bevy/crates/bevy_math/src/primitives/dim2.rs
Joona Aalto f418de8eb6
Rename Direction2d/3d to Dir2/3 (#12189)
# Objective

Split up from #12017, rename Bevy's direction types.

Currently, Bevy has the `Direction2d`, `Direction3d`, and `Direction3dA`
types, which provide a type-level guarantee that their contained vectors
remain normalized. They can be very useful for a lot of APIs for safety,
explicitness, and in some cases performance, as they can sometimes avoid
unnecessary normalizations.

However, many consider them to be inconvenient to use, and opt for
standard vector types like `Vec3` because of this. One reason is that
the direction type names are a bit long and can be annoying to write (of
course you can use autocomplete, but just typing `Vec3` is still nicer),
and in some intances, the extra characters can make formatting worse.
The naming is also inconsistent with Glam's shorter type names, and
results in names like `Direction3dA`, which (in my opinion) are
difficult to read and even a bit ugly.

This PR proposes renaming the types to `Dir2`, `Dir3`, and `Dir3A`.
These names are nice and easy to write, consistent with Glam, and work
well for variants like the SIMD aligned `Dir3A`. As a bonus, it can also
result in nicer formatting in a lot of cases, which can be seen from the
diff of this PR.

Some examples of what it looks like: (copied from #12017)

```rust
// Before
let ray_cast = RayCast2d::new(Vec2::ZERO, Direction2d::X, 5.0);

// After
let ray_cast = RayCast2d::new(Vec2::ZERO, Dir2::X, 5.0);
```

```rust
// Before (an example using Bevy XPBD)
let hit = spatial_query.cast_ray(
    Vec3::ZERO,
    Direction3d::X,
    f32::MAX,
    true,
    SpatialQueryFilter::default(),
);

// After
let hit = spatial_query.cast_ray(
    Vec3::ZERO,
    Dir3::X,
    f32::MAX,
    true,
    SpatialQueryFilter::default(),
);
```

```rust
// Before
self.circle(
    Vec3::new(0.0, -2.0, 0.0),
    Direction3d::Y,
    5.0,
    Color::TURQUOISE,
);

// After (formatting is collapsed in this case)
self.circle(Vec3::new(0.0, -2.0, 0.0), Dir3::Y, 5.0, Color::TURQUOISE);
```

## Solution

Rename `Direction2d`, `Direction3d`, and `Direction3dA` to `Dir2`,
`Dir3`, and `Dir3A`.

---

## Migration Guide

The `Direction2d` and `Direction3d` types have been renamed to `Dir2`
and `Dir3`.

## Additional Context

This has been brought up on the Discord a few times, and we had a small
[poll](https://discord.com/channels/691052431525675048/1203087353850364004/1212465038711984158)
on this. `Dir2`/`Dir3`/`Dir3A` was quite unanimously chosen as the best
option, but of course it was a very small poll and inconclusive, so
other opinions are certainly welcome too.

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
2024-02-28 22:48:43 +00:00

848 lines
26 KiB
Rust

use std::f32::consts::PI;
use super::{Primitive2d, WindingOrder};
use crate::{Dir2, Vec2};
/// A circle primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Circle {
/// The radius of the circle
pub radius: f32,
}
impl Primitive2d for Circle {}
impl Default for Circle {
/// Returns the default [`Circle`] with a radius of `0.5`.
fn default() -> Self {
Self { radius: 0.5 }
}
}
impl Circle {
/// Create a new [`Circle`] from a `radius`
#[inline(always)]
pub const fn new(radius: f32) -> Self {
Self { radius }
}
/// Get the diameter of the circle
#[inline(always)]
pub fn diameter(&self) -> f32 {
2.0 * self.radius
}
/// Get the area of the circle
#[inline(always)]
pub fn area(&self) -> f32 {
PI * self.radius.powi(2)
}
/// Get the perimeter or circumference of the circle
#[inline(always)]
#[doc(alias = "circumference")]
pub fn perimeter(&self) -> f32 {
2.0 * PI * self.radius
}
/// Finds the point on the circle that is closest to the given `point`.
///
/// If the point is outside the circle, the returned point will be on the perimeter of the circle.
/// Otherwise, it will be inside the circle and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
let distance_squared = point.length_squared();
if distance_squared <= self.radius.powi(2) {
// The point is inside the circle.
point
} else {
// The point is outside the circle.
// Find the closest point on the perimeter of the circle.
let dir_to_point = point / distance_squared.sqrt();
self.radius * dir_to_point
}
}
}
/// An ellipse primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Ellipse {
/// Half of the width and height of the ellipse.
///
/// This corresponds to the two perpendicular radii defining the ellipse.
pub half_size: Vec2,
}
impl Primitive2d for Ellipse {}
impl Default for Ellipse {
/// Returns the default [`Ellipse`] with a half-width of `1.0` and a half-height of `0.5`.
fn default() -> Self {
Self {
half_size: Vec2::new(1.0, 0.5),
}
}
}
impl Ellipse {
/// Create a new `Ellipse` from half of its width and height.
///
/// This corresponds to the two perpendicular radii defining the ellipse.
#[inline(always)]
pub const fn new(half_width: f32, half_height: f32) -> Self {
Self {
half_size: Vec2::new(half_width, half_height),
}
}
/// Create a new `Ellipse` from a given full size.
///
/// `size.x` is the diameter along the X axis, and `size.y` is the diameter along the Y axis.
#[inline(always)]
pub fn from_size(size: Vec2) -> Self {
Self {
half_size: size / 2.0,
}
}
/// Returns the length of the semi-major axis. This corresponds to the longest radius of the ellipse.
#[inline(always)]
pub fn semi_major(self) -> f32 {
self.half_size.max_element()
}
/// Returns the length of the semi-minor axis. This corresponds to the shortest radius of the ellipse.
#[inline(always)]
pub fn semi_minor(self) -> f32 {
self.half_size.min_element()
}
/// Get the area of the ellipse
#[inline(always)]
pub fn area(&self) -> f32 {
PI * self.half_size.x * self.half_size.y
}
}
/// An unbounded plane in 2D space. It forms a separating surface through the origin,
/// stretching infinitely far
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Plane2d {
/// The normal of the plane. The plane will be placed perpendicular to this direction
pub normal: Dir2,
}
impl Primitive2d for Plane2d {}
impl Default for Plane2d {
/// Returns the default [`Plane2d`] with a normal pointing in the `+Y` direction.
fn default() -> Self {
Self { normal: Dir2::Y }
}
}
impl Plane2d {
/// Create a new `Plane2d` from a normal
///
/// # Panics
///
/// Panics if the given `normal` is zero (or very close to zero), or non-finite.
#[inline(always)]
pub fn new(normal: Vec2) -> Self {
Self {
normal: Dir2::new(normal).expect("normal must be nonzero and finite"),
}
}
}
/// An infinite line along a direction in 2D space.
///
/// For a finite line: [`Segment2d`]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Line2d {
/// The direction of the line. The line extends infinitely in both the given direction
/// and its opposite direction
pub direction: Dir2,
}
impl Primitive2d for Line2d {}
/// A segment of a line along a direction in 2D space.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[doc(alias = "LineSegment2d")]
pub struct Segment2d {
/// The direction of the line segment
pub direction: Dir2,
/// Half the length of the line segment. The segment extends by this amount in both
/// the given direction and its opposite direction
pub half_length: f32,
}
impl Primitive2d for Segment2d {}
impl Segment2d {
/// Create a new `Segment2d` from a direction and full length of the segment
#[inline(always)]
pub fn new(direction: Dir2, length: f32) -> Self {
Self {
direction,
half_length: length / 2.0,
}
}
/// Create a new `Segment2d` from its endpoints and compute its geometric center
///
/// # Panics
///
/// Panics if `point1 == point2`
#[inline(always)]
pub fn from_points(point1: Vec2, point2: Vec2) -> (Self, Vec2) {
let diff = point2 - point1;
let length = diff.length();
(
// We are dividing by the length here, so the vector is normalized.
Self::new(Dir2::new_unchecked(diff / length), length),
(point1 + point2) / 2.,
)
}
/// Get the position of the first point on the line segment
#[inline(always)]
pub fn point1(&self) -> Vec2 {
*self.direction * -self.half_length
}
/// Get the position of the second point on the line segment
#[inline(always)]
pub fn point2(&self) -> Vec2 {
*self.direction * self.half_length
}
}
/// A series of connected line segments in 2D space.
///
/// For a version without generics: [`BoxedPolyline2d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Polyline2d<const N: usize> {
/// The vertices of the polyline
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polyline2d<N> {}
impl<const N: usize> FromIterator<Vec2> for Polyline2d<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polyline2d<N> {
/// Create a new `Polyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A series of connected line segments in 2D space, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polyline2d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolyline2d {
/// The vertices of the polyline
pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolyline2d {}
impl FromIterator<Vec2> for BoxedPolyline2d {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolyline2d {
/// Create a new `BoxedPolyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A triangle in 2D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Triangle2d {
/// The vertices of the triangle
pub vertices: [Vec2; 3],
}
impl Primitive2d for Triangle2d {}
impl Default for Triangle2d {
/// Returns the default [`Triangle2d`] with the vertices `[0.0, 0.5]`, `[-0.5, -0.5]`, and `[0.5, -0.5]`.
fn default() -> Self {
Self {
vertices: [Vec2::Y * 0.5, Vec2::new(-0.5, -0.5), Vec2::new(0.5, -0.5)],
}
}
}
impl Triangle2d {
/// Create a new `Triangle2d` from points `a`, `b`, and `c`
#[inline(always)]
pub const fn new(a: Vec2, b: Vec2, c: Vec2) -> Self {
Self {
vertices: [a, b, c],
}
}
/// Get the area of the triangle
#[inline(always)]
pub fn area(&self) -> f32 {
let [a, b, c] = self.vertices;
(a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y)).abs() / 2.0
}
/// Get the perimeter of the triangle
#[inline(always)]
pub fn perimeter(&self) -> f32 {
let [a, b, c] = self.vertices;
let ab = a.distance(b);
let bc = b.distance(c);
let ca = c.distance(a);
ab + bc + ca
}
/// Get the [`WindingOrder`] of the triangle
#[inline(always)]
#[doc(alias = "orientation")]
pub fn winding_order(&self) -> WindingOrder {
let [a, b, c] = self.vertices;
let area = (b - a).perp_dot(c - a);
if area > f32::EPSILON {
WindingOrder::CounterClockwise
} else if area < -f32::EPSILON {
WindingOrder::Clockwise
} else {
WindingOrder::Invalid
}
}
/// Compute the circle passing through all three vertices of the triangle.
/// The vector in the returned tuple is the circumcenter.
pub fn circumcircle(&self) -> (Circle, Vec2) {
// We treat the triangle as translated so that vertex A is at the origin. This simplifies calculations.
//
// A = (0, 0)
// *
// / \
// / \
// / \
// / \
// / U \
// / \
// *-------------*
// B C
let a = self.vertices[0];
let (b, c) = (self.vertices[1] - a, self.vertices[2] - a);
let b_length_sq = b.length_squared();
let c_length_sq = c.length_squared();
// Reference: https://en.wikipedia.org/wiki/Circumcircle#Cartesian_coordinates_2
let inv_d = (2.0 * (b.x * c.y - b.y * c.x)).recip();
let ux = inv_d * (c.y * b_length_sq - b.y * c_length_sq);
let uy = inv_d * (b.x * c_length_sq - c.x * b_length_sq);
let u = Vec2::new(ux, uy);
// Compute true circumcenter and circumradius, adding the tip coordinate so that
// A is translated back to its actual coordinate.
let center = u + a;
let radius = u.length();
(Circle { radius }, center)
}
/// Reverse the [`WindingOrder`] of the triangle
/// by swapping the second and third vertices
#[inline(always)]
pub fn reverse(&mut self) {
self.vertices.swap(1, 2);
}
}
/// A rectangle primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[doc(alias = "Quad")]
pub struct Rectangle {
/// Half of the width and height of the rectangle
pub half_size: Vec2,
}
impl Primitive2d for Rectangle {}
impl Default for Rectangle {
/// Returns the default [`Rectangle`] with a half-width and half-height of `0.5`.
fn default() -> Self {
Self {
half_size: Vec2::splat(0.5),
}
}
}
impl Rectangle {
/// Create a new `Rectangle` from a full width and height
#[inline(always)]
pub fn new(width: f32, height: f32) -> Self {
Self::from_size(Vec2::new(width, height))
}
/// Create a new `Rectangle` from a given full size
#[inline(always)]
pub fn from_size(size: Vec2) -> Self {
Self {
half_size: size / 2.0,
}
}
/// Create a new `Rectangle` from two corner points
#[inline(always)]
pub fn from_corners(point1: Vec2, point2: Vec2) -> Self {
Self {
half_size: (point2 - point1).abs() / 2.0,
}
}
/// Create a `Rectangle` from a single length.
/// The resulting `Rectangle` will be the same size in every direction.
#[inline(always)]
pub fn from_length(length: f32) -> Self {
Self {
half_size: Vec2::splat(length / 2.0),
}
}
/// Get the size of the rectangle
#[inline(always)]
pub fn size(&self) -> Vec2 {
2.0 * self.half_size
}
/// Get the area of the rectangle
#[inline(always)]
pub fn area(&self) -> f32 {
4.0 * self.half_size.x * self.half_size.y
}
/// Get the perimeter of the rectangle
#[inline(always)]
pub fn perimeter(&self) -> f32 {
4.0 * (self.half_size.x + self.half_size.y)
}
/// Finds the point on the rectangle that is closest to the given `point`.
///
/// If the point is outside the rectangle, the returned point will be on the perimeter of the rectangle.
/// Otherwise, it will be inside the rectangle and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
// Clamp point coordinates to the rectangle
point.clamp(-self.half_size, self.half_size)
}
}
/// A polygon with N vertices.
///
/// For a version without generics: [`BoxedPolygon`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Polygon<const N: usize> {
/// The vertices of the `Polygon`
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polygon<N> {}
impl<const N: usize> FromIterator<Vec2> for Polygon<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polygon<N> {
/// Create a new `Polygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A polygon with a variable number of vertices, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polygon`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolygon {
/// The vertices of the `BoxedPolygon`
pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolygon {}
impl FromIterator<Vec2> for BoxedPolygon {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolygon {
/// Create a new `BoxedPolygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A polygon where all vertices lie on a circle, equally far apart.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct RegularPolygon {
/// The circumcircle on which all vertices lie
pub circumcircle: Circle,
/// The number of sides
pub sides: usize,
}
impl Primitive2d for RegularPolygon {}
impl Default for RegularPolygon {
/// Returns the default [`RegularPolygon`] with six sides (a hexagon) and a circumradius of `0.5`.
fn default() -> Self {
Self {
circumcircle: Circle { radius: 0.5 },
sides: 6,
}
}
}
impl RegularPolygon {
/// Create a new `RegularPolygon`
/// from the radius of the circumcircle and a number of sides
///
/// # Panics
///
/// Panics if `circumradius` is non-positive
#[inline(always)]
pub fn new(circumradius: f32, sides: usize) -> Self {
assert!(circumradius > 0.0, "polygon has a non-positive radius");
assert!(sides > 2, "polygon has less than 3 sides");
Self {
circumcircle: Circle {
radius: circumradius,
},
sides,
}
}
/// Get the radius of the circumcircle on which all vertices
/// of the regular polygon lie
#[inline(always)]
pub fn circumradius(&self) -> f32 {
self.circumcircle.radius
}
/// Get the inradius or apothem of the regular polygon.
/// This is the radius of the largest circle that can
/// be drawn within the polygon
#[inline(always)]
#[doc(alias = "apothem")]
pub fn inradius(&self) -> f32 {
self.circumradius() * (PI / self.sides as f32).cos()
}
/// Get the length of one side of the regular polygon
#[inline(always)]
pub fn side_length(&self) -> f32 {
2.0 * self.circumradius() * (PI / self.sides as f32).sin()
}
/// Get the area of the regular polygon
#[inline(always)]
pub fn area(&self) -> f32 {
let angle: f32 = 2.0 * PI / (self.sides as f32);
(self.sides as f32) * self.circumradius().powi(2) * angle.sin() / 2.0
}
/// Get the perimeter of the regular polygon.
/// This is the sum of its sides
#[inline(always)]
pub fn perimeter(&self) -> f32 {
self.sides as f32 * self.side_length()
}
/// Get the internal angle of the regular polygon in degrees.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the interior of the polygon
#[inline(always)]
pub fn internal_angle_degrees(&self) -> f32 {
(self.sides - 2) as f32 / self.sides as f32 * 180.0
}
/// Get the internal angle of the regular polygon in radians.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the interior of the polygon
#[inline(always)]
pub fn internal_angle_radians(&self) -> f32 {
(self.sides - 2) as f32 * PI / self.sides as f32
}
/// Get the external angle of the regular polygon in degrees.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the exterior of the polygon
#[inline(always)]
pub fn external_angle_degrees(&self) -> f32 {
360.0 / self.sides as f32
}
/// Get the external angle of the regular polygon in radians.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the exterior of the polygon
#[inline(always)]
pub fn external_angle_radians(&self) -> f32 {
2.0 * PI / self.sides as f32
}
/// Returns an iterator over the vertices of the regular polygon,
/// rotated counterclockwise by the given angle in radians.
///
/// With a rotation of 0, a vertex will be placed at the top `(0.0, circumradius)`.
pub fn vertices(self, rotation: f32) -> impl IntoIterator<Item = Vec2> {
// Add pi/2 so that the polygon has a vertex at the top (sin is 1.0 and cos is 0.0)
let start_angle = rotation + std::f32::consts::FRAC_PI_2;
let step = std::f32::consts::TAU / self.sides as f32;
(0..self.sides).map(move |i| {
let theta = start_angle + i as f32 * step;
let (sin, cos) = theta.sin_cos();
Vec2::new(cos, sin) * self.circumcircle.radius
})
}
}
/// A 2D capsule primitive, also known as a stadium or pill shape.
///
/// A two-dimensional capsule is defined as a neighborhood of points at a distance (radius) from a line
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[doc(alias = "stadium", alias = "pill")]
pub struct Capsule2d {
/// The radius of the capsule
pub radius: f32,
/// Half the height of the capsule, excluding the hemicircles
pub half_length: f32,
}
impl Primitive2d for Capsule2d {}
impl Default for Capsule2d {
/// Returns the default [`Capsule2d`] with a radius of `0.5` and a half-height of `0.5`,
/// excluding the hemicircles.
fn default() -> Self {
Self {
radius: 0.5,
half_length: 0.5,
}
}
}
impl Capsule2d {
/// Create a new `Capsule2d` from a radius and length
pub fn new(radius: f32, length: f32) -> Self {
Self {
radius,
half_length: length / 2.0,
}
}
}
#[cfg(test)]
mod tests {
// Reference values were computed by hand and/or with external tools
use super::*;
use approx::assert_relative_eq;
#[test]
fn rectangle_closest_point() {
let rectangle = Rectangle::new(2.0, 2.0);
assert_eq!(rectangle.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(rectangle.closest_point(Vec2::NEG_ONE * 10.0), Vec2::NEG_ONE);
assert_eq!(
rectangle.closest_point(Vec2::new(0.25, 0.1)),
Vec2::new(0.25, 0.1)
);
}
#[test]
fn circle_closest_point() {
let circle = Circle { radius: 1.0 };
assert_eq!(circle.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(
circle.closest_point(Vec2::NEG_ONE * 10.0),
Vec2::NEG_ONE.normalize()
);
assert_eq!(
circle.closest_point(Vec2::new(0.25, 0.1)),
Vec2::new(0.25, 0.1)
);
}
#[test]
fn circle_math() {
let circle = Circle { radius: 3.0 };
assert_eq!(circle.diameter(), 6.0, "incorrect diameter");
assert_eq!(circle.area(), 28.274334, "incorrect area");
assert_eq!(circle.perimeter(), 18.849556, "incorrect perimeter");
}
#[test]
fn ellipse_math() {
let ellipse = Ellipse::new(3.0, 1.0);
assert_eq!(ellipse.area(), 9.424778, "incorrect area");
}
#[test]
fn triangle_math() {
let triangle = Triangle2d::new(
Vec2::new(-2.0, -1.0),
Vec2::new(1.0, 4.0),
Vec2::new(7.0, 0.0),
);
assert_eq!(triangle.area(), 21.0, "incorrect area");
assert_eq!(triangle.perimeter(), 22.097439, "incorrect perimeter");
}
#[test]
fn triangle_winding_order() {
let mut cw_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(-0.5, -1.2),
Vec2::new(-1.0, -1.0),
);
assert_eq!(cw_triangle.winding_order(), WindingOrder::Clockwise);
let ccw_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(-1.0, -1.0),
Vec2::new(-0.5, -1.2),
);
assert_eq!(ccw_triangle.winding_order(), WindingOrder::CounterClockwise);
// The clockwise triangle should be the same as the counterclockwise
// triangle when reversed
cw_triangle.reverse();
assert_eq!(cw_triangle, ccw_triangle);
let invalid_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(0.0, -1.0),
Vec2::new(0.0, -1.2),
);
assert_eq!(invalid_triangle.winding_order(), WindingOrder::Invalid);
}
#[test]
fn rectangle_math() {
let rectangle = Rectangle::new(3.0, 7.0);
assert_eq!(
rectangle,
Rectangle::from_corners(Vec2::new(-1.5, -3.5), Vec2::new(1.5, 3.5))
);
assert_eq!(rectangle.area(), 21.0, "incorrect area");
assert_eq!(rectangle.perimeter(), 20.0, "incorrect perimeter");
}
#[test]
fn regular_polygon_math() {
let polygon = RegularPolygon::new(3.0, 6);
assert_eq!(polygon.inradius(), 2.598076, "incorrect inradius");
assert_eq!(polygon.side_length(), 3.0, "incorrect side length");
assert_relative_eq!(polygon.area(), 23.38268, epsilon = 0.00001);
assert_eq!(polygon.perimeter(), 18.0, "incorrect perimeter");
assert_eq!(
polygon.internal_angle_degrees(),
120.0,
"incorrect internal angle"
);
assert_eq!(
polygon.internal_angle_radians(),
120_f32.to_radians(),
"incorrect internal angle"
);
assert_eq!(
polygon.external_angle_degrees(),
60.0,
"incorrect external angle"
);
assert_eq!(
polygon.external_angle_radians(),
60_f32.to_radians(),
"incorrect external angle"
);
}
#[test]
fn triangle_circumcenter() {
let triangle = Triangle2d::new(
Vec2::new(10.0, 2.0),
Vec2::new(-5.0, -3.0),
Vec2::new(2.0, -1.0),
);
let (Circle { radius }, circumcenter) = triangle.circumcircle();
// Calculated with external calculator
assert_eq!(radius, 98.34887);
assert_eq!(circumcenter, Vec2::new(-28.5, 92.5));
}
#[test]
fn regular_polygon_vertices() {
let polygon = RegularPolygon::new(1.0, 4);
// Regular polygons have a vertex at the top by default
let mut vertices = polygon.vertices(0.0).into_iter();
assert!((vertices.next().unwrap() - Vec2::Y).length() < 1e-7);
// Rotate by 45 degrees, forming an axis-aligned square
let mut rotated_vertices = polygon.vertices(std::f32::consts::FRAC_PI_4).into_iter();
// Distance from the origin to the middle of a side, derived using Pythagorean theorem
let side_sistance = std::f32::consts::FRAC_1_SQRT_2;
assert!(
(rotated_vertices.next().unwrap() - Vec2::new(-side_sistance, side_sistance)).length()
< 1e-7,
);
}
}