bevy/crates/bevy_sprite/src/render/mod.rs
Patrick Walton f5de3f08fb
Use multidraw for opaque meshes when GPU culling is in use. (#16427)
This commit adds support for *multidraw*, which is a feature that allows
multiple meshes to be drawn in a single drawcall. `wgpu` currently
implements multidraw on Vulkan, so this feature is only enabled there.
Multiple meshes can be drawn at once if they're in the same vertex and
index buffers and are otherwise placed in the same bin. (Thus, for
example, at present the materials and textures must be identical, but
see #16368.) Multidraw is a significant performance improvement during
the draw phase because it reduces the number of rebindings, as well as
the number of drawcalls.

This feature is currently only enabled when GPU culling is used: i.e.
when `GpuCulling` is present on a camera. Therefore, if you run for
example `scene_viewer`, you will not see any performance improvements,
because `scene_viewer` doesn't add the `GpuCulling` component to its
camera.

Additionally, the multidraw feature is only implemented for opaque 3D
meshes and not for shadows or 2D meshes. I plan to make GPU culling the
default and to extend the feature to shadows in the future. Also, in the
future I suspect that polyfilling multidraw on APIs that don't support
it will be fruitful, as even without driver-level support use of
multidraw allows us to avoid expensive `wgpu` rebindings.
2024-12-06 17:22:03 +00:00

887 lines
32 KiB
Rust

use core::ops::Range;
use crate::{
texture_atlas::TextureAtlasLayout, ComputedTextureSlices, Sprite, WithSprite,
SPRITE_SHADER_HANDLE,
};
use bevy_asset::{AssetEvent, AssetId, Assets};
use bevy_color::{ColorToComponents, LinearRgba};
use bevy_core_pipeline::{
core_2d::{Transparent2d, CORE_2D_DEPTH_FORMAT},
tonemapping::{
get_lut_bind_group_layout_entries, get_lut_bindings, DebandDither, Tonemapping,
TonemappingLuts,
},
};
use bevy_ecs::{
prelude::*,
query::ROQueryItem,
system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_image::{BevyDefault, Image, ImageSampler, TextureFormatPixelInfo};
use bevy_math::{Affine3A, FloatOrd, Quat, Rect, Vec2, Vec4};
use bevy_render::sync_world::MainEntity;
use bevy_render::view::RenderVisibleEntities;
use bevy_render::{
render_asset::RenderAssets,
render_phase::{
DrawFunctions, PhaseItem, PhaseItemExtraIndex, RenderCommand, RenderCommandResult,
SetItemPipeline, TrackedRenderPass, ViewSortedRenderPhases,
},
render_resource::{
binding_types::{sampler, texture_2d, uniform_buffer},
*,
},
renderer::{RenderDevice, RenderQueue},
sync_world::{RenderEntity, TemporaryRenderEntity},
texture::{DefaultImageSampler, FallbackImage, GpuImage},
view::{
ExtractedView, Msaa, ViewTarget, ViewUniform, ViewUniformOffset, ViewUniforms,
ViewVisibility,
},
Extract,
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::HashMap;
use bytemuck::{Pod, Zeroable};
use fixedbitset::FixedBitSet;
#[derive(Resource)]
pub struct SpritePipeline {
view_layout: BindGroupLayout,
material_layout: BindGroupLayout,
pub dummy_white_gpu_image: GpuImage,
}
impl FromWorld for SpritePipeline {
fn from_world(world: &mut World) -> Self {
let mut system_state: SystemState<(
Res<RenderDevice>,
Res<DefaultImageSampler>,
Res<RenderQueue>,
)> = SystemState::new(world);
let (render_device, default_sampler, render_queue) = system_state.get_mut(world);
let tonemapping_lut_entries = get_lut_bind_group_layout_entries();
let view_layout = render_device.create_bind_group_layout(
"sprite_view_layout",
&BindGroupLayoutEntries::with_indices(
ShaderStages::VERTEX_FRAGMENT,
(
(0, uniform_buffer::<ViewUniform>(true)),
(
1,
tonemapping_lut_entries[0].visibility(ShaderStages::FRAGMENT),
),
(
2,
tonemapping_lut_entries[1].visibility(ShaderStages::FRAGMENT),
),
),
),
);
let material_layout = render_device.create_bind_group_layout(
"sprite_material_layout",
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
texture_2d(TextureSampleType::Float { filterable: true }),
sampler(SamplerBindingType::Filtering),
),
),
);
let dummy_white_gpu_image = {
let image = Image::default();
let texture = render_device.create_texture(&image.texture_descriptor);
let sampler = match image.sampler {
ImageSampler::Default => (**default_sampler).clone(),
ImageSampler::Descriptor(ref descriptor) => {
render_device.create_sampler(&descriptor.as_wgpu())
}
};
let format_size = image.texture_descriptor.format.pixel_size();
render_queue.write_texture(
texture.as_image_copy(),
&image.data,
ImageDataLayout {
offset: 0,
bytes_per_row: Some(image.width() * format_size as u32),
rows_per_image: None,
},
image.texture_descriptor.size,
);
let texture_view = texture.create_view(&TextureViewDescriptor::default());
GpuImage {
texture,
texture_view,
texture_format: image.texture_descriptor.format,
sampler,
size: image.size(),
mip_level_count: image.texture_descriptor.mip_level_count,
}
};
SpritePipeline {
view_layout,
material_layout,
dummy_white_gpu_image,
}
}
}
bitflags::bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
// NOTE: Apparently quadro drivers support up to 64x MSAA.
// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
pub struct SpritePipelineKey: u32 {
const NONE = 0;
const HDR = 1 << 0;
const TONEMAP_IN_SHADER = 1 << 1;
const DEBAND_DITHER = 1 << 2;
const MSAA_RESERVED_BITS = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
const TONEMAP_METHOD_RESERVED_BITS = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_NONE = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_ACES_FITTED = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_AGX = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_TONY_MC_MAPFACE = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_BLENDER_FILMIC = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
}
}
impl SpritePipelineKey {
const MSAA_MASK_BITS: u32 = 0b111;
const MSAA_SHIFT_BITS: u32 = 32 - Self::MSAA_MASK_BITS.count_ones();
const TONEMAP_METHOD_MASK_BITS: u32 = 0b111;
const TONEMAP_METHOD_SHIFT_BITS: u32 =
Self::MSAA_SHIFT_BITS - Self::TONEMAP_METHOD_MASK_BITS.count_ones();
#[inline]
pub const fn from_msaa_samples(msaa_samples: u32) -> Self {
let msaa_bits =
(msaa_samples.trailing_zeros() & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
Self::from_bits_retain(msaa_bits)
}
#[inline]
pub const fn msaa_samples(&self) -> u32 {
1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
}
#[inline]
pub const fn from_hdr(hdr: bool) -> Self {
if hdr {
SpritePipelineKey::HDR
} else {
SpritePipelineKey::NONE
}
}
}
impl SpecializedRenderPipeline for SpritePipeline {
type Key = SpritePipelineKey;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
let mut shader_defs = Vec::new();
if key.contains(SpritePipelineKey::TONEMAP_IN_SHADER) {
shader_defs.push("TONEMAP_IN_SHADER".into());
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_TEXTURE_BINDING_INDEX".into(),
1,
));
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_SAMPLER_BINDING_INDEX".into(),
2,
));
let method = key.intersection(SpritePipelineKey::TONEMAP_METHOD_RESERVED_BITS);
if method == SpritePipelineKey::TONEMAP_METHOD_NONE {
shader_defs.push("TONEMAP_METHOD_NONE".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_REINHARD {
shader_defs.push("TONEMAP_METHOD_REINHARD".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_ACES_FITTED {
shader_defs.push("TONEMAP_METHOD_ACES_FITTED".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_AGX {
shader_defs.push("TONEMAP_METHOD_AGX".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
{
shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
}
// Debanding is tied to tonemapping in the shader, cannot run without it.
if key.contains(SpritePipelineKey::DEBAND_DITHER) {
shader_defs.push("DEBAND_DITHER".into());
}
}
let format = match key.contains(SpritePipelineKey::HDR) {
true => ViewTarget::TEXTURE_FORMAT_HDR,
false => TextureFormat::bevy_default(),
};
let instance_rate_vertex_buffer_layout = VertexBufferLayout {
array_stride: 80,
step_mode: VertexStepMode::Instance,
attributes: vec![
// @location(0) i_model_transpose_col0: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 0,
shader_location: 0,
},
// @location(1) i_model_transpose_col1: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 16,
shader_location: 1,
},
// @location(2) i_model_transpose_col2: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 32,
shader_location: 2,
},
// @location(3) i_color: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 48,
shader_location: 3,
},
// @location(4) i_uv_offset_scale: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 64,
shader_location: 4,
},
],
};
RenderPipelineDescriptor {
vertex: VertexState {
shader: SPRITE_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![instance_rate_vertex_buffer_layout],
},
fragment: Some(FragmentState {
shader: SPRITE_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format,
blend: Some(BlendState::ALPHA_BLENDING),
write_mask: ColorWrites::ALL,
})],
}),
layout: vec![self.view_layout.clone(), self.material_layout.clone()],
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: None,
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: PrimitiveTopology::TriangleList,
strip_index_format: None,
},
// Sprites are always alpha blended so they never need to write to depth.
// They just need to read it in case an opaque mesh2d
// that wrote to depth is present.
depth_stencil: Some(DepthStencilState {
format: CORE_2D_DEPTH_FORMAT,
depth_write_enabled: false,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some("sprite_pipeline".into()),
push_constant_ranges: Vec::new(),
zero_initialize_workgroup_memory: false,
}
}
}
pub struct ExtractedSprite {
pub transform: GlobalTransform,
pub color: LinearRgba,
/// Select an area of the texture
pub rect: Option<Rect>,
/// Change the on-screen size of the sprite
pub custom_size: Option<Vec2>,
/// Asset ID of the [`Image`] of this sprite
/// PERF: storing an `AssetId` instead of `Handle<Image>` enables some optimizations (`ExtractedSprite` becomes `Copy` and doesn't need to be dropped)
pub image_handle_id: AssetId<Image>,
pub flip_x: bool,
pub flip_y: bool,
pub anchor: Vec2,
/// For cases where additional [`ExtractedSprites`] are created during extraction, this stores the
/// entity that caused that creation for use in determining visibility.
pub original_entity: Option<Entity>,
}
#[derive(Resource, Default)]
pub struct ExtractedSprites {
pub sprites: HashMap<(Entity, MainEntity), ExtractedSprite>,
}
#[derive(Resource, Default)]
pub struct SpriteAssetEvents {
pub images: Vec<AssetEvent<Image>>,
}
pub fn extract_sprite_events(
mut events: ResMut<SpriteAssetEvents>,
mut image_events: Extract<EventReader<AssetEvent<Image>>>,
) {
let SpriteAssetEvents { ref mut images } = *events;
images.clear();
for event in image_events.read() {
images.push(*event);
}
}
pub fn extract_sprites(
mut commands: Commands,
mut extracted_sprites: ResMut<ExtractedSprites>,
texture_atlases: Extract<Res<Assets<TextureAtlasLayout>>>,
sprite_query: Extract<
Query<(
Entity,
RenderEntity,
&ViewVisibility,
&Sprite,
&GlobalTransform,
Option<&ComputedTextureSlices>,
)>,
>,
) {
extracted_sprites.sprites.clear();
for (original_entity, entity, view_visibility, sprite, transform, slices) in sprite_query.iter()
{
if !view_visibility.get() {
continue;
}
if let Some(slices) = slices {
extracted_sprites.sprites.extend(
slices
.extract_sprites(transform, original_entity, sprite)
.map(|e| {
(
(
commands.spawn(TemporaryRenderEntity).id(),
original_entity.into(),
),
e,
)
}),
);
} else {
let atlas_rect = sprite
.texture_atlas
.as_ref()
.and_then(|s| s.texture_rect(&texture_atlases).map(|r| r.as_rect()));
let rect = match (atlas_rect, sprite.rect) {
(None, None) => None,
(None, Some(sprite_rect)) => Some(sprite_rect),
(Some(atlas_rect), None) => Some(atlas_rect),
(Some(atlas_rect), Some(mut sprite_rect)) => {
sprite_rect.min += atlas_rect.min;
sprite_rect.max += atlas_rect.min;
Some(sprite_rect)
}
};
// PERF: we don't check in this function that the `Image` asset is ready, since it should be in most cases and hashing the handle is expensive
extracted_sprites.sprites.insert(
(entity, original_entity.into()),
ExtractedSprite {
color: sprite.color.into(),
transform: *transform,
rect,
// Pass the custom size
custom_size: sprite.custom_size,
flip_x: sprite.flip_x,
flip_y: sprite.flip_y,
image_handle_id: sprite.image.id(),
anchor: sprite.anchor.as_vec(),
original_entity: Some(original_entity),
},
);
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct SpriteInstance {
// Affine 4x3 transposed to 3x4
pub i_model_transpose: [Vec4; 3],
pub i_color: [f32; 4],
pub i_uv_offset_scale: [f32; 4],
}
impl SpriteInstance {
#[inline]
fn from(transform: &Affine3A, color: &LinearRgba, uv_offset_scale: &Vec4) -> Self {
let transpose_model_3x3 = transform.matrix3.transpose();
Self {
i_model_transpose: [
transpose_model_3x3.x_axis.extend(transform.translation.x),
transpose_model_3x3.y_axis.extend(transform.translation.y),
transpose_model_3x3.z_axis.extend(transform.translation.z),
],
i_color: color.to_f32_array(),
i_uv_offset_scale: uv_offset_scale.to_array(),
}
}
}
#[derive(Resource)]
pub struct SpriteMeta {
sprite_index_buffer: RawBufferVec<u32>,
sprite_instance_buffer: RawBufferVec<SpriteInstance>,
}
impl Default for SpriteMeta {
fn default() -> Self {
Self {
sprite_index_buffer: RawBufferVec::<u32>::new(BufferUsages::INDEX),
sprite_instance_buffer: RawBufferVec::<SpriteInstance>::new(BufferUsages::VERTEX),
}
}
}
#[derive(Component)]
pub struct SpriteViewBindGroup {
pub value: BindGroup,
}
#[derive(Component, PartialEq, Eq, Clone)]
pub struct SpriteBatch {
image_handle_id: AssetId<Image>,
range: Range<u32>,
}
#[derive(Resource, Default)]
pub struct ImageBindGroups {
values: HashMap<AssetId<Image>, BindGroup>,
}
#[allow(clippy::too_many_arguments)]
pub fn queue_sprites(
mut view_entities: Local<FixedBitSet>,
draw_functions: Res<DrawFunctions<Transparent2d>>,
sprite_pipeline: Res<SpritePipeline>,
mut pipelines: ResMut<SpecializedRenderPipelines<SpritePipeline>>,
pipeline_cache: Res<PipelineCache>,
extracted_sprites: Res<ExtractedSprites>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent2d>>,
mut views: Query<(
Entity,
&RenderVisibleEntities,
&ExtractedView,
&Msaa,
Option<&Tonemapping>,
Option<&DebandDither>,
)>,
) {
let draw_sprite_function = draw_functions.read().id::<DrawSprite>();
for (view_entity, visible_entities, view, msaa, tonemapping, dither) in &mut views {
let Some(transparent_phase) = transparent_render_phases.get_mut(&view_entity) else {
continue;
};
let msaa_key = SpritePipelineKey::from_msaa_samples(msaa.samples());
let mut view_key = SpritePipelineKey::from_hdr(view.hdr) | msaa_key;
if !view.hdr {
if let Some(tonemapping) = tonemapping {
view_key |= SpritePipelineKey::TONEMAP_IN_SHADER;
view_key |= match tonemapping {
Tonemapping::None => SpritePipelineKey::TONEMAP_METHOD_NONE,
Tonemapping::Reinhard => SpritePipelineKey::TONEMAP_METHOD_REINHARD,
Tonemapping::ReinhardLuminance => {
SpritePipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE
}
Tonemapping::AcesFitted => SpritePipelineKey::TONEMAP_METHOD_ACES_FITTED,
Tonemapping::AgX => SpritePipelineKey::TONEMAP_METHOD_AGX,
Tonemapping::SomewhatBoringDisplayTransform => {
SpritePipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
}
Tonemapping::TonyMcMapface => SpritePipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
Tonemapping::BlenderFilmic => SpritePipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
};
}
if let Some(DebandDither::Enabled) = dither {
view_key |= SpritePipelineKey::DEBAND_DITHER;
}
}
let pipeline = pipelines.specialize(&pipeline_cache, &sprite_pipeline, view_key);
view_entities.clear();
view_entities.extend(
visible_entities
.iter::<WithSprite>()
.map(|(_, e)| e.index() as usize),
);
transparent_phase
.items
.reserve(extracted_sprites.sprites.len());
for ((entity, main_entity), extracted_sprite) in extracted_sprites.sprites.iter() {
let index = extracted_sprite.original_entity.unwrap_or(*entity).index();
if !view_entities.contains(index as usize) {
continue;
}
// These items will be sorted by depth with other phase items
let sort_key = FloatOrd(extracted_sprite.transform.translation().z);
// Add the item to the render phase
transparent_phase.add(Transparent2d {
draw_function: draw_sprite_function,
pipeline,
entity: (*entity, *main_entity),
sort_key,
// batch_range and dynamic_offset will be calculated in prepare_sprites
batch_range: 0..0,
extra_index: PhaseItemExtraIndex::None,
});
}
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_sprite_view_bind_groups(
mut commands: Commands,
render_device: Res<RenderDevice>,
sprite_pipeline: Res<SpritePipeline>,
view_uniforms: Res<ViewUniforms>,
views: Query<(Entity, &Tonemapping), With<ExtractedView>>,
tonemapping_luts: Res<TonemappingLuts>,
images: Res<RenderAssets<GpuImage>>,
fallback_image: Res<FallbackImage>,
) {
let Some(view_binding) = view_uniforms.uniforms.binding() else {
return;
};
for (entity, tonemapping) in &views {
let lut_bindings =
get_lut_bindings(&images, &tonemapping_luts, tonemapping, &fallback_image);
let view_bind_group = render_device.create_bind_group(
"mesh2d_view_bind_group",
&sprite_pipeline.view_layout,
&BindGroupEntries::with_indices((
(0, view_binding.clone()),
(1, lut_bindings.0),
(2, lut_bindings.1),
)),
);
commands.entity(entity).insert(SpriteViewBindGroup {
value: view_bind_group,
});
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_sprite_image_bind_groups(
mut commands: Commands,
mut previous_len: Local<usize>,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut sprite_meta: ResMut<SpriteMeta>,
sprite_pipeline: Res<SpritePipeline>,
mut image_bind_groups: ResMut<ImageBindGroups>,
gpu_images: Res<RenderAssets<GpuImage>>,
extracted_sprites: Res<ExtractedSprites>,
mut phases: ResMut<ViewSortedRenderPhases<Transparent2d>>,
events: Res<SpriteAssetEvents>,
) {
// If an image has changed, the GpuImage has (probably) changed
for event in &events.images {
match event {
AssetEvent::Added { .. } |
// Images don't have dependencies
AssetEvent::LoadedWithDependencies { .. } => {}
AssetEvent::Unused { id } | AssetEvent::Modified { id } | AssetEvent::Removed { id } => {
image_bind_groups.values.remove(id);
}
};
}
let mut batches: Vec<(Entity, SpriteBatch)> = Vec::with_capacity(*previous_len);
// Clear the sprite instances
sprite_meta.sprite_instance_buffer.clear();
// Index buffer indices
let mut index = 0;
let image_bind_groups = &mut *image_bind_groups;
for transparent_phase in phases.values_mut() {
let mut batch_item_index = 0;
let mut batch_image_size = Vec2::ZERO;
let mut batch_image_handle = AssetId::invalid();
// Iterate through the phase items and detect when successive sprites that can be batched.
// Spawn an entity with a `SpriteBatch` component for each possible batch.
// Compatible items share the same entity.
for item_index in 0..transparent_phase.items.len() {
let item = &transparent_phase.items[item_index];
let Some(extracted_sprite) = extracted_sprites.sprites.get(&item.entity) else {
// If there is a phase item that is not a sprite, then we must start a new
// batch to draw the other phase item(s) and to respect draw order. This can be
// done by invalidating the batch_image_handle
batch_image_handle = AssetId::invalid();
continue;
};
let batch_image_changed = batch_image_handle != extracted_sprite.image_handle_id;
if batch_image_changed {
let Some(gpu_image) = gpu_images.get(extracted_sprite.image_handle_id) else {
continue;
};
batch_image_size = gpu_image.size.as_vec2();
batch_image_handle = extracted_sprite.image_handle_id;
image_bind_groups
.values
.entry(batch_image_handle)
.or_insert_with(|| {
render_device.create_bind_group(
"sprite_material_bind_group",
&sprite_pipeline.material_layout,
&BindGroupEntries::sequential((
&gpu_image.texture_view,
&gpu_image.sampler,
)),
)
});
}
// By default, the size of the quad is the size of the texture
let mut quad_size = batch_image_size;
// Calculate vertex data for this item
let mut uv_offset_scale: Vec4;
// If a rect is specified, adjust UVs and the size of the quad
if let Some(rect) = extracted_sprite.rect {
let rect_size = rect.size();
uv_offset_scale = Vec4::new(
rect.min.x / batch_image_size.x,
rect.max.y / batch_image_size.y,
rect_size.x / batch_image_size.x,
-rect_size.y / batch_image_size.y,
);
quad_size = rect_size;
} else {
uv_offset_scale = Vec4::new(0.0, 1.0, 1.0, -1.0);
}
if extracted_sprite.flip_x {
uv_offset_scale.x += uv_offset_scale.z;
uv_offset_scale.z *= -1.0;
}
if extracted_sprite.flip_y {
uv_offset_scale.y += uv_offset_scale.w;
uv_offset_scale.w *= -1.0;
}
// Override the size if a custom one is specified
if let Some(custom_size) = extracted_sprite.custom_size {
quad_size = custom_size;
}
let transform = extracted_sprite.transform.affine()
* Affine3A::from_scale_rotation_translation(
quad_size.extend(1.0),
Quat::IDENTITY,
(quad_size * (-extracted_sprite.anchor - Vec2::splat(0.5))).extend(0.0),
);
// Store the vertex data and add the item to the render phase
sprite_meta
.sprite_instance_buffer
.push(SpriteInstance::from(
&transform,
&extracted_sprite.color,
&uv_offset_scale,
));
if batch_image_changed {
batch_item_index = item_index;
batches.push((
item.entity(),
SpriteBatch {
image_handle_id: batch_image_handle,
range: index..index,
},
));
}
transparent_phase.items[batch_item_index]
.batch_range_mut()
.end += 1;
batches.last_mut().unwrap().1.range.end += 1;
index += 1;
}
}
sprite_meta
.sprite_instance_buffer
.write_buffer(&render_device, &render_queue);
if sprite_meta.sprite_index_buffer.len() != 6 {
sprite_meta.sprite_index_buffer.clear();
// NOTE: This code is creating 6 indices pointing to 4 vertices.
// The vertices form the corners of a quad based on their two least significant bits.
// 10 11
//
// 00 01
// The sprite shader can then use the two least significant bits as the vertex index.
// The rest of the properties to transform the vertex positions and UVs (which are
// implicit) are baked into the instance transform, and UV offset and scale.
// See bevy_sprite/src/render/sprite.wgsl for the details.
sprite_meta.sprite_index_buffer.push(2);
sprite_meta.sprite_index_buffer.push(0);
sprite_meta.sprite_index_buffer.push(1);
sprite_meta.sprite_index_buffer.push(1);
sprite_meta.sprite_index_buffer.push(3);
sprite_meta.sprite_index_buffer.push(2);
sprite_meta
.sprite_index_buffer
.write_buffer(&render_device, &render_queue);
}
*previous_len = batches.len();
commands.insert_or_spawn_batch(batches);
}
/// [`RenderCommand`] for sprite rendering.
pub type DrawSprite = (
SetItemPipeline,
SetSpriteViewBindGroup<0>,
SetSpriteTextureBindGroup<1>,
DrawSpriteBatch,
);
pub struct SetSpriteViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetSpriteViewBindGroup<I> {
type Param = ();
type ViewQuery = (Read<ViewUniformOffset>, Read<SpriteViewBindGroup>);
type ItemQuery = ();
fn render<'w>(
_item: &P,
(view_uniform, sprite_view_bind_group): ROQueryItem<'w, Self::ViewQuery>,
_entity: Option<()>,
_param: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(I, &sprite_view_bind_group.value, &[view_uniform.offset]);
RenderCommandResult::Success
}
}
pub struct SetSpriteTextureBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetSpriteTextureBindGroup<I> {
type Param = SRes<ImageBindGroups>;
type ViewQuery = ();
type ItemQuery = Read<SpriteBatch>;
fn render<'w>(
_item: &P,
_view: (),
batch: Option<&'_ SpriteBatch>,
image_bind_groups: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let image_bind_groups = image_bind_groups.into_inner();
let Some(batch) = batch else {
return RenderCommandResult::Skip;
};
pass.set_bind_group(
I,
image_bind_groups
.values
.get(&batch.image_handle_id)
.unwrap(),
&[],
);
RenderCommandResult::Success
}
}
pub struct DrawSpriteBatch;
impl<P: PhaseItem> RenderCommand<P> for DrawSpriteBatch {
type Param = SRes<SpriteMeta>;
type ViewQuery = ();
type ItemQuery = Read<SpriteBatch>;
fn render<'w>(
_item: &P,
_view: (),
batch: Option<&'_ SpriteBatch>,
sprite_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let sprite_meta = sprite_meta.into_inner();
let Some(batch) = batch else {
return RenderCommandResult::Skip;
};
pass.set_index_buffer(
sprite_meta.sprite_index_buffer.buffer().unwrap().slice(..),
0,
IndexFormat::Uint32,
);
pass.set_vertex_buffer(
0,
sprite_meta
.sprite_instance_buffer
.buffer()
.unwrap()
.slice(..),
);
pass.draw_indexed(0..6, 0, batch.range.clone());
RenderCommandResult::Success
}
}