction` in 2D space.
|
|
#[derive(Clone, Copy, Debug, PartialEq)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
pub struct Ray2d {
|
|
/// The origin of the ray.
|
|
pub origin: Vec2,
|
|
/// The direction of the ray.
|
|
pub direction: Dir2,
|
|
}
|
|
|
|
impl Ray2d {
|
|
/// Create a new `Ray2d` from a given origin and direction
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the given `direction` is zero (or very close to zero), or non-finite.
|
|
#[inline]
|
|
pub fn new(origin: Vec2, direction: Vec2) -> Self {
|
|
Self {
|
|
origin,
|
|
direction: Dir2::new(direction).expect("ray direction must be nonzero and finite"),
|
|
}
|
|
}
|
|
|
|
/// Get a point at a given distance along the ray
|
|
#[inline]
|
|
pub fn get_point(&self, distance: f32) -> Vec2 {
|
|
self.origin + *self.direction * distance
|
|
}
|
|
|
|
/// Get the distance to a plane if the ray intersects it
|
|
#[inline]
|
|
pub fn intersect_plane(&self, plane_origin: Vec2, plane: Plane2d) -> Option<f32> {
|
|
let denominator = plane.normal.dot(*self.direction);
|
|
if denominator.abs() > f32::EPSILON {
|
|
let distance = (plane_origin - self.origin).dot(*plane.normal) / denominator;
|
|
if distance > f32::EPSILON {
|
|
return Some(distance);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
/// An infinite half-line starting at `origin` and going in `direction` in 3D space.
|
|
#[derive(Clone, Copy, Debug, PartialEq)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
pub struct Ray3d {
|
|
/// The origin of the ray.
|
|
pub origin: Vec3,
|
|
/// The direction of the ray.
|
|
pub direction: Dir3,
|
|
}
|
|
|
|
impl Ray3d {
|
|
/// Create a new `Ray3d` from a given origin and direction
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the given `direction` is zero (or very close to zero), or non-finite.
|
|
#[inline]
|
|
pub fn new(origin: Vec3, direction: Vec3) -> Self {
|
|
Self {
|
|
origin,
|
|
direction: Dir3::new(direction).expect("ray direction must be nonzero and finite"),
|
|
}
|
|
}
|
|
|
|
/// Get a point at a given distance along the ray
|
|
#[inline]
|
|
pub fn get_point(&self, distance: f32) -> Vec3 {
|
|
self.origin + *self.direction * distance
|
|
}
|
|
|
|
/// Get the distance to a plane if the ray intersects it
|
|
#[inline]
|
|
pub fn intersect_plane(&self, plane_origin: Vec3, plane: InfinitePlane3d) -> Option<f32> {
|
|
let denominator = plane.normal.dot(*self.direction);
|
|
if denominator.abs() > f32::EPSILON {
|
|
let distance = (plane_origin - self.origin).dot(*plane.normal) / denominator;
|
|
if distance > f32::EPSILON {
|
|
return Some(distance);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn intersect_plane_2d() {
|
|
let ray = Ray2d::new(Vec2::ZERO, Vec2::Y);
|
|
|
|
// Orthogonal, and test that an inverse plane_normal has the same result
|
|
assert_eq!(
|
|
ray.intersect_plane(Vec2::Y, Plane2d::new(Vec2::Y)),
|
|
Some(1.0)
|
|
);
|
|
assert_eq!(
|
|
ray.intersect_plane(Vec2::Y, Plane2d::new(Vec2::NEG_Y)),
|
|
Some(1.0)
|
|
);
|
|
assert!(ray
|
|
.intersect_plane(Vec2::NEG_Y, Plane2d::new(Vec2::Y))
|
|
.is_none());
|
|
assert!(ray
|
|
.intersect_plane(Vec2::NEG_Y, Plane2d::new(Vec2::NEG_Y))
|
|
.is_none());
|
|
|
|
// Diagonal
|
|
assert_eq!(
|
|
ray.intersect_plane(Vec2::Y, Plane2d::new(Vec2::ONE)),
|
|
Some(1.0)
|
|
);
|
|
assert!(ray
|
|
.intersect_plane(Vec2::NEG_Y, Plane2d::new(Vec2::ONE))
|
|
.is_none());
|
|
|
|
// Parallel
|
|
assert!(ray
|
|
.intersect_plane(Vec2::X, Plane2d::new(Vec2::X))
|
|
.is_none());
|
|
|
|
// Parallel with simulated rounding error
|
|
assert!(ray
|
|
.intersect_plane(Vec2::X, Plane2d::new(Vec2::X + Vec2::Y * f32::EPSILON))
|
|
.is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn intersect_plane_3d() {
|
|
let ray = Ray3d::new(Vec3::ZERO, Vec3::Z);
|
|
|
|
// Orthogonal, and test that an inverse plane_normal has the same result
|
|
assert_eq!(
|
|
ray.intersect_plane(Vec3::Z, InfinitePlane3d::new(Vec3::Z)),
|
|
Some(1.0)
|
|
);
|
|
assert_eq!(
|
|
ray.intersect_plane(Vec3::Z, InfinitePlane3d::new(Vec3::NEG_Z)),
|
|
Some(1.0)
|
|
);
|
|
assert!(ray
|
|
.intersect_plane(Vec3::NEG_Z, InfinitePlane3d::new(Vec3::Z))
|
|
.is_none());
|
|
assert!(ray
|
|
.intersect_plane(Vec3::NEG_Z, InfinitePlane3d::new(Vec3::NEG_Z))
|
|
.is_none());
|
|
|
|
// Diagonal
|
|
assert_eq!(
|
|
ray.intersect_plane(Vec3::Z, InfinitePlane3d::new(Vec3::ONE)),
|
|
Some(1.0)
|
|
);
|
|
assert!(ray
|
|
.intersect_plane(Vec3::NEG_Z, InfinitePlane3d::new(Vec3::ONE))
|
|
.is_none());
|
|
|
|
// Parallel
|
|
assert!(ray
|
|
.intersect_plane(Vec3::X, InfinitePlane3d::new(Vec3::X))
|
|
.is_none());
|
|
|
|
// Parallel with simulated rounding error
|
|
assert!(ray
|
|
.intersect_plane(
|
|
Vec3::X,
|
|
InfinitePlane3d::new(Vec3::X + Vec3::Z * f32::EPSILON)
|
|
)
|
|
.is_none());
|
|
}
|
|
}
|