bevy/crates/bevy_utils/src/lib.rs
Zachary Harrold fcfa60844a
Remove allocation in get_short_name (#15294)
`ShortName` is lazily evaluated and does not allocate, instead providing
`Display` and `Debug` implementations which write directly to a
formatter using the original algorithm. When using `ShortName` in format
strings (`panic`, `dbg`, `format`, etc.) you can directly use the
`ShortName` type. If you require a `String`, simply call
`ShortName(...).to_string()`.

# Objective

- Remove the requirement for allocation when using `get_short_name`

## Solution

- Added new type `ShortName` which wraps a name and provides its own
`Debug` and `Display` implementations, using the original
`get_short_name` algorithm without the need for allocating.
- Removed `get_short_name`, as `ShortName(...)` is more performant and
ergonomic.
- Added `ShortName::of::<T>` method to streamline the common use-case
for name shortening.

## Testing

- CI

## Migration Guide

### For `format!`, `dbg!`, `panic!`, etc.

```rust
// Before
panic!("{} is too short!", get_short_name(name));

// After
panic!("{} is too short!", ShortName(name));
```

### Need a `String` Value

```rust
// Before
let short: String = get_short_name(name);

// After
let short: String = ShortName(name).to_string();
```

## Notes

`ShortName` lazily evaluates, and directly writes to a formatter via
`Debug` and `Display`, which removes the need to allocate a `String`
when printing a shortened type name. Because the implementation has been
moved into the `fmt` method, repeated printing of the `ShortName` type
may be less performant than converting it into a `String`. However, no
instances of this are present in Bevy, and the user can get the original
behaviour by calling `.to_string()` at no extra cost.

---------

Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-09-19 15:34:03 +00:00

458 lines
14 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![allow(unsafe_code)]
#![doc(
html_logo_url = "https://bevyengine.org/assets/icon.png",
html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]
#![cfg_attr(not(feature = "std"), no_std)]
//! General utilities for first-party [Bevy] engine crates.
//!
//! [Bevy]: https://bevyengine.org/
//!
#[cfg(feature = "alloc")]
extern crate alloc;
/// The utilities prelude.
///
/// This includes the most common types in this crate, re-exported for your convenience.
pub mod prelude {
pub use crate::default;
}
pub mod futures;
mod short_names;
pub use short_names::ShortName;
pub mod synccell;
pub mod syncunsafecell;
mod default;
mod object_safe;
pub use object_safe::assert_object_safe;
mod once;
mod parallel_queue;
pub use ahash::{AHasher, RandomState};
pub use bevy_utils_proc_macros::*;
pub use default::default;
pub use hashbrown;
pub use parallel_queue::*;
pub use tracing;
pub use web_time::{Duration, Instant, SystemTime, SystemTimeError, TryFromFloatSecsError};
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
use core::{
any::TypeId,
fmt::Debug,
hash::{BuildHasher, BuildHasherDefault, Hash, Hasher},
marker::PhantomData,
mem::ManuallyDrop,
ops::Deref,
};
use hashbrown::hash_map::RawEntryMut;
#[cfg(not(target_arch = "wasm32"))]
mod conditional_send {
/// Use [`ConditionalSend`] to mark an optional Send trait bound. Useful as on certain platforms (eg. Wasm),
/// futures aren't Send.
pub trait ConditionalSend: Send {}
impl<T: Send> ConditionalSend for T {}
}
#[cfg(target_arch = "wasm32")]
#[allow(missing_docs)]
mod conditional_send {
pub trait ConditionalSend {}
impl<T> ConditionalSend for T {}
}
pub use conditional_send::*;
/// Use [`ConditionalSendFuture`] for a future with an optional Send trait bound, as on certain platforms (eg. Wasm),
/// futures aren't Send.
pub trait ConditionalSendFuture: core::future::Future + ConditionalSend {}
impl<T: core::future::Future + ConditionalSend> ConditionalSendFuture for T {}
/// An owned and dynamically typed Future used when you can't statically type your result or need to add some indirection.
#[cfg(feature = "alloc")]
pub type BoxedFuture<'a, T> = core::pin::Pin<Box<dyn ConditionalSendFuture<Output = T> + 'a>>;
/// A shortcut alias for [`hashbrown::hash_map::Entry`].
pub type Entry<'a, K, V, S = BuildHasherDefault<AHasher>> = hashbrown::hash_map::Entry<'a, K, V, S>;
/// A hasher builder that will create a fixed hasher.
#[derive(Debug, Clone, Default)]
pub struct FixedState;
impl BuildHasher for FixedState {
type Hasher = AHasher;
#[inline]
fn build_hasher(&self) -> AHasher {
RandomState::with_seeds(
0b10010101111011100000010011000100,
0b00000011001001101011001001111000,
0b11001111011010110111100010110101,
0b00000100001111100011010011010101,
)
.build_hasher()
}
}
/// A [`HashMap`][hashbrown::HashMap] implementing aHash, a high
/// speed keyed hashing algorithm intended for use in in-memory hashmaps.
///
/// aHash is designed for performance and is NOT cryptographically secure.
///
/// Within the same execution of the program iteration order of different
/// `HashMap`s only depends on the order of insertions and deletions,
/// but it will not be stable between multiple executions of the program.
pub type HashMap<K, V> = hashbrown::HashMap<K, V, BuildHasherDefault<AHasher>>;
/// A stable hash map implementing aHash, a high speed keyed hashing algorithm
/// intended for use in in-memory hashmaps.
///
/// Unlike [`HashMap`] the iteration order stability extends between executions
/// using the same Bevy version on the same device.
///
/// aHash is designed for performance and is NOT cryptographically secure.
#[deprecated(
note = "Will be required to use the hash library of your choice. Alias for: hashbrown::HashMap<K, V, FixedState>"
)]
pub type StableHashMap<K, V> = hashbrown::HashMap<K, V, FixedState>;
/// A [`HashSet`][hashbrown::HashSet] implementing aHash, a high
/// speed keyed hashing algorithm intended for use in in-memory hashmaps.
///
/// aHash is designed for performance and is NOT cryptographically secure.
///
/// Within the same execution of the program iteration order of different
/// `HashSet`s only depends on the order of insertions and deletions,
/// but it will not be stable between multiple executions of the program.
pub type HashSet<K> = hashbrown::HashSet<K, BuildHasherDefault<AHasher>>;
/// A stable hash set implementing aHash, a high speed keyed hashing algorithm
/// intended for use in in-memory hashmaps.
///
/// Unlike [`HashMap`] the iteration order stability extends between executions
/// using the same Bevy version on the same device.
///
/// aHash is designed for performance and is NOT cryptographically secure.
#[deprecated(
note = "Will be required to use the hash library of your choice. Alias for: hashbrown::HashSet<K, FixedState>"
)]
pub type StableHashSet<K> = hashbrown::HashSet<K, FixedState>;
/// A pre-hashed value of a specific type. Pre-hashing enables memoization of hashes that are expensive to compute.
/// It also enables faster [`PartialEq`] comparisons by short circuiting on hash equality.
/// See [`PassHash`] and [`PassHasher`] for a "pass through" [`BuildHasher`] and [`Hasher`] implementation
/// designed to work with [`Hashed`]
/// See [`PreHashMap`] for a hashmap pre-configured to use [`Hashed`] keys.
pub struct Hashed<V, H = FixedState> {
hash: u64,
value: V,
marker: PhantomData<H>,
}
impl<V: Hash, H: BuildHasher + Default> Hashed<V, H> {
/// Pre-hashes the given value using the [`BuildHasher`] configured in the [`Hashed`] type.
pub fn new(value: V) -> Self {
Self {
hash: H::default().hash_one(&value),
value,
marker: PhantomData,
}
}
/// The pre-computed hash.
#[inline]
pub fn hash(&self) -> u64 {
self.hash
}
}
impl<V, H> Hash for Hashed<V, H> {
#[inline]
fn hash<R: Hasher>(&self, state: &mut R) {
state.write_u64(self.hash);
}
}
impl<V, H> Deref for Hashed<V, H> {
type Target = V;
#[inline]
fn deref(&self) -> &Self::Target {
&self.value
}
}
impl<V: PartialEq, H> PartialEq for Hashed<V, H> {
/// A fast impl of [`PartialEq`] that first checks that `other`'s pre-computed hash
/// matches this value's pre-computed hash.
#[inline]
fn eq(&self, other: &Self) -> bool {
self.hash == other.hash && self.value.eq(&other.value)
}
}
impl<V: Debug, H> Debug for Hashed<V, H> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("Hashed")
.field("hash", &self.hash)
.field("value", &self.value)
.finish()
}
}
impl<V: Clone, H> Clone for Hashed<V, H> {
#[inline]
fn clone(&self) -> Self {
Self {
hash: self.hash,
value: self.value.clone(),
marker: PhantomData,
}
}
}
impl<V: Eq, H> Eq for Hashed<V, H> {}
/// A [`BuildHasher`] that results in a [`PassHasher`].
#[derive(Default, Clone)]
pub struct PassHash;
impl BuildHasher for PassHash {
type Hasher = PassHasher;
fn build_hasher(&self) -> Self::Hasher {
PassHasher::default()
}
}
/// A no-op hash that only works on `u64`s. Will panic if attempting to
/// hash a type containing non-u64 fields.
#[derive(Debug, Default)]
pub struct PassHasher {
hash: u64,
}
impl Hasher for PassHasher {
#[inline]
fn finish(&self) -> u64 {
self.hash
}
fn write(&mut self, _bytes: &[u8]) {
panic!("can only hash u64 using PassHasher");
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.hash = i;
}
}
/// A [`HashMap`] pre-configured to use [`Hashed`] keys and [`PassHash`] passthrough hashing.
/// Iteration order only depends on the order of insertions and deletions.
pub type PreHashMap<K, V> = hashbrown::HashMap<Hashed<K>, V, PassHash>;
/// Extension methods intended to add functionality to [`PreHashMap`].
pub trait PreHashMapExt<K, V> {
/// Tries to get or insert the value for the given `key` using the pre-computed hash first.
/// If the [`PreHashMap`] does not already contain the `key`, it will clone it and insert
/// the value returned by `func`.
fn get_or_insert_with<F: FnOnce() -> V>(&mut self, key: &Hashed<K>, func: F) -> &mut V;
}
impl<K: Hash + Eq + PartialEq + Clone, V> PreHashMapExt<K, V> for PreHashMap<K, V> {
#[inline]
fn get_or_insert_with<F: FnOnce() -> V>(&mut self, key: &Hashed<K>, func: F) -> &mut V {
let entry = self
.raw_entry_mut()
.from_key_hashed_nocheck(key.hash(), key);
match entry {
RawEntryMut::Occupied(entry) => entry.into_mut(),
RawEntryMut::Vacant(entry) => {
let (_, value) = entry.insert_hashed_nocheck(key.hash(), key.clone(), func());
value
}
}
}
}
/// A specialized hashmap type with Key of [`TypeId`]
/// Iteration order only depends on the order of insertions and deletions.
pub type TypeIdMap<V> = hashbrown::HashMap<TypeId, V, NoOpHash>;
/// [`BuildHasher`] for types that already contain a high-quality hash.
#[derive(Clone, Default)]
pub struct NoOpHash;
impl BuildHasher for NoOpHash {
type Hasher = NoOpHasher;
fn build_hasher(&self) -> Self::Hasher {
NoOpHasher(0)
}
}
#[doc(hidden)]
pub struct NoOpHasher(u64);
// This is for types that already contain a high-quality hash and want to skip
// re-hashing that hash.
impl Hasher for NoOpHasher {
fn finish(&self) -> u64 {
self.0
}
fn write(&mut self, bytes: &[u8]) {
// This should never be called by consumers. Prefer to call `write_u64` instead.
// Don't break applications (slower fallback, just check in test):
self.0 = bytes.iter().fold(self.0, |hash, b| {
hash.rotate_left(8).wrapping_add(*b as u64)
});
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.0 = i;
}
}
/// A type which calls a function when dropped.
/// This can be used to ensure that cleanup code is run even in case of a panic.
///
/// Note that this only works for panics that [unwind](https://doc.rust-lang.org/nomicon/unwinding.html)
/// -- any code within `OnDrop` will be skipped if a panic does not unwind.
/// In most cases, this will just work.
///
/// # Examples
///
/// ```
/// # use bevy_utils::OnDrop;
/// # fn test_panic(do_panic: bool, log: impl FnOnce(&str)) {
/// // This will print a message when the variable `_catch` gets dropped,
/// // even if a panic occurs before we reach the end of this scope.
/// // This is similar to a `try ... catch` block in languages such as C++.
/// let _catch = OnDrop::new(|| log("Oops, a panic occurred and this function didn't complete!"));
///
/// // Some code that may panic...
/// // ...
/// # if do_panic { panic!() }
///
/// // Make sure the message only gets printed if a panic occurs.
/// // If we remove this line, then the message will be printed regardless of whether a panic occurs
/// // -- similar to a `try ... finally` block.
/// std::mem::forget(_catch);
/// # }
/// #
/// # test_panic(false, |_| unreachable!());
/// # let mut did_log = false;
/// # std::panic::catch_unwind(std::panic::AssertUnwindSafe(|| {
/// # test_panic(true, |_| did_log = true);
/// # }));
/// # assert!(did_log);
/// ```
pub struct OnDrop<F: FnOnce()> {
callback: ManuallyDrop<F>,
}
impl<F: FnOnce()> OnDrop<F> {
/// Returns an object that will invoke the specified callback when dropped.
pub fn new(callback: F) -> Self {
Self {
callback: ManuallyDrop::new(callback),
}
}
}
impl<F: FnOnce()> Drop for OnDrop<F> {
fn drop(&mut self) {
// SAFETY: We may move out of `self`, since this instance can never be observed after it's dropped.
let callback = unsafe { ManuallyDrop::take(&mut self.callback) };
callback();
}
}
/// Calls the [`tracing::info!`] macro on a value.
pub fn info<T: Debug>(data: T) {
tracing::info!("{:?}", data);
}
/// Calls the [`tracing::debug!`] macro on a value.
pub fn dbg<T: Debug>(data: T) {
tracing::debug!("{:?}", data);
}
/// Processes a [`Result`] by calling the [`tracing::warn!`] macro in case of an [`Err`] value.
pub fn warn<E: Debug>(result: Result<(), E>) {
if let Err(warn) = result {
tracing::warn!("{:?}", warn);
}
}
/// Processes a [`Result`] by calling the [`tracing::error!`] macro in case of an [`Err`] value.
pub fn error<E: Debug>(result: Result<(), E>) {
if let Err(error) = result {
tracing::error!("{:?}", error);
}
}
/// Like [`tracing::trace`], but conditional on cargo feature `detailed_trace`.
#[macro_export]
macro_rules! detailed_trace {
($($tts:tt)*) => {
if cfg!(detailed_trace) {
bevy_utils::tracing::trace!($($tts)*);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use static_assertions::assert_impl_all;
// Check that the HashMaps are Clone if the key/values are Clone
assert_impl_all!(PreHashMap::<u64, usize>: Clone);
#[test]
fn fast_typeid_hash() {
struct Hasher;
impl core::hash::Hasher for Hasher {
fn finish(&self) -> u64 {
0
}
fn write(&mut self, _: &[u8]) {
panic!("Hashing of std::any::TypeId changed");
}
fn write_u64(&mut self, _: u64) {}
}
Hash::hash(&TypeId::of::<()>(), &mut Hasher);
}
#[cfg(feature = "alloc")]
#[test]
fn stable_hash_within_same_program_execution() {
use alloc::vec::Vec;
let mut map_1 = HashMap::new();
let mut map_2 = HashMap::new();
for i in 1..10 {
map_1.insert(i, i);
map_2.insert(i, i);
}
assert_eq!(
map_1.iter().collect::<Vec<_>>(),
map_2.iter().collect::<Vec<_>>()
);
}
}