![]() # Objective Using `Reflect::clone_value` can be somewhat confusing to those unfamiliar with how Bevy's reflection crate works. For example take the following code: ```rust let value: usize = 123; let clone: Box<dyn Reflect> = value.clone_value(); ``` What can we expect to be the underlying type of `clone`? If you guessed `usize`, then you're correct! Let's try another: ```rust #[derive(Reflect, Clone)] struct Foo(usize); let value: Foo = Foo(123); let clone: Box<dyn Reflect> = value.clone_value(); ``` What about this code? What is the underlying type of `clone`? If you guessed `Foo`, unfortunately you'd be wrong. It's actually `DynamicStruct`. It's not obvious that the generated `Reflect` impl actually calls `Struct::clone_dynamic` under the hood, which always returns `DynamicStruct`. There are already some efforts to make this a bit more apparent to the end-user: #7207 changes the signature of `Reflect::clone_value` to instead return `Box<dyn PartialReflect>`, signaling that we're potentially returning a dynamic type. But why _can't_ we return `Foo`? `Foo` can obviously be cloned— in fact, we already derived `Clone` on it. But even without the derive, this seems like something `Reflect` should be able to handle. Almost all types that implement `Reflect` either contain no data (trivially clonable), they contain a `#[reflect_value]` type (which, by definition, must implement `Clone`), or they contain another `Reflect` type (which recursively fall into one of these three categories). This PR aims to enable true reflection-based cloning where you get back exactly the type that you think you do. ## Solution Add a `Reflect::reflect_clone` method which returns `Result<Box<dyn Reflect>, ReflectCloneError>`, where the `Box<dyn Reflect>` is guaranteed to be the same type as `Self`. ```rust #[derive(Reflect)] struct Foo(usize); let value: Foo = Foo(123); let clone: Box<dyn Reflect> = value.reflect_clone().unwrap(); assert!(clone.is::<Foo>()); ``` Notice that we didn't even need to derive `Clone` for this to work: it's entirely powered via reflection! Under the hood, the macro generates something like this: ```rust fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> { Ok(Box::new(Self { // The `reflect_clone` impl for `usize` just makes use of its `Clone` impl 0: Reflect::reflect_clone(&self.0)?.take().map_err(/* ... */)?, })) } ``` If we did derive `Clone`, we can tell `Reflect` to rely on that instead: ```rust #[derive(Reflect, Clone)] #[reflect(Clone)] struct Foo(usize); ``` <details> <summary>Generated Code</summary> ```rust fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> { Ok(Box::new(Clone::clone(self))) } ``` </details> Or, we can specify our own cloning function: ```rust #[derive(Reflect)] #[reflect(Clone(incremental_clone))] struct Foo(usize); fn incremental_clone(value: &usize) -> usize { *value + 1 } ``` <details> <summary>Generated Code</summary> ```rust fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> { Ok(Box::new(incremental_clone(self))) } ``` </details> Similarly, we can specify how fields should be cloned. This is important for fields that are `#[reflect(ignore)]`'d as we otherwise have no way to know how they should be cloned. ```rust #[derive(Reflect)] struct Foo { #[reflect(ignore, clone)] bar: usize, #[reflect(ignore, clone = "incremental_clone")] baz: usize, } fn incremental_clone(value: &usize) -> usize { *value + 1 } ``` <details> <summary>Generated Code</summary> ```rust fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> { Ok(Box::new(Self { bar: Clone::clone(&self.bar), baz: incremental_clone(&self.baz), })) } ``` </details> If we don't supply a `clone` attribute for an ignored field, then the method will automatically return `Err(ReflectCloneError::FieldNotClonable {/* ... */})`. `Err` values "bubble up" to the caller. So if `Foo` contains `Bar` and the `reflect_clone` method for `Bar` returns `Err`, then the `reflect_clone` method for `Foo` also returns `Err`. ### Attribute Syntax You might have noticed the differing syntax between the container attribute and the field attribute. This was purely done for consistency with the current attributes. There are PRs aimed at improving this. #7317 aims at making the "special-cased" attributes more in line with the field attributes syntactically. And #9323 aims at moving away from the stringified paths in favor of just raw function paths. ### Compatibility with Unique Reflect This PR was designed with Unique Reflect (#7207) in mind. This method actually wouldn't change that much (if at all) under Unique Reflect. It would still exist on `Reflect` and it would still `Option<Box<dyn Reflect>>`. In fact, Unique Reflect would only _improve_ the user's understanding of what this method returns. We may consider moving what's currently `Reflect::clone_value` to `PartialReflect` and possibly renaming it to `partial_reflect_clone` or `clone_dynamic` to better indicate how it differs from `reflect_clone`. ## Testing You can test locally by running the following command: ``` cargo test --package bevy_reflect ``` --- ## Changelog - Added `Reflect::reflect_clone` method - Added `ReflectCloneError` error enum - Added `#[reflect(Clone)]` container attribute - Added `#[reflect(clone)]` field attribute |
||
---|---|---|
.cargo | ||
.github | ||
assets | ||
benches | ||
crates | ||
docs | ||
docs-rs | ||
docs-template | ||
errors | ||
examples | ||
src | ||
tests | ||
tests-integration | ||
tools | ||
.gitattributes | ||
.gitignore | ||
Cargo.toml | ||
clippy.toml | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
CREDITS.md | ||
deny.toml | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md | ||
rustfmt.toml | ||
typos.toml |
What is Bevy?
Bevy is a refreshingly simple data-driven game engine built in Rust. It is free and open-source forever!
WARNING
Bevy is still in the early stages of development. Important features are missing. Documentation is sparse. A new version of Bevy containing breaking changes to the API is released approximately once every 3 months. We provide migration guides, but we can't guarantee migrations will always be easy. Use only if you are willing to work in this environment.
MSRV: Bevy relies heavily on improvements in the Rust language and compiler. As a result, the Minimum Supported Rust Version (MSRV) is generally close to "the latest stable release" of Rust.
Design Goals
- Capable: Offer a complete 2D and 3D feature set
- Simple: Easy for newbies to pick up, but infinitely flexible for power users
- Data Focused: Data-oriented architecture using the Entity Component System paradigm
- Modular: Use only what you need. Replace what you don't like
- Fast: App logic should run quickly, and when possible, in parallel
- Productive: Changes should compile quickly ... waiting isn't fun
About
- Features: A quick overview of Bevy's features.
- News: A development blog that covers our progress, plans and shiny new features.
Docs
- Quick Start Guide: Bevy's official Quick Start Guide. The best place to start learning Bevy.
- Bevy Rust API Docs: Bevy's Rust API docs, which are automatically generated from the doc comments in this repo.
- Official Examples: Bevy's dedicated, runnable examples, which are great for digging into specific concepts.
- Community-Made Learning Resources: More tutorials, documentation, and examples made by the Bevy community.
Community
Before contributing or participating in discussions with the community, you should familiarize yourself with our Code of Conduct.
- Discord: Bevy's official discord server.
- Reddit: Bevy's official subreddit.
- GitHub Discussions: The best place for questions about Bevy, answered right here!
- Bevy Assets: A collection of awesome Bevy projects, tools, plugins and learning materials.
Contributing
If you'd like to help build Bevy, check out the Contributor's Guide. For simple problems, feel free to open an issue or PR and tackle it yourself!
For more complex architecture decisions and experimental mad science, please open an RFC (Request For Comments) so we can brainstorm together effectively!
Getting Started
We recommend checking out the Quick Start Guide for a brief introduction.
Follow the Setup guide to ensure your development environment is set up correctly. Once set up, you can quickly try out the examples by cloning this repo and running the following commands:
# Switch to the correct version (latest release, default is main development branch)
git checkout latest
# Runs the "breakout" example
cargo run --example breakout
To draw a window with standard functionality enabled, use:
use bevy::prelude::*;
fn main(){
App::new()
.add_plugins(DefaultPlugins)
.run();
}
Fast Compiles
Bevy can be built just fine using default configuration on stable Rust. However for really fast iterative compiles, you should enable the "fast compiles" setup by following the instructions here.
Bevy Cargo Features
This list outlines the different cargo features supported by Bevy. These allow you to customize the Bevy feature set for your use-case.
Thanks
Bevy is the result of the hard work of many people. A huge thanks to all Bevy contributors, the many open source projects that have come before us, the Rust gamedev ecosystem, and the many libraries we build on.
A huge thanks to Bevy's generous sponsors. Bevy will always be free and open source, but it isn't free to make. Please consider sponsoring our work if you like what we're building.
This project is tested with BrowserStack.
License
Bevy is free, open source and permissively licensed! Except where noted (below and/or in individual files), all code in this repository is dual-licensed under either:
- MIT License (LICENSE-MIT or http://opensource.org/licenses/MIT)
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
at your option. This means you can select the license you prefer! This dual-licensing approach is the de-facto standard in the Rust ecosystem and there are very good reasons to include both.
Some of the engine's code carries additional copyright notices and license terms due to their external origins.
These are generally BSD-like, but exact details vary by crate:
If the README of a crate contains a 'License' header (or similar), the additional copyright notices and license terms applicable to that crate will be listed.
The above licensing requirement still applies to contributions to those crates, and sections of those crates will carry those license terms.
The license field of each crate will also reflect this.
For example, bevy_mikktspace
has code under the Zlib license (as well as a copyright notice when choosing the MIT license).
The assets included in this repository (for our examples) typically fall under different open licenses. These will not be included in your game (unless copied in by you), and they are not distributed in the published bevy crates. See CREDITS.md for the details of the licenses of those files.
Your contributions
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.