# Objective - Fixes #17960 ## Solution - Followed the [edition upgrade guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html) ## Testing - CI --- ## Summary of Changes ### Documentation Indentation When using lists in documentation, proper indentation is now linted for. This means subsequent lines within the same list item must start at the same indentation level as the item. ```rust /* Valid */ /// - Item 1 /// Run-on sentence. /// - Item 2 struct Foo; /* Invalid */ /// - Item 1 /// Run-on sentence. /// - Item 2 struct Foo; ``` ### Implicit `!` to `()` Conversion `!` (the never return type, returned by `panic!`, etc.) no longer implicitly converts to `()`. This is particularly painful for systems with `todo!` or `panic!` statements, as they will no longer be functions returning `()` (or `Result<()>`), making them invalid systems for functions like `add_systems`. The ideal fix would be to accept functions returning `!` (or rather, _not_ returning), but this is blocked on the [stabilisation of the `!` type itself](https://doc.rust-lang.org/std/primitive.never.html), which is not done. The "simple" fix would be to add an explicit `-> ()` to system signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`). However, this is _also_ banned, as there is an existing lint which (IMO, incorrectly) marks this as an unnecessary annotation. So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ... }` closuers into variables and give the variable an explicit type (e.g., `fn()`). ```rust // Valid let system: fn() = || todo!("Not implemented yet!"); app.add_systems(..., system); // Invalid app.add_systems(..., || todo!("Not implemented yet!")); ``` ### Temporary Variable Lifetimes The order in which temporary variables are dropped has changed. The simple fix here is _usually_ to just assign temporaries to a named variable before use. ### `gen` is a keyword We can no longer use the name `gen` as it is reserved for a future generator syntax. This involved replacing uses of the name `gen` with `r#gen` (the raw-identifier syntax). ### Formatting has changed Use statements have had the order of imports changed, causing a substantial +/-3,000 diff when applied. For now, I have opted-out of this change by amending `rustfmt.toml` ```toml style_edition = "2021" ``` This preserves the original formatting for now, reducing the size of this PR. It would be a simple followup to update this to 2024 and run `cargo fmt`. ### New `use<>` Opt-Out Syntax Lifetimes are now implicitly included in RPIT types. There was a handful of instances where it needed to be added to satisfy the borrow checker, but there may be more cases where it _should_ be added to avoid breakages in user code. ### `MyUnitStruct { .. }` is an invalid pattern Previously, you could match against unit structs (and unit enum variants) with a `{ .. }` destructuring. This is no longer valid. ### Pretty much every use of `ref` and `mut` are gone Pattern binding has changed to the point where these terms are largely unused now. They still serve a purpose, but it is far more niche now. ### `iter::repeat(...).take(...)` is bad New lint recommends using the more explicit `iter::repeat_n(..., ...)` instead. ## Migration Guide The lifetimes of functions using return-position impl-trait (RPIT) are likely _more_ conservative than they had been previously. If you encounter lifetime issues with such a function, please create an issue to investigate the addition of `+ use<...>`. ## Notes - Check the individual commits for a clearer breakdown for what _actually_ changed. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2114 lines
81 KiB
Rust
2114 lines
81 KiB
Rust
//! Batching functionality when GPU preprocessing is in use.
|
|
|
|
use core::{any::TypeId, marker::PhantomData, mem};
|
|
|
|
use bevy_app::{App, Plugin};
|
|
use bevy_derive::{Deref, DerefMut};
|
|
use bevy_ecs::{
|
|
prelude::Entity,
|
|
query::{Has, With},
|
|
resource::Resource,
|
|
schedule::IntoSystemConfigs as _,
|
|
system::{Query, Res, ResMut, StaticSystemParam},
|
|
world::{FromWorld, World},
|
|
};
|
|
use bevy_encase_derive::ShaderType;
|
|
use bevy_math::UVec4;
|
|
use bevy_platform_support::collections::{hash_map::Entry, HashMap, HashSet};
|
|
use bevy_utils::{default, TypeIdMap};
|
|
use bytemuck::{Pod, Zeroable};
|
|
use encase::{internal::WriteInto, ShaderSize};
|
|
use indexmap::IndexMap;
|
|
use nonmax::NonMaxU32;
|
|
use tracing::error;
|
|
use wgpu::{BindingResource, BufferUsages, DownlevelFlags, Features};
|
|
|
|
use crate::{
|
|
experimental::occlusion_culling::OcclusionCulling,
|
|
render_phase::{
|
|
BinnedPhaseItem, BinnedRenderPhaseBatch, BinnedRenderPhaseBatchSet,
|
|
BinnedRenderPhaseBatchSets, CachedRenderPipelinePhaseItem, PhaseItem,
|
|
PhaseItemBatchSetKey as _, PhaseItemExtraIndex, RenderBin, SortedPhaseItem,
|
|
SortedRenderPhase, UnbatchableBinnedEntityIndices, ViewBinnedRenderPhases,
|
|
ViewSortedRenderPhases,
|
|
},
|
|
render_resource::{Buffer, GpuArrayBufferable, RawBufferVec, UninitBufferVec},
|
|
renderer::{RenderAdapter, RenderDevice, RenderQueue},
|
|
sync_world::MainEntity,
|
|
view::{ExtractedView, NoIndirectDrawing, RetainedViewEntity},
|
|
Render, RenderApp, RenderDebugFlags, RenderSet,
|
|
};
|
|
|
|
use super::{BatchMeta, GetBatchData, GetFullBatchData};
|
|
|
|
#[derive(Default)]
|
|
pub struct BatchingPlugin {
|
|
/// Debugging flags that can optionally be set when constructing the renderer.
|
|
pub debug_flags: RenderDebugFlags,
|
|
}
|
|
|
|
impl Plugin for BatchingPlugin {
|
|
fn build(&self, app: &mut App) {
|
|
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
|
|
return;
|
|
};
|
|
|
|
render_app
|
|
.insert_resource(IndirectParametersBuffers::new(
|
|
self.debug_flags
|
|
.contains(RenderDebugFlags::ALLOW_COPIES_FROM_INDIRECT_PARAMETERS),
|
|
))
|
|
.add_systems(
|
|
Render,
|
|
write_indirect_parameters_buffers.in_set(RenderSet::PrepareResourcesFlush),
|
|
)
|
|
.add_systems(
|
|
Render,
|
|
clear_indirect_parameters_buffers.in_set(RenderSet::ManageViews),
|
|
);
|
|
}
|
|
|
|
fn finish(&self, app: &mut App) {
|
|
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
|
|
return;
|
|
};
|
|
|
|
render_app.init_resource::<GpuPreprocessingSupport>();
|
|
}
|
|
}
|
|
|
|
/// Records whether GPU preprocessing and/or GPU culling are supported on the
|
|
/// device.
|
|
///
|
|
/// No GPU preprocessing is supported on WebGL because of the lack of compute
|
|
/// shader support. GPU preprocessing is supported on DirectX 12, but due to [a
|
|
/// `wgpu` limitation] GPU culling is not.
|
|
///
|
|
/// [a `wgpu` limitation]: https://github.com/gfx-rs/wgpu/issues/2471
|
|
#[derive(Clone, Copy, PartialEq, Resource)]
|
|
pub struct GpuPreprocessingSupport {
|
|
/// The maximum amount of GPU preprocessing available on this platform.
|
|
pub max_supported_mode: GpuPreprocessingMode,
|
|
}
|
|
|
|
impl GpuPreprocessingSupport {
|
|
/// Returns true if this GPU preprocessing support level isn't `None`.
|
|
#[inline]
|
|
pub fn is_available(&self) -> bool {
|
|
self.max_supported_mode != GpuPreprocessingMode::None
|
|
}
|
|
|
|
/// Returns the given GPU preprocessing mode, capped to the current
|
|
/// preprocessing mode.
|
|
pub fn min(&self, mode: GpuPreprocessingMode) -> GpuPreprocessingMode {
|
|
match (self.max_supported_mode, mode) {
|
|
(GpuPreprocessingMode::None, _) | (_, GpuPreprocessingMode::None) => {
|
|
GpuPreprocessingMode::None
|
|
}
|
|
(mode, GpuPreprocessingMode::Culling) | (GpuPreprocessingMode::Culling, mode) => mode,
|
|
(GpuPreprocessingMode::PreprocessingOnly, GpuPreprocessingMode::PreprocessingOnly) => {
|
|
GpuPreprocessingMode::PreprocessingOnly
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The amount of GPU preprocessing (compute and indirect draw) that we do.
|
|
#[derive(Clone, Copy, PartialEq)]
|
|
pub enum GpuPreprocessingMode {
|
|
/// No GPU preprocessing is in use at all.
|
|
///
|
|
/// This is used when GPU compute isn't available.
|
|
None,
|
|
|
|
/// GPU preprocessing is in use, but GPU culling isn't.
|
|
///
|
|
/// This is used when the [`NoIndirectDrawing`] component is present on the
|
|
/// camera.
|
|
PreprocessingOnly,
|
|
|
|
/// Both GPU preprocessing and GPU culling are in use.
|
|
///
|
|
/// This is used by default.
|
|
Culling,
|
|
}
|
|
|
|
/// The GPU buffers holding the data needed to render batches.
|
|
///
|
|
/// For example, in the 3D PBR pipeline this holds `MeshUniform`s, which are the
|
|
/// `BD` type parameter in that mode.
|
|
///
|
|
/// We have a separate *buffer data input* type (`BDI`) here, which a compute
|
|
/// shader is expected to expand to the full buffer data (`BD`) type. GPU
|
|
/// uniform building is generally faster and uses less system RAM to VRAM bus
|
|
/// bandwidth, but only implemented for some pipelines (for example, not in the
|
|
/// 2D pipeline at present) and only when compute shader is available.
|
|
#[derive(Resource)]
|
|
pub struct BatchedInstanceBuffers<BD, BDI>
|
|
where
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
BDI: Pod + Default,
|
|
{
|
|
/// The uniform data inputs for the current frame.
|
|
///
|
|
/// These are uploaded during the extraction phase.
|
|
pub current_input_buffer: InstanceInputUniformBuffer<BDI>,
|
|
|
|
/// The uniform data inputs for the previous frame.
|
|
///
|
|
/// The indices don't generally line up between `current_input_buffer`
|
|
/// and `previous_input_buffer`, because, among other reasons, entities
|
|
/// can spawn or despawn between frames. Instead, each current buffer
|
|
/// data input uniform is expected to contain the index of the
|
|
/// corresponding buffer data input uniform in this list.
|
|
pub previous_input_buffer: InstanceInputUniformBuffer<BDI>,
|
|
|
|
/// The data needed to render buffers for each phase.
|
|
///
|
|
/// The keys of this map are the type IDs of each phase: e.g. `Opaque3d`,
|
|
/// `AlphaMask3d`, etc.
|
|
pub phase_instance_buffers: TypeIdMap<UntypedPhaseBatchedInstanceBuffers<BD>>,
|
|
}
|
|
|
|
impl<BD, BDI> Default for BatchedInstanceBuffers<BD, BDI>
|
|
where
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
BDI: Pod + Sync + Send + Default + 'static,
|
|
{
|
|
fn default() -> Self {
|
|
BatchedInstanceBuffers {
|
|
current_input_buffer: InstanceInputUniformBuffer::new(),
|
|
previous_input_buffer: InstanceInputUniformBuffer::new(),
|
|
phase_instance_buffers: HashMap::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The GPU buffers holding the data needed to render batches for a single
|
|
/// phase.
|
|
///
|
|
/// These are split out per phase so that we can run the phases in parallel.
|
|
/// This is the version of the structure that has a type parameter, which
|
|
/// enables Bevy's scheduler to run the batching operations for the different
|
|
/// phases in parallel.
|
|
///
|
|
/// See the documentation for [`BatchedInstanceBuffers`] for more information.
|
|
#[derive(Resource)]
|
|
pub struct PhaseBatchedInstanceBuffers<PI, BD>
|
|
where
|
|
PI: PhaseItem,
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
{
|
|
/// The buffers for this phase.
|
|
pub buffers: UntypedPhaseBatchedInstanceBuffers<BD>,
|
|
phantom: PhantomData<PI>,
|
|
}
|
|
|
|
impl<PI, BD> Default for PhaseBatchedInstanceBuffers<PI, BD>
|
|
where
|
|
PI: PhaseItem,
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
{
|
|
fn default() -> Self {
|
|
PhaseBatchedInstanceBuffers {
|
|
buffers: UntypedPhaseBatchedInstanceBuffers::default(),
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The GPU buffers holding the data needed to render batches for a single
|
|
/// phase, without a type parameter for that phase.
|
|
///
|
|
/// Since this structure doesn't have a type parameter, it can be placed in
|
|
/// [`BatchedInstanceBuffers::phase_instance_buffers`].
|
|
pub struct UntypedPhaseBatchedInstanceBuffers<BD>
|
|
where
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
{
|
|
/// A storage area for the buffer data that the GPU compute shader is
|
|
/// expected to write to.
|
|
///
|
|
/// There will be one entry for each index.
|
|
pub data_buffer: UninitBufferVec<BD>,
|
|
|
|
/// The index of the buffer data in the current input buffer that
|
|
/// corresponds to each instance.
|
|
///
|
|
/// This is keyed off each view. Each view has a separate buffer.
|
|
pub work_item_buffers: HashMap<RetainedViewEntity, PreprocessWorkItemBuffers>,
|
|
|
|
/// A buffer that holds the number of indexed meshes that weren't visible in
|
|
/// the previous frame, when GPU occlusion culling is in use.
|
|
///
|
|
/// There's one set of [`LatePreprocessWorkItemIndirectParameters`] per
|
|
/// view. Bevy uses this value to determine how many threads to dispatch to
|
|
/// check meshes that weren't visible next frame to see if they became newly
|
|
/// visible this frame.
|
|
pub late_indexed_indirect_parameters_buffer:
|
|
RawBufferVec<LatePreprocessWorkItemIndirectParameters>,
|
|
|
|
/// A buffer that holds the number of non-indexed meshes that weren't
|
|
/// visible in the previous frame, when GPU occlusion culling is in use.
|
|
///
|
|
/// There's one set of [`LatePreprocessWorkItemIndirectParameters`] per
|
|
/// view. Bevy uses this value to determine how many threads to dispatch to
|
|
/// check meshes that weren't visible next frame to see if they became newly
|
|
/// visible this frame.
|
|
pub late_non_indexed_indirect_parameters_buffer:
|
|
RawBufferVec<LatePreprocessWorkItemIndirectParameters>,
|
|
}
|
|
|
|
/// Holds the GPU buffer of instance input data, which is the data about each
|
|
/// mesh instance that the CPU provides.
|
|
///
|
|
/// `BDI` is the *buffer data input* type, which the GPU mesh preprocessing
|
|
/// shader is expected to expand to the full *buffer data* type.
|
|
pub struct InstanceInputUniformBuffer<BDI>
|
|
where
|
|
BDI: Pod + Default,
|
|
{
|
|
/// The buffer containing the data that will be uploaded to the GPU.
|
|
buffer: RawBufferVec<BDI>,
|
|
|
|
/// Indices of slots that are free within the buffer.
|
|
///
|
|
/// When adding data, we preferentially overwrite these slots first before
|
|
/// growing the buffer itself.
|
|
free_uniform_indices: Vec<u32>,
|
|
}
|
|
|
|
impl<BDI> InstanceInputUniformBuffer<BDI>
|
|
where
|
|
BDI: Pod + Default,
|
|
{
|
|
/// Creates a new, empty buffer.
|
|
pub fn new() -> InstanceInputUniformBuffer<BDI> {
|
|
InstanceInputUniformBuffer {
|
|
buffer: RawBufferVec::new(BufferUsages::STORAGE),
|
|
free_uniform_indices: vec![],
|
|
}
|
|
}
|
|
|
|
/// Clears the buffer and entity list out.
|
|
pub fn clear(&mut self) {
|
|
self.buffer.clear();
|
|
self.free_uniform_indices.clear();
|
|
}
|
|
|
|
/// Returns the [`RawBufferVec`] corresponding to this input uniform buffer.
|
|
#[inline]
|
|
pub fn buffer(&self) -> &RawBufferVec<BDI> {
|
|
&self.buffer
|
|
}
|
|
|
|
/// Adds a new piece of buffered data to the uniform buffer and returns its
|
|
/// index.
|
|
pub fn add(&mut self, element: BDI) -> u32 {
|
|
match self.free_uniform_indices.pop() {
|
|
Some(uniform_index) => {
|
|
self.buffer.values_mut()[uniform_index as usize] = element;
|
|
uniform_index
|
|
}
|
|
None => self.buffer.push(element) as u32,
|
|
}
|
|
}
|
|
|
|
/// Removes a piece of buffered data from the uniform buffer.
|
|
///
|
|
/// This simply marks the data as free.
|
|
pub fn remove(&mut self, uniform_index: u32) {
|
|
self.free_uniform_indices.push(uniform_index);
|
|
}
|
|
|
|
/// Returns the piece of buffered data at the given index.
|
|
///
|
|
/// Returns [`None`] if the index is out of bounds or the data is removed.
|
|
pub fn get(&self, uniform_index: u32) -> Option<BDI> {
|
|
if (uniform_index as usize) >= self.buffer.len()
|
|
|| self.free_uniform_indices.contains(&uniform_index)
|
|
{
|
|
None
|
|
} else {
|
|
Some(self.get_unchecked(uniform_index))
|
|
}
|
|
}
|
|
|
|
/// Returns the piece of buffered data at the given index.
|
|
/// Can return data that has previously been removed.
|
|
///
|
|
/// # Panics
|
|
/// if `uniform_index` is not in bounds of [`Self::buffer`].
|
|
pub fn get_unchecked(&self, uniform_index: u32) -> BDI {
|
|
self.buffer.values()[uniform_index as usize]
|
|
}
|
|
|
|
/// Stores a piece of buffered data at the given index.
|
|
///
|
|
/// # Panics
|
|
/// if `uniform_index` is not in bounds of [`Self::buffer`].
|
|
pub fn set(&mut self, uniform_index: u32, element: BDI) {
|
|
self.buffer.values_mut()[uniform_index as usize] = element;
|
|
}
|
|
|
|
// Ensures that the buffers are nonempty, which the GPU requires before an
|
|
// upload can take place.
|
|
pub fn ensure_nonempty(&mut self) {
|
|
if self.buffer.is_empty() {
|
|
self.buffer.push(default());
|
|
}
|
|
}
|
|
|
|
/// Returns the number of instances in this buffer.
|
|
pub fn len(&self) -> usize {
|
|
self.buffer.len()
|
|
}
|
|
|
|
/// Returns true if this buffer has no instances or false if it contains any
|
|
/// instances.
|
|
pub fn is_empty(&self) -> bool {
|
|
self.buffer.is_empty()
|
|
}
|
|
|
|
/// Consumes this [`InstanceInputUniformBuffer`] and returns the raw buffer
|
|
/// ready to be uploaded to the GPU.
|
|
pub fn into_buffer(self) -> RawBufferVec<BDI> {
|
|
self.buffer
|
|
}
|
|
}
|
|
|
|
impl<BDI> Default for InstanceInputUniformBuffer<BDI>
|
|
where
|
|
BDI: Pod + Default,
|
|
{
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
/// The buffer of GPU preprocessing work items for a single view.
|
|
pub enum PreprocessWorkItemBuffers {
|
|
/// The work items we use if we aren't using indirect drawing.
|
|
///
|
|
/// Because we don't have to separate indexed from non-indexed meshes in
|
|
/// direct mode, we only have a single buffer here.
|
|
Direct(RawBufferVec<PreprocessWorkItem>),
|
|
|
|
/// The buffer of work items we use if we are using indirect drawing.
|
|
///
|
|
/// We need to separate out indexed meshes from non-indexed meshes in this
|
|
/// case because the indirect parameters for these two types of meshes have
|
|
/// different sizes.
|
|
Indirect {
|
|
/// The buffer of work items corresponding to indexed meshes.
|
|
indexed: RawBufferVec<PreprocessWorkItem>,
|
|
/// The buffer of work items corresponding to non-indexed meshes.
|
|
non_indexed: RawBufferVec<PreprocessWorkItem>,
|
|
/// The work item buffers we use when GPU occlusion culling is in use.
|
|
gpu_occlusion_culling: Option<GpuOcclusionCullingWorkItemBuffers>,
|
|
},
|
|
}
|
|
|
|
/// The work item buffers we use when GPU occlusion culling is in use.
|
|
pub struct GpuOcclusionCullingWorkItemBuffers {
|
|
/// The buffer of work items corresponding to indexed meshes.
|
|
pub late_indexed: UninitBufferVec<PreprocessWorkItem>,
|
|
/// The buffer of work items corresponding to non-indexed meshes.
|
|
pub late_non_indexed: UninitBufferVec<PreprocessWorkItem>,
|
|
/// The offset into the
|
|
/// [`UntypedPhaseBatchedInstanceBuffers::late_indexed_indirect_parameters_buffer`]
|
|
/// where this view's indirect dispatch counts for indexed meshes live.
|
|
pub late_indirect_parameters_indexed_offset: u32,
|
|
/// The offset into the
|
|
/// [`UntypedPhaseBatchedInstanceBuffers::late_non_indexed_indirect_parameters_buffer`]
|
|
/// where this view's indirect dispatch counts for non-indexed meshes live.
|
|
pub late_indirect_parameters_non_indexed_offset: u32,
|
|
}
|
|
|
|
/// A GPU-side data structure that stores the number of workgroups to dispatch
|
|
/// for the second phase of GPU occlusion culling.
|
|
///
|
|
/// The late mesh preprocessing phase checks meshes that weren't visible frame
|
|
/// to determine if they're potentially visible this frame.
|
|
#[derive(Clone, Copy, ShaderType, Pod, Zeroable)]
|
|
#[repr(C)]
|
|
pub struct LatePreprocessWorkItemIndirectParameters {
|
|
/// The number of workgroups to dispatch.
|
|
///
|
|
/// This will be equal to `work_item_count / 64`, rounded *up*.
|
|
dispatch_x: u32,
|
|
/// The number of workgroups along the abstract Y axis to dispatch: always
|
|
/// 1.
|
|
dispatch_y: u32,
|
|
/// The number of workgroups along the abstract Z axis to dispatch: always
|
|
/// 1.
|
|
dispatch_z: u32,
|
|
/// The actual number of work items.
|
|
///
|
|
/// The GPU indirect dispatch doesn't read this, but it's used internally to
|
|
/// determine the actual number of work items that exist in the late
|
|
/// preprocessing work item buffer.
|
|
work_item_count: u32,
|
|
/// Padding to 64-byte boundaries for some hardware.
|
|
pad: UVec4,
|
|
}
|
|
|
|
impl Default for LatePreprocessWorkItemIndirectParameters {
|
|
fn default() -> LatePreprocessWorkItemIndirectParameters {
|
|
LatePreprocessWorkItemIndirectParameters {
|
|
dispatch_x: 0,
|
|
dispatch_y: 1,
|
|
dispatch_z: 1,
|
|
work_item_count: 0,
|
|
pad: default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the set of work item buffers for the given view, first creating it
|
|
/// if necessary.
|
|
///
|
|
/// Bevy uses work item buffers to tell the mesh preprocessing compute shader
|
|
/// which meshes are to be drawn.
|
|
///
|
|
/// You may need to call this function if you're implementing your own custom
|
|
/// render phases. See the `specialized_mesh_pipeline` example.
|
|
pub fn get_or_create_work_item_buffer<'a, I>(
|
|
work_item_buffers: &'a mut HashMap<RetainedViewEntity, PreprocessWorkItemBuffers>,
|
|
view: RetainedViewEntity,
|
|
no_indirect_drawing: bool,
|
|
enable_gpu_occlusion_culling: bool,
|
|
) -> &'a mut PreprocessWorkItemBuffers
|
|
where
|
|
I: 'static,
|
|
{
|
|
let preprocess_work_item_buffers = match work_item_buffers.entry(view) {
|
|
Entry::Occupied(occupied_entry) => occupied_entry.into_mut(),
|
|
Entry::Vacant(vacant_entry) => {
|
|
if no_indirect_drawing {
|
|
vacant_entry.insert(PreprocessWorkItemBuffers::Direct(RawBufferVec::new(
|
|
BufferUsages::STORAGE,
|
|
)))
|
|
} else {
|
|
vacant_entry.insert(PreprocessWorkItemBuffers::Indirect {
|
|
indexed: RawBufferVec::new(BufferUsages::STORAGE),
|
|
non_indexed: RawBufferVec::new(BufferUsages::STORAGE),
|
|
// We fill this in below if `enable_gpu_occlusion_culling`
|
|
// is set.
|
|
gpu_occlusion_culling: None,
|
|
})
|
|
}
|
|
}
|
|
};
|
|
|
|
// Initialize the GPU occlusion culling buffers if necessary.
|
|
if let PreprocessWorkItemBuffers::Indirect {
|
|
ref mut gpu_occlusion_culling,
|
|
..
|
|
} = *preprocess_work_item_buffers
|
|
{
|
|
match (
|
|
enable_gpu_occlusion_culling,
|
|
gpu_occlusion_culling.is_some(),
|
|
) {
|
|
(false, false) | (true, true) => {}
|
|
(false, true) => {
|
|
*gpu_occlusion_culling = None;
|
|
}
|
|
(true, false) => {
|
|
*gpu_occlusion_culling = Some(GpuOcclusionCullingWorkItemBuffers {
|
|
late_indexed: UninitBufferVec::new(BufferUsages::STORAGE),
|
|
late_non_indexed: UninitBufferVec::new(BufferUsages::STORAGE),
|
|
late_indirect_parameters_indexed_offset: 0,
|
|
late_indirect_parameters_non_indexed_offset: 0,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
preprocess_work_item_buffers
|
|
}
|
|
|
|
/// Initializes work item buffers for a phase in preparation for a new frame.
|
|
pub fn init_work_item_buffers(
|
|
work_item_buffers: &mut PreprocessWorkItemBuffers,
|
|
late_indexed_indirect_parameters_buffer: &'_ mut RawBufferVec<
|
|
LatePreprocessWorkItemIndirectParameters,
|
|
>,
|
|
late_non_indexed_indirect_parameters_buffer: &'_ mut RawBufferVec<
|
|
LatePreprocessWorkItemIndirectParameters,
|
|
>,
|
|
) {
|
|
// Add the offsets for indirect parameters that the late phase of mesh
|
|
// preprocessing writes to.
|
|
if let PreprocessWorkItemBuffers::Indirect {
|
|
gpu_occlusion_culling:
|
|
Some(GpuOcclusionCullingWorkItemBuffers {
|
|
ref mut late_indirect_parameters_indexed_offset,
|
|
ref mut late_indirect_parameters_non_indexed_offset,
|
|
..
|
|
}),
|
|
..
|
|
} = *work_item_buffers
|
|
{
|
|
*late_indirect_parameters_indexed_offset = late_indexed_indirect_parameters_buffer
|
|
.push(LatePreprocessWorkItemIndirectParameters::default())
|
|
as u32;
|
|
*late_indirect_parameters_non_indexed_offset = late_non_indexed_indirect_parameters_buffer
|
|
.push(LatePreprocessWorkItemIndirectParameters::default())
|
|
as u32;
|
|
}
|
|
}
|
|
|
|
impl PreprocessWorkItemBuffers {
|
|
/// Adds a new work item to the appropriate buffer.
|
|
///
|
|
/// `indexed` specifies whether the work item corresponds to an indexed
|
|
/// mesh.
|
|
pub fn push(&mut self, indexed: bool, preprocess_work_item: PreprocessWorkItem) {
|
|
match *self {
|
|
PreprocessWorkItemBuffers::Direct(ref mut buffer) => {
|
|
buffer.push(preprocess_work_item);
|
|
}
|
|
PreprocessWorkItemBuffers::Indirect {
|
|
indexed: ref mut indexed_buffer,
|
|
non_indexed: ref mut non_indexed_buffer,
|
|
ref mut gpu_occlusion_culling,
|
|
} => {
|
|
if indexed {
|
|
indexed_buffer.push(preprocess_work_item);
|
|
} else {
|
|
non_indexed_buffer.push(preprocess_work_item);
|
|
}
|
|
|
|
if let Some(ref mut gpu_occlusion_culling) = *gpu_occlusion_culling {
|
|
if indexed {
|
|
gpu_occlusion_culling.late_indexed.add();
|
|
} else {
|
|
gpu_occlusion_culling.late_non_indexed.add();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Clears out the GPU work item buffers in preparation for a new frame.
|
|
pub fn clear(&mut self) {
|
|
match *self {
|
|
PreprocessWorkItemBuffers::Direct(ref mut buffer) => {
|
|
buffer.clear();
|
|
}
|
|
PreprocessWorkItemBuffers::Indirect {
|
|
indexed: ref mut indexed_buffer,
|
|
non_indexed: ref mut non_indexed_buffer,
|
|
ref mut gpu_occlusion_culling,
|
|
} => {
|
|
indexed_buffer.clear();
|
|
non_indexed_buffer.clear();
|
|
|
|
if let Some(ref mut gpu_occlusion_culling) = *gpu_occlusion_culling {
|
|
gpu_occlusion_culling.late_indexed.clear();
|
|
gpu_occlusion_culling.late_non_indexed.clear();
|
|
gpu_occlusion_culling.late_indirect_parameters_indexed_offset = 0;
|
|
gpu_occlusion_culling.late_indirect_parameters_non_indexed_offset = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// One invocation of the preprocessing shader: i.e. one mesh instance in a
|
|
/// view.
|
|
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct PreprocessWorkItem {
|
|
/// The index of the batch input data in the input buffer that the shader
|
|
/// reads from.
|
|
pub input_index: u32,
|
|
|
|
/// In direct mode, the index of the mesh uniform; in indirect mode, the
|
|
/// index of the [`IndirectParametersGpuMetadata`].
|
|
///
|
|
/// In indirect mode, this is the index of the
|
|
/// [`IndirectParametersGpuMetadata`] in the
|
|
/// `IndirectParametersBuffers::indexed_metadata` or
|
|
/// `IndirectParametersBuffers::non_indexed_metadata`.
|
|
pub output_or_indirect_parameters_index: u32,
|
|
}
|
|
|
|
/// The `wgpu` indirect parameters structure that specifies a GPU draw command.
|
|
///
|
|
/// This is the variant for indexed meshes. We generate the instances of this
|
|
/// structure in the `build_indirect_params.wgsl` compute shader.
|
|
#[derive(Clone, Copy, Debug, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct IndirectParametersIndexed {
|
|
/// The number of indices that this mesh has.
|
|
pub index_count: u32,
|
|
/// The number of instances we are to draw.
|
|
pub instance_count: u32,
|
|
/// The offset of the first index for this mesh in the index buffer slab.
|
|
pub first_index: u32,
|
|
/// The offset of the first vertex for this mesh in the vertex buffer slab.
|
|
pub base_vertex: u32,
|
|
/// The index of the first mesh instance in the `MeshUniform` buffer.
|
|
pub first_instance: u32,
|
|
}
|
|
|
|
/// The `wgpu` indirect parameters structure that specifies a GPU draw command.
|
|
///
|
|
/// This is the variant for non-indexed meshes. We generate the instances of
|
|
/// this structure in the `build_indirect_params.wgsl` compute shader.
|
|
#[derive(Clone, Copy, Debug, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct IndirectParametersNonIndexed {
|
|
/// The number of vertices that this mesh has.
|
|
pub vertex_count: u32,
|
|
/// The number of instances we are to draw.
|
|
pub instance_count: u32,
|
|
/// The offset of the first vertex for this mesh in the vertex buffer slab.
|
|
pub base_vertex: u32,
|
|
/// The index of the first mesh instance in the `Mesh` buffer.
|
|
pub first_instance: u32,
|
|
}
|
|
|
|
/// A structure, initialized on CPU and read on GPU, that contains metadata
|
|
/// about each batch.
|
|
///
|
|
/// Each batch will have one instance of this structure.
|
|
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct IndirectParametersCpuMetadata {
|
|
/// The index of the first instance of this mesh in the array of
|
|
/// `MeshUniform`s.
|
|
///
|
|
/// Note that this is the *first* output index in this batch. Since each
|
|
/// instance of this structure refers to arbitrarily many instances, the
|
|
/// `MeshUniform`s corresponding to this batch span the indices
|
|
/// `base_output_index..(base_output_index + instance_count)`.
|
|
pub base_output_index: u32,
|
|
|
|
/// The index of the batch set that this batch belongs to in the
|
|
/// [`IndirectBatchSet`] buffer.
|
|
///
|
|
/// A *batch set* is a set of meshes that may be multi-drawn together.
|
|
/// Multiple batches (and therefore multiple instances of
|
|
/// [`IndirectParametersGpuMetadata`] structures) can be part of the same
|
|
/// batch set.
|
|
pub batch_set_index: u32,
|
|
}
|
|
|
|
/// A structure, written and read GPU, that records how many instances of each
|
|
/// mesh are actually to be drawn.
|
|
///
|
|
/// The GPU mesh preprocessing shader increments the
|
|
/// [`Self::early_instance_count`] and [`Self::late_instance_count`] as it
|
|
/// determines that meshes are visible. The indirect parameter building shader
|
|
/// reads this metadata in order to construct the indirect draw parameters.
|
|
///
|
|
/// Each batch will have one instance of this structure.
|
|
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct IndirectParametersGpuMetadata {
|
|
/// The index of the first mesh in this batch in the array of
|
|
/// `MeshInputUniform`s.
|
|
pub mesh_index: u32,
|
|
|
|
/// The number of instances that were judged visible last frame.
|
|
///
|
|
/// The CPU sets this value to 0, and the GPU mesh preprocessing shader
|
|
/// increments it as it culls mesh instances.
|
|
pub early_instance_count: u32,
|
|
|
|
/// The number of instances that have been judged potentially visible this
|
|
/// frame that weren't in the last frame's potentially visible set.
|
|
///
|
|
/// The CPU sets this value to 0, and the GPU mesh preprocessing shader
|
|
/// increments it as it culls mesh instances.
|
|
pub late_instance_count: u32,
|
|
}
|
|
|
|
/// A structure, shared between CPU and GPU, that holds the number of on-GPU
|
|
/// indirect draw commands for each *batch set*.
|
|
///
|
|
/// A *batch set* is a set of meshes that may be multi-drawn together.
|
|
///
|
|
/// If the current hardware and driver support `multi_draw_indirect_count`, the
|
|
/// indirect parameters building shader increments
|
|
/// [`Self::indirect_parameters_count`] as it generates indirect parameters. The
|
|
/// `multi_draw_indirect_count` command reads
|
|
/// [`Self::indirect_parameters_count`] in order to determine how many commands
|
|
/// belong to each batch set.
|
|
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
|
|
#[repr(C)]
|
|
pub struct IndirectBatchSet {
|
|
/// The number of indirect parameter commands (i.e. batches) in this batch
|
|
/// set.
|
|
///
|
|
/// The CPU sets this value to 0 before uploading this structure to GPU. The
|
|
/// indirect parameters building shader increments this value as it creates
|
|
/// indirect parameters. Then the `multi_draw_indirect_count` command reads
|
|
/// this value in order to determine how many indirect draw commands to
|
|
/// process.
|
|
pub indirect_parameters_count: u32,
|
|
|
|
/// The offset within the `IndirectParametersBuffers::indexed_data` or
|
|
/// `IndirectParametersBuffers::non_indexed_data` of the first indirect draw
|
|
/// command for this batch set.
|
|
///
|
|
/// The CPU fills out this value.
|
|
pub indirect_parameters_base: u32,
|
|
}
|
|
|
|
/// The buffers containing all the information that indirect draw commands
|
|
/// (`multi_draw_indirect`, `multi_draw_indirect_count`) use to draw the scene.
|
|
///
|
|
/// In addition to the indirect draw buffers themselves, this structure contains
|
|
/// the buffers that store [`IndirectParametersGpuMetadata`], which are the
|
|
/// structures that culling writes to so that the indirect parameter building
|
|
/// pass can determine how many meshes are actually to be drawn.
|
|
///
|
|
/// These buffers will remain empty if indirect drawing isn't in use.
|
|
#[derive(Resource, Deref, DerefMut)]
|
|
pub struct IndirectParametersBuffers {
|
|
/// A mapping from a phase type ID to the indirect parameters buffers for
|
|
/// that phase.
|
|
///
|
|
/// Examples of phase type IDs are `Opaque3d` and `AlphaMask3d`.
|
|
#[deref]
|
|
pub buffers: TypeIdMap<UntypedPhaseIndirectParametersBuffers>,
|
|
/// If true, this sets the `COPY_SRC` flag on indirect draw parameters so
|
|
/// that they can be read back to CPU.
|
|
///
|
|
/// This is a debugging feature that may reduce performance. It primarily
|
|
/// exists for the `occlusion_culling` example.
|
|
pub allow_copies_from_indirect_parameter_buffers: bool,
|
|
}
|
|
|
|
impl IndirectParametersBuffers {
|
|
/// Initializes a new [`IndirectParametersBuffers`] resource.
|
|
pub fn new(allow_copies_from_indirect_parameter_buffers: bool) -> IndirectParametersBuffers {
|
|
IndirectParametersBuffers {
|
|
buffers: TypeIdMap::default(),
|
|
allow_copies_from_indirect_parameter_buffers,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The buffers containing all the information that indirect draw commands use
|
|
/// to draw the scene, for a single phase.
|
|
///
|
|
/// This is the version of the structure that has a type parameter, so that the
|
|
/// batching for different phases can run in parallel.
|
|
///
|
|
/// See the [`IndirectParametersBuffers`] documentation for more information.
|
|
#[derive(Resource)]
|
|
pub struct PhaseIndirectParametersBuffers<PI>
|
|
where
|
|
PI: PhaseItem,
|
|
{
|
|
/// The indirect draw buffers for the phase.
|
|
pub buffers: UntypedPhaseIndirectParametersBuffers,
|
|
phantom: PhantomData<PI>,
|
|
}
|
|
|
|
impl<PI> PhaseIndirectParametersBuffers<PI>
|
|
where
|
|
PI: PhaseItem,
|
|
{
|
|
pub fn new(allow_copies_from_indirect_parameter_buffers: bool) -> Self {
|
|
PhaseIndirectParametersBuffers {
|
|
buffers: UntypedPhaseIndirectParametersBuffers::new(
|
|
allow_copies_from_indirect_parameter_buffers,
|
|
),
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The buffers containing all the information that indirect draw commands use
|
|
/// to draw the scene, for a single phase.
|
|
///
|
|
/// This is the version of the structure that doesn't have a type parameter, so
|
|
/// that it can be inserted into [`IndirectParametersBuffers::buffers`]
|
|
///
|
|
/// See the [`IndirectParametersBuffers`] documentation for more information.
|
|
pub struct UntypedPhaseIndirectParametersBuffers {
|
|
/// Information that indirect draw commands use to draw indexed meshes in
|
|
/// the scene.
|
|
pub indexed: MeshClassIndirectParametersBuffers<IndirectParametersIndexed>,
|
|
/// Information that indirect draw commands use to draw non-indexed meshes
|
|
/// in the scene.
|
|
pub non_indexed: MeshClassIndirectParametersBuffers<IndirectParametersNonIndexed>,
|
|
}
|
|
|
|
impl UntypedPhaseIndirectParametersBuffers {
|
|
/// Creates the indirect parameters buffers.
|
|
pub fn new(
|
|
allow_copies_from_indirect_parameter_buffers: bool,
|
|
) -> UntypedPhaseIndirectParametersBuffers {
|
|
let mut indirect_parameter_buffer_usages = BufferUsages::STORAGE | BufferUsages::INDIRECT;
|
|
if allow_copies_from_indirect_parameter_buffers {
|
|
indirect_parameter_buffer_usages |= BufferUsages::COPY_SRC;
|
|
}
|
|
|
|
UntypedPhaseIndirectParametersBuffers {
|
|
non_indexed: MeshClassIndirectParametersBuffers::new(
|
|
allow_copies_from_indirect_parameter_buffers,
|
|
),
|
|
indexed: MeshClassIndirectParametersBuffers::new(
|
|
allow_copies_from_indirect_parameter_buffers,
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Reserves space for `count` new batches.
|
|
///
|
|
/// The `indexed` parameter specifies whether the meshes that these batches
|
|
/// correspond to are indexed or not.
|
|
pub fn allocate(&mut self, indexed: bool, count: u32) -> u32 {
|
|
if indexed {
|
|
self.indexed.allocate(count)
|
|
} else {
|
|
self.non_indexed.allocate(count)
|
|
}
|
|
}
|
|
|
|
/// Returns the number of batches currently allocated.
|
|
///
|
|
/// The `indexed` parameter specifies whether the meshes that these batches
|
|
/// correspond to are indexed or not.
|
|
fn batch_count(&self, indexed: bool) -> usize {
|
|
if indexed {
|
|
self.indexed.batch_count()
|
|
} else {
|
|
self.non_indexed.batch_count()
|
|
}
|
|
}
|
|
|
|
/// Returns the number of batch sets currently allocated.
|
|
///
|
|
/// The `indexed` parameter specifies whether the meshes that these batch
|
|
/// sets correspond to are indexed or not.
|
|
pub fn batch_set_count(&self, indexed: bool) -> usize {
|
|
if indexed {
|
|
self.indexed.batch_sets.len()
|
|
} else {
|
|
self.non_indexed.batch_sets.len()
|
|
}
|
|
}
|
|
|
|
/// Adds a new batch set to `Self::indexed_batch_sets` or
|
|
/// `Self::non_indexed_batch_sets` as appropriate.
|
|
///
|
|
/// `indexed` specifies whether the meshes that these batch sets correspond
|
|
/// to are indexed or not. `indirect_parameters_base` specifies the offset
|
|
/// within `Self::indexed_data` or `Self::non_indexed_data` of the first
|
|
/// batch in this batch set.
|
|
#[inline]
|
|
pub fn add_batch_set(&mut self, indexed: bool, indirect_parameters_base: u32) {
|
|
if indexed {
|
|
self.indexed.batch_sets.push(IndirectBatchSet {
|
|
indirect_parameters_base,
|
|
indirect_parameters_count: 0,
|
|
});
|
|
} else {
|
|
self.non_indexed.batch_sets.push(IndirectBatchSet {
|
|
indirect_parameters_base,
|
|
indirect_parameters_count: 0,
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Returns the index that a newly-added batch set will have.
|
|
///
|
|
/// The `indexed` parameter specifies whether the meshes in such a batch set
|
|
/// are indexed or not.
|
|
pub fn get_next_batch_set_index(&self, indexed: bool) -> Option<NonMaxU32> {
|
|
NonMaxU32::new(self.batch_set_count(indexed) as u32)
|
|
}
|
|
|
|
/// Clears out the buffers in preparation for a new frame.
|
|
pub fn clear(&mut self) {
|
|
self.indexed.clear();
|
|
self.non_indexed.clear();
|
|
}
|
|
}
|
|
|
|
/// The buffers containing all the information that indirect draw commands use
|
|
/// to draw the scene, for a single mesh class (indexed or non-indexed), for a
|
|
/// single phase.
|
|
pub struct MeshClassIndirectParametersBuffers<IP>
|
|
where
|
|
IP: Clone + ShaderSize + WriteInto,
|
|
{
|
|
/// The GPU buffer that stores the indirect draw parameters for the meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, while the
|
|
/// `multi_draw_indirect` or `multi_draw_indirect_count` commands read from
|
|
/// it to perform the draws.
|
|
data: UninitBufferVec<IP>,
|
|
|
|
/// The GPU buffer that holds the data used to construct indirect draw
|
|
/// parameters for meshes.
|
|
///
|
|
/// The GPU mesh preprocessing shader writes to this buffer, and the
|
|
/// indirect parameters building shader reads this buffer to construct the
|
|
/// indirect draw parameters.
|
|
cpu_metadata: RawBufferVec<IndirectParametersCpuMetadata>,
|
|
|
|
/// The GPU buffer that holds data built by the GPU used to construct
|
|
/// indirect draw parameters for meshes.
|
|
///
|
|
/// The GPU mesh preprocessing shader writes to this buffer, and the
|
|
/// indirect parameters building shader reads this buffer to construct the
|
|
/// indirect draw parameters.
|
|
gpu_metadata: UninitBufferVec<IndirectParametersGpuMetadata>,
|
|
|
|
/// The GPU buffer that holds the number of indirect draw commands for each
|
|
/// phase of each view, for meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, and the
|
|
/// `multi_draw_indirect_count` command reads from it in order to know how
|
|
/// many indirect draw commands to process.
|
|
batch_sets: RawBufferVec<IndirectBatchSet>,
|
|
}
|
|
|
|
impl<IP> MeshClassIndirectParametersBuffers<IP>
|
|
where
|
|
IP: Clone + ShaderSize + WriteInto,
|
|
{
|
|
fn new(
|
|
allow_copies_from_indirect_parameter_buffers: bool,
|
|
) -> MeshClassIndirectParametersBuffers<IP> {
|
|
let mut indirect_parameter_buffer_usages = BufferUsages::STORAGE | BufferUsages::INDIRECT;
|
|
if allow_copies_from_indirect_parameter_buffers {
|
|
indirect_parameter_buffer_usages |= BufferUsages::COPY_SRC;
|
|
}
|
|
|
|
MeshClassIndirectParametersBuffers {
|
|
data: UninitBufferVec::new(indirect_parameter_buffer_usages),
|
|
cpu_metadata: RawBufferVec::new(BufferUsages::STORAGE),
|
|
gpu_metadata: UninitBufferVec::new(BufferUsages::STORAGE),
|
|
batch_sets: RawBufferVec::new(indirect_parameter_buffer_usages),
|
|
}
|
|
}
|
|
|
|
/// Returns the GPU buffer that stores the indirect draw parameters for
|
|
/// indexed meshes.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, while the
|
|
/// `multi_draw_indirect` or `multi_draw_indirect_count` commands read from
|
|
/// it to perform the draws.
|
|
#[inline]
|
|
pub fn data_buffer(&self) -> Option<&Buffer> {
|
|
self.data.buffer()
|
|
}
|
|
|
|
/// Returns the GPU buffer that holds the CPU-constructed data used to
|
|
/// construct indirect draw parameters for meshes.
|
|
///
|
|
/// The CPU writes to this buffer, and the indirect parameters building
|
|
/// shader reads this buffer to construct the indirect draw parameters.
|
|
#[inline]
|
|
pub fn cpu_metadata_buffer(&self) -> Option<&Buffer> {
|
|
self.cpu_metadata.buffer()
|
|
}
|
|
|
|
/// Returns the GPU buffer that holds the GPU-constructed data used to
|
|
/// construct indirect draw parameters for meshes.
|
|
///
|
|
/// The GPU mesh preprocessing shader writes to this buffer, and the
|
|
/// indirect parameters building shader reads this buffer to construct the
|
|
/// indirect draw parameters.
|
|
#[inline]
|
|
pub fn gpu_metadata_buffer(&self) -> Option<&Buffer> {
|
|
self.gpu_metadata.buffer()
|
|
}
|
|
|
|
/// Returns the GPU buffer that holds the number of indirect draw commands
|
|
/// for each phase of each view.
|
|
///
|
|
/// The indirect parameters building shader writes to this buffer, and the
|
|
/// `multi_draw_indirect_count` command reads from it in order to know how
|
|
/// many indirect draw commands to process.
|
|
#[inline]
|
|
pub fn batch_sets_buffer(&self) -> Option<&Buffer> {
|
|
self.batch_sets.buffer()
|
|
}
|
|
|
|
/// Reserves space for `count` new batches.
|
|
///
|
|
/// This allocates in the [`Self::cpu_metadata`], [`Self::gpu_metadata`],
|
|
/// and [`Self::data`] buffers.
|
|
fn allocate(&mut self, count: u32) -> u32 {
|
|
let length = self.data.len();
|
|
self.cpu_metadata.reserve_internal(count as usize);
|
|
self.gpu_metadata.add_multiple(count as usize);
|
|
for _ in 0..count {
|
|
self.data.add();
|
|
self.cpu_metadata
|
|
.push(IndirectParametersCpuMetadata::default());
|
|
}
|
|
length as u32
|
|
}
|
|
|
|
/// Sets the [`IndirectParametersCpuMetadata`] for the mesh at the given
|
|
/// index.
|
|
pub fn set(&mut self, index: u32, value: IndirectParametersCpuMetadata) {
|
|
self.cpu_metadata.set(index, value);
|
|
}
|
|
|
|
/// Returns the number of batches corresponding to meshes that are currently
|
|
/// allocated.
|
|
#[inline]
|
|
pub fn batch_count(&self) -> usize {
|
|
self.data.len()
|
|
}
|
|
|
|
/// Clears out all the buffers in preparation for a new frame.
|
|
pub fn clear(&mut self) {
|
|
self.data.clear();
|
|
self.cpu_metadata.clear();
|
|
self.gpu_metadata.clear();
|
|
self.batch_sets.clear();
|
|
}
|
|
}
|
|
|
|
impl Default for IndirectParametersBuffers {
|
|
fn default() -> Self {
|
|
// By default, we don't allow GPU indirect parameter mapping, since
|
|
// that's a debugging option.
|
|
Self::new(false)
|
|
}
|
|
}
|
|
|
|
impl FromWorld for GpuPreprocessingSupport {
|
|
fn from_world(world: &mut World) -> Self {
|
|
let adapter = world.resource::<RenderAdapter>();
|
|
let device = world.resource::<RenderDevice>();
|
|
|
|
// Filter some Qualcomm devices on Android as they crash when using GPU
|
|
// preprocessing.
|
|
// We filter out Adreno 730 and earlier GPUs (except 720, as it's newer
|
|
// than 730).
|
|
fn is_non_supported_android_device(adapter: &RenderAdapter) -> bool {
|
|
crate::get_adreno_model(adapter).is_some_and(|model| model != 720 && model <= 730)
|
|
}
|
|
|
|
let feature_support = device.features().contains(
|
|
Features::INDIRECT_FIRST_INSTANCE
|
|
| Features::MULTI_DRAW_INDIRECT
|
|
| Features::PUSH_CONSTANTS,
|
|
);
|
|
// Depth downsampling for occlusion culling requires 12 textures
|
|
let limit_support = device.limits().max_storage_textures_per_shader_stage >= 12;
|
|
let downlevel_support = adapter.get_downlevel_capabilities().flags.contains(
|
|
DownlevelFlags::VERTEX_AND_INSTANCE_INDEX_RESPECTS_RESPECTIVE_FIRST_VALUE_IN_INDIRECT_DRAW
|
|
);
|
|
|
|
let max_supported_mode = if device.limits().max_compute_workgroup_size_x == 0
|
|
|| is_non_supported_android_device(adapter)
|
|
{
|
|
GpuPreprocessingMode::None
|
|
} else if !(feature_support && limit_support && downlevel_support) {
|
|
GpuPreprocessingMode::PreprocessingOnly
|
|
} else {
|
|
GpuPreprocessingMode::Culling
|
|
};
|
|
|
|
GpuPreprocessingSupport { max_supported_mode }
|
|
}
|
|
}
|
|
|
|
impl<BD, BDI> BatchedInstanceBuffers<BD, BDI>
|
|
where
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
BDI: Pod + Sync + Send + Default + 'static,
|
|
{
|
|
/// Creates new buffers.
|
|
pub fn new() -> Self {
|
|
Self::default()
|
|
}
|
|
|
|
/// Clears out the buffers in preparation for a new frame.
|
|
pub fn clear(&mut self) {
|
|
for phase_instance_buffer in self.phase_instance_buffers.values_mut() {
|
|
phase_instance_buffer.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<BD> UntypedPhaseBatchedInstanceBuffers<BD>
|
|
where
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
{
|
|
pub fn new() -> Self {
|
|
UntypedPhaseBatchedInstanceBuffers {
|
|
data_buffer: UninitBufferVec::new(BufferUsages::STORAGE),
|
|
work_item_buffers: HashMap::default(),
|
|
late_indexed_indirect_parameters_buffer: RawBufferVec::new(
|
|
BufferUsages::STORAGE | BufferUsages::INDIRECT,
|
|
),
|
|
late_non_indexed_indirect_parameters_buffer: RawBufferVec::new(
|
|
BufferUsages::STORAGE | BufferUsages::INDIRECT,
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Returns the binding of the buffer that contains the per-instance data.
|
|
///
|
|
/// This buffer needs to be filled in via a compute shader.
|
|
pub fn instance_data_binding(&self) -> Option<BindingResource> {
|
|
self.data_buffer
|
|
.buffer()
|
|
.map(|buffer| buffer.as_entire_binding())
|
|
}
|
|
|
|
/// Clears out the buffers in preparation for a new frame.
|
|
pub fn clear(&mut self) {
|
|
self.data_buffer.clear();
|
|
self.late_indexed_indirect_parameters_buffer.clear();
|
|
self.late_non_indexed_indirect_parameters_buffer.clear();
|
|
|
|
// Clear each individual set of buffers, but don't depopulate the hash
|
|
// table. We want to avoid reallocating these vectors every frame.
|
|
for view_work_item_buffers in self.work_item_buffers.values_mut() {
|
|
view_work_item_buffers.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<BD> Default for UntypedPhaseBatchedInstanceBuffers<BD>
|
|
where
|
|
BD: GpuArrayBufferable + Sync + Send + 'static,
|
|
{
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
/// Information about a render batch that we're building up during a sorted
|
|
/// render phase.
|
|
struct SortedRenderBatch<F>
|
|
where
|
|
F: GetBatchData,
|
|
{
|
|
/// The index of the first phase item in this batch in the list of phase
|
|
/// items.
|
|
phase_item_start_index: u32,
|
|
|
|
/// The index of the first instance in this batch in the instance buffer.
|
|
instance_start_index: u32,
|
|
|
|
/// True if the mesh in question has an index buffer; false otherwise.
|
|
indexed: bool,
|
|
|
|
/// The index of the indirect parameters for this batch in the
|
|
/// [`IndirectParametersBuffers`].
|
|
///
|
|
/// If CPU culling is being used, then this will be `None`.
|
|
indirect_parameters_index: Option<NonMaxU32>,
|
|
|
|
/// Metadata that can be used to determine whether an instance can be placed
|
|
/// into this batch.
|
|
///
|
|
/// If `None`, the item inside is unbatchable.
|
|
meta: Option<BatchMeta<F::CompareData>>,
|
|
}
|
|
|
|
impl<F> SortedRenderBatch<F>
|
|
where
|
|
F: GetBatchData,
|
|
{
|
|
/// Finalizes this batch and updates the [`SortedRenderPhase`] with the
|
|
/// appropriate indices.
|
|
///
|
|
/// `instance_end_index` is the index of the last instance in this batch
|
|
/// plus one.
|
|
fn flush<I>(
|
|
self,
|
|
instance_end_index: u32,
|
|
phase: &mut SortedRenderPhase<I>,
|
|
phase_indirect_parameters_buffers: &mut UntypedPhaseIndirectParametersBuffers,
|
|
) where
|
|
I: CachedRenderPipelinePhaseItem + SortedPhaseItem,
|
|
{
|
|
let (batch_range, batch_extra_index) =
|
|
phase.items[self.phase_item_start_index as usize].batch_range_and_extra_index_mut();
|
|
*batch_range = self.instance_start_index..instance_end_index;
|
|
*batch_extra_index = match self.indirect_parameters_index {
|
|
Some(indirect_parameters_index) => PhaseItemExtraIndex::IndirectParametersIndex {
|
|
range: u32::from(indirect_parameters_index)
|
|
..(u32::from(indirect_parameters_index) + 1),
|
|
batch_set_index: None,
|
|
},
|
|
None => PhaseItemExtraIndex::None,
|
|
};
|
|
if let Some(indirect_parameters_index) = self.indirect_parameters_index {
|
|
phase_indirect_parameters_buffers
|
|
.add_batch_set(self.indexed, indirect_parameters_index.into());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A system that runs early in extraction and clears out all the
|
|
/// [`BatchedInstanceBuffers`] for the frame.
|
|
///
|
|
/// We have to run this during extraction because, if GPU preprocessing is in
|
|
/// use, the extraction phase will write to the mesh input uniform buffers
|
|
/// directly, so the buffers need to be cleared before then.
|
|
pub fn clear_batched_gpu_instance_buffers<GFBD>(
|
|
gpu_batched_instance_buffers: Option<
|
|
ResMut<BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>>,
|
|
>,
|
|
) where
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
// Don't clear the entire table, because that would delete the buffers, and
|
|
// we want to reuse those allocations.
|
|
if let Some(mut gpu_batched_instance_buffers) = gpu_batched_instance_buffers {
|
|
gpu_batched_instance_buffers.clear();
|
|
}
|
|
}
|
|
|
|
/// A system that removes GPU preprocessing work item buffers that correspond to
|
|
/// deleted [`ExtractedView`]s.
|
|
///
|
|
/// This is a separate system from [`clear_batched_gpu_instance_buffers`]
|
|
/// because [`ExtractedView`]s aren't created until after the extraction phase
|
|
/// is completed.
|
|
pub fn delete_old_work_item_buffers<GFBD>(
|
|
mut gpu_batched_instance_buffers: ResMut<
|
|
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
|
|
>,
|
|
extracted_views: Query<&ExtractedView>,
|
|
) where
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
let retained_view_entities: HashSet<_> = extracted_views
|
|
.iter()
|
|
.map(|extracted_view| extracted_view.retained_view_entity)
|
|
.collect();
|
|
for phase_instance_buffers in gpu_batched_instance_buffers
|
|
.phase_instance_buffers
|
|
.values_mut()
|
|
{
|
|
phase_instance_buffers
|
|
.work_item_buffers
|
|
.retain(|retained_view_entity, _| {
|
|
retained_view_entities.contains(retained_view_entity)
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Batch the items in a sorted render phase, when GPU instance buffer building
|
|
/// is in use. This means comparing metadata needed to draw each phase item and
|
|
/// trying to combine the draws into a batch.
|
|
pub fn batch_and_prepare_sorted_render_phase<I, GFBD>(
|
|
mut phase_batched_instance_buffers: ResMut<PhaseBatchedInstanceBuffers<I, GFBD::BufferData>>,
|
|
mut phase_indirect_parameters_buffers: ResMut<PhaseIndirectParametersBuffers<I>>,
|
|
mut sorted_render_phases: ResMut<ViewSortedRenderPhases<I>>,
|
|
mut views: Query<(
|
|
&ExtractedView,
|
|
Has<NoIndirectDrawing>,
|
|
Has<OcclusionCulling>,
|
|
)>,
|
|
system_param_item: StaticSystemParam<GFBD::Param>,
|
|
) where
|
|
I: CachedRenderPipelinePhaseItem + SortedPhaseItem,
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
// We only process GPU-built batch data in this function.
|
|
let UntypedPhaseBatchedInstanceBuffers {
|
|
ref mut data_buffer,
|
|
ref mut work_item_buffers,
|
|
ref mut late_indexed_indirect_parameters_buffer,
|
|
ref mut late_non_indexed_indirect_parameters_buffer,
|
|
} = phase_batched_instance_buffers.buffers;
|
|
|
|
for (extracted_view, no_indirect_drawing, gpu_occlusion_culling) in &mut views {
|
|
let Some(phase) = sorted_render_phases.get_mut(&extracted_view.retained_view_entity) else {
|
|
continue;
|
|
};
|
|
|
|
// Create the work item buffer if necessary.
|
|
let work_item_buffer = get_or_create_work_item_buffer::<I>(
|
|
work_item_buffers,
|
|
extracted_view.retained_view_entity,
|
|
no_indirect_drawing,
|
|
gpu_occlusion_culling,
|
|
);
|
|
|
|
// Initialize those work item buffers in preparation for this new frame.
|
|
init_work_item_buffers(
|
|
work_item_buffer,
|
|
late_indexed_indirect_parameters_buffer,
|
|
late_non_indexed_indirect_parameters_buffer,
|
|
);
|
|
|
|
// Walk through the list of phase items, building up batches as we go.
|
|
let mut batch: Option<SortedRenderBatch<GFBD>> = None;
|
|
|
|
for current_index in 0..phase.items.len() {
|
|
// Get the index of the input data, and comparison metadata, for
|
|
// this entity.
|
|
let item = &phase.items[current_index];
|
|
let entity = item.main_entity();
|
|
let item_is_indexed = item.indexed();
|
|
let current_batch_input_index =
|
|
GFBD::get_index_and_compare_data(&system_param_item, entity);
|
|
|
|
// Unpack that index and metadata. Note that it's possible for index
|
|
// and/or metadata to not be present, which signifies that this
|
|
// entity is unbatchable. In that case, we break the batch here.
|
|
// If the index isn't present the item is not part of this pipeline and so will be skipped.
|
|
let Some((current_input_index, current_meta)) = current_batch_input_index else {
|
|
// Break a batch if we need to.
|
|
if let Some(batch) = batch.take() {
|
|
batch.flush(
|
|
data_buffer.len() as u32,
|
|
phase,
|
|
&mut phase_indirect_parameters_buffers.buffers,
|
|
);
|
|
}
|
|
|
|
continue;
|
|
};
|
|
let current_meta =
|
|
current_meta.map(|meta| BatchMeta::new(&phase.items[current_index], meta));
|
|
|
|
// Determine if this entity can be included in the batch we're
|
|
// building up.
|
|
let can_batch = batch.as_ref().is_some_and(|batch| {
|
|
// `None` for metadata indicates that the items are unbatchable.
|
|
match (¤t_meta, &batch.meta) {
|
|
(Some(current_meta), Some(batch_meta)) => current_meta == batch_meta,
|
|
(_, _) => false,
|
|
}
|
|
});
|
|
|
|
// Make space in the data buffer for this instance.
|
|
let output_index = data_buffer.add() as u32;
|
|
|
|
// If we can't batch, break the existing batch and make a new one.
|
|
if !can_batch {
|
|
// Break a batch if we need to.
|
|
if let Some(batch) = batch.take() {
|
|
batch.flush(
|
|
output_index,
|
|
phase,
|
|
&mut phase_indirect_parameters_buffers.buffers,
|
|
);
|
|
}
|
|
|
|
let indirect_parameters_index = if no_indirect_drawing {
|
|
None
|
|
} else if item_is_indexed {
|
|
Some(
|
|
phase_indirect_parameters_buffers
|
|
.buffers
|
|
.indexed
|
|
.allocate(1),
|
|
)
|
|
} else {
|
|
Some(
|
|
phase_indirect_parameters_buffers
|
|
.buffers
|
|
.non_indexed
|
|
.allocate(1),
|
|
)
|
|
};
|
|
|
|
// Start a new batch.
|
|
if let Some(indirect_parameters_index) = indirect_parameters_index {
|
|
GFBD::write_batch_indirect_parameters_metadata(
|
|
item_is_indexed,
|
|
output_index,
|
|
None,
|
|
&mut phase_indirect_parameters_buffers.buffers,
|
|
indirect_parameters_index,
|
|
);
|
|
};
|
|
|
|
batch = Some(SortedRenderBatch {
|
|
phase_item_start_index: current_index as u32,
|
|
instance_start_index: output_index,
|
|
indexed: item_is_indexed,
|
|
indirect_parameters_index: indirect_parameters_index.and_then(NonMaxU32::new),
|
|
meta: current_meta,
|
|
});
|
|
}
|
|
|
|
// Add a new preprocessing work item so that the preprocessing
|
|
// shader will copy the per-instance data over.
|
|
if let Some(batch) = batch.as_ref() {
|
|
work_item_buffer.push(
|
|
item_is_indexed,
|
|
PreprocessWorkItem {
|
|
input_index: current_input_index.into(),
|
|
output_or_indirect_parameters_index: match (
|
|
no_indirect_drawing,
|
|
batch.indirect_parameters_index,
|
|
) {
|
|
(true, _) => output_index,
|
|
(false, Some(indirect_parameters_index)) => {
|
|
indirect_parameters_index.into()
|
|
}
|
|
(false, None) => 0,
|
|
},
|
|
},
|
|
);
|
|
}
|
|
}
|
|
|
|
// Flush the final batch if necessary.
|
|
if let Some(batch) = batch.take() {
|
|
batch.flush(
|
|
data_buffer.len() as u32,
|
|
phase,
|
|
&mut phase_indirect_parameters_buffers.buffers,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Creates batches for a render phase that uses bins.
|
|
pub fn batch_and_prepare_binned_render_phase<BPI, GFBD>(
|
|
mut phase_batched_instance_buffers: ResMut<PhaseBatchedInstanceBuffers<BPI, GFBD::BufferData>>,
|
|
phase_indirect_parameters_buffers: ResMut<PhaseIndirectParametersBuffers<BPI>>,
|
|
mut binned_render_phases: ResMut<ViewBinnedRenderPhases<BPI>>,
|
|
mut views: Query<
|
|
(
|
|
&ExtractedView,
|
|
Has<NoIndirectDrawing>,
|
|
Has<OcclusionCulling>,
|
|
),
|
|
With<ExtractedView>,
|
|
>,
|
|
param: StaticSystemParam<GFBD::Param>,
|
|
) where
|
|
BPI: BinnedPhaseItem,
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
let system_param_item = param.into_inner();
|
|
|
|
let phase_indirect_parameters_buffers = phase_indirect_parameters_buffers.into_inner();
|
|
|
|
let UntypedPhaseBatchedInstanceBuffers {
|
|
ref mut data_buffer,
|
|
ref mut work_item_buffers,
|
|
ref mut late_indexed_indirect_parameters_buffer,
|
|
ref mut late_non_indexed_indirect_parameters_buffer,
|
|
} = phase_batched_instance_buffers.buffers;
|
|
|
|
for (extracted_view, no_indirect_drawing, gpu_occlusion_culling) in &mut views {
|
|
let Some(phase) = binned_render_phases.get_mut(&extracted_view.retained_view_entity) else {
|
|
continue;
|
|
};
|
|
|
|
// Create the work item buffer if necessary; otherwise, just mark it as
|
|
// used this frame.
|
|
let work_item_buffer = get_or_create_work_item_buffer::<BPI>(
|
|
work_item_buffers,
|
|
extracted_view.retained_view_entity,
|
|
no_indirect_drawing,
|
|
gpu_occlusion_culling,
|
|
);
|
|
|
|
// Initialize those work item buffers in preparation for this new frame.
|
|
init_work_item_buffers(
|
|
work_item_buffer,
|
|
late_indexed_indirect_parameters_buffer,
|
|
late_non_indexed_indirect_parameters_buffer,
|
|
);
|
|
|
|
// Prepare multidrawables.
|
|
|
|
if let (
|
|
&mut BinnedRenderPhaseBatchSets::MultidrawIndirect(ref mut batch_sets),
|
|
&mut PreprocessWorkItemBuffers::Indirect {
|
|
indexed: ref mut indexed_work_item_buffer,
|
|
non_indexed: ref mut non_indexed_work_item_buffer,
|
|
gpu_occlusion_culling: ref mut gpu_occlusion_culling_buffers,
|
|
},
|
|
) = (&mut phase.batch_sets, &mut *work_item_buffer)
|
|
{
|
|
let mut output_index = data_buffer.len() as u32;
|
|
|
|
// Initialize the state for both indexed and non-indexed meshes.
|
|
let mut indexed_preparer: MultidrawableBatchSetPreparer<BPI, GFBD> =
|
|
MultidrawableBatchSetPreparer::new(
|
|
phase_indirect_parameters_buffers.buffers.batch_count(true) as u32,
|
|
phase_indirect_parameters_buffers
|
|
.buffers
|
|
.indexed
|
|
.batch_sets
|
|
.len() as u32,
|
|
);
|
|
let mut non_indexed_preparer: MultidrawableBatchSetPreparer<BPI, GFBD> =
|
|
MultidrawableBatchSetPreparer::new(
|
|
phase_indirect_parameters_buffers.buffers.batch_count(false) as u32,
|
|
phase_indirect_parameters_buffers
|
|
.buffers
|
|
.non_indexed
|
|
.batch_sets
|
|
.len() as u32,
|
|
);
|
|
|
|
// Prepare each batch set.
|
|
for (batch_set_key, bins) in &phase.multidrawable_meshes {
|
|
if batch_set_key.indexed() {
|
|
indexed_preparer.prepare_multidrawable_binned_batch_set(
|
|
bins,
|
|
&mut output_index,
|
|
data_buffer,
|
|
indexed_work_item_buffer,
|
|
&mut phase_indirect_parameters_buffers.buffers.indexed,
|
|
batch_sets,
|
|
);
|
|
} else {
|
|
non_indexed_preparer.prepare_multidrawable_binned_batch_set(
|
|
bins,
|
|
&mut output_index,
|
|
data_buffer,
|
|
non_indexed_work_item_buffer,
|
|
&mut phase_indirect_parameters_buffers.buffers.non_indexed,
|
|
batch_sets,
|
|
);
|
|
}
|
|
}
|
|
|
|
// Reserve space in the occlusion culling buffers, if necessary.
|
|
if let Some(gpu_occlusion_culling_buffers) = gpu_occlusion_culling_buffers {
|
|
gpu_occlusion_culling_buffers
|
|
.late_indexed
|
|
.add_multiple(indexed_preparer.work_item_count);
|
|
gpu_occlusion_culling_buffers
|
|
.late_non_indexed
|
|
.add_multiple(non_indexed_preparer.work_item_count);
|
|
}
|
|
}
|
|
|
|
// Prepare batchables.
|
|
|
|
for (key, bin) in &phase.batchable_meshes {
|
|
let mut batch: Option<BinnedRenderPhaseBatch> = None;
|
|
for (&main_entity, &input_index) in bin.entities() {
|
|
let output_index = data_buffer.add() as u32;
|
|
|
|
match batch {
|
|
Some(ref mut batch) => {
|
|
batch.instance_range.end = output_index + 1;
|
|
|
|
// Append to the current batch.
|
|
//
|
|
// If we're in indirect mode, then we write the first
|
|
// output index of this batch, so that we have a
|
|
// tightly-packed buffer if GPU culling discards some of
|
|
// the instances. Otherwise, we can just write the
|
|
// output index directly.
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: *input_index,
|
|
output_or_indirect_parameters_index: match (
|
|
no_indirect_drawing,
|
|
&batch.extra_index,
|
|
) {
|
|
(true, _) => output_index,
|
|
(
|
|
false,
|
|
PhaseItemExtraIndex::IndirectParametersIndex {
|
|
range: indirect_parameters_range,
|
|
..
|
|
},
|
|
) => indirect_parameters_range.start,
|
|
(false, &PhaseItemExtraIndex::DynamicOffset(_))
|
|
| (false, &PhaseItemExtraIndex::None) => 0,
|
|
},
|
|
},
|
|
);
|
|
}
|
|
|
|
None if !no_indirect_drawing => {
|
|
// Start a new batch, in indirect mode.
|
|
let indirect_parameters_index = phase_indirect_parameters_buffers
|
|
.buffers
|
|
.allocate(key.0.indexed(), 1);
|
|
let batch_set_index = phase_indirect_parameters_buffers
|
|
.buffers
|
|
.get_next_batch_set_index(key.0.indexed());
|
|
|
|
GFBD::write_batch_indirect_parameters_metadata(
|
|
key.0.indexed(),
|
|
output_index,
|
|
batch_set_index,
|
|
&mut phase_indirect_parameters_buffers.buffers,
|
|
indirect_parameters_index,
|
|
);
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: *input_index,
|
|
output_or_indirect_parameters_index: indirect_parameters_index,
|
|
},
|
|
);
|
|
batch = Some(BinnedRenderPhaseBatch {
|
|
representative_entity: (Entity::PLACEHOLDER, main_entity),
|
|
instance_range: output_index..output_index + 1,
|
|
extra_index: PhaseItemExtraIndex::IndirectParametersIndex {
|
|
range: indirect_parameters_index..(indirect_parameters_index + 1),
|
|
batch_set_index: None,
|
|
},
|
|
});
|
|
}
|
|
|
|
None => {
|
|
// Start a new batch, in direct mode.
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: *input_index,
|
|
output_or_indirect_parameters_index: output_index,
|
|
},
|
|
);
|
|
batch = Some(BinnedRenderPhaseBatch {
|
|
representative_entity: (Entity::PLACEHOLDER, main_entity),
|
|
instance_range: output_index..output_index + 1,
|
|
extra_index: PhaseItemExtraIndex::None,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
if let Some(batch) = batch {
|
|
match phase.batch_sets {
|
|
BinnedRenderPhaseBatchSets::DynamicUniforms(_) => {
|
|
error!("Dynamic uniform batch sets shouldn't be used here");
|
|
}
|
|
BinnedRenderPhaseBatchSets::Direct(ref mut vec) => {
|
|
vec.push(batch);
|
|
}
|
|
BinnedRenderPhaseBatchSets::MultidrawIndirect(ref mut vec) => {
|
|
// The Bevy renderer will never mark a mesh as batchable
|
|
// but not multidrawable if multidraw is in use.
|
|
// However, custom render pipelines might do so, such as
|
|
// the `specialized_mesh_pipeline` example.
|
|
vec.push(BinnedRenderPhaseBatchSet {
|
|
first_batch: batch,
|
|
batch_count: 1,
|
|
bin_key: key.1.clone(),
|
|
index: phase_indirect_parameters_buffers
|
|
.buffers
|
|
.batch_set_count(key.0.indexed())
|
|
as u32,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prepare unbatchables.
|
|
for (key, unbatchables) in &mut phase.unbatchable_meshes {
|
|
// Allocate the indirect parameters if necessary.
|
|
let mut indirect_parameters_offset = if no_indirect_drawing {
|
|
None
|
|
} else if key.0.indexed() {
|
|
Some(
|
|
phase_indirect_parameters_buffers
|
|
.buffers
|
|
.indexed
|
|
.allocate(unbatchables.entities.len() as u32),
|
|
)
|
|
} else {
|
|
Some(
|
|
phase_indirect_parameters_buffers
|
|
.buffers
|
|
.non_indexed
|
|
.allocate(unbatchables.entities.len() as u32),
|
|
)
|
|
};
|
|
|
|
for main_entity in unbatchables.entities.keys() {
|
|
let Some(input_index) = GFBD::get_binned_index(&system_param_item, *main_entity)
|
|
else {
|
|
continue;
|
|
};
|
|
let output_index = data_buffer.add() as u32;
|
|
|
|
if let Some(ref mut indirect_parameters_index) = indirect_parameters_offset {
|
|
// We're in indirect mode, so add an indirect parameters
|
|
// index.
|
|
GFBD::write_batch_indirect_parameters_metadata(
|
|
key.0.indexed(),
|
|
output_index,
|
|
None,
|
|
&mut phase_indirect_parameters_buffers.buffers,
|
|
*indirect_parameters_index,
|
|
);
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_or_indirect_parameters_index: *indirect_parameters_index,
|
|
},
|
|
);
|
|
unbatchables
|
|
.buffer_indices
|
|
.add(UnbatchableBinnedEntityIndices {
|
|
instance_index: *indirect_parameters_index,
|
|
extra_index: PhaseItemExtraIndex::IndirectParametersIndex {
|
|
range: *indirect_parameters_index..(*indirect_parameters_index + 1),
|
|
batch_set_index: None,
|
|
},
|
|
});
|
|
phase_indirect_parameters_buffers
|
|
.buffers
|
|
.add_batch_set(key.0.indexed(), *indirect_parameters_index);
|
|
*indirect_parameters_index += 1;
|
|
} else {
|
|
work_item_buffer.push(
|
|
key.0.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_or_indirect_parameters_index: output_index,
|
|
},
|
|
);
|
|
unbatchables
|
|
.buffer_indices
|
|
.add(UnbatchableBinnedEntityIndices {
|
|
instance_index: output_index,
|
|
extra_index: PhaseItemExtraIndex::None,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The state that [`batch_and_prepare_binned_render_phase`] uses to construct
|
|
/// multidrawable batch sets.
|
|
///
|
|
/// The [`batch_and_prepare_binned_render_phase`] system maintains two of these:
|
|
/// one for indexed meshes and one for non-indexed meshes.
|
|
struct MultidrawableBatchSetPreparer<BPI, GFBD>
|
|
where
|
|
BPI: BinnedPhaseItem,
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
/// The offset in the indirect parameters buffer at which the next indirect
|
|
/// parameters will be written.
|
|
indirect_parameters_index: u32,
|
|
/// The number of batch sets we've built so far for this mesh class.
|
|
batch_set_index: u32,
|
|
/// The number of work items we've emitted so far for this mesh class.
|
|
work_item_count: usize,
|
|
phantom: PhantomData<(BPI, GFBD)>,
|
|
}
|
|
|
|
impl<BPI, GFBD> MultidrawableBatchSetPreparer<BPI, GFBD>
|
|
where
|
|
BPI: BinnedPhaseItem,
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
/// Creates a new [`MultidrawableBatchSetPreparer`] that will start writing
|
|
/// indirect parameters and batch sets at the given indices.
|
|
#[inline]
|
|
fn new(initial_indirect_parameters_index: u32, initial_batch_set_index: u32) -> Self {
|
|
MultidrawableBatchSetPreparer {
|
|
indirect_parameters_index: initial_indirect_parameters_index,
|
|
batch_set_index: initial_batch_set_index,
|
|
work_item_count: 0,
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
/// Creates batch sets and writes the GPU data needed to draw all visible
|
|
/// entities of one mesh class in the given batch set.
|
|
///
|
|
/// The *mesh class* represents whether the mesh has indices or not.
|
|
#[inline]
|
|
fn prepare_multidrawable_binned_batch_set<IP>(
|
|
&mut self,
|
|
bins: &IndexMap<BPI::BinKey, RenderBin>,
|
|
output_index: &mut u32,
|
|
data_buffer: &mut UninitBufferVec<GFBD::BufferData>,
|
|
indexed_work_item_buffer: &mut RawBufferVec<PreprocessWorkItem>,
|
|
mesh_class_buffers: &mut MeshClassIndirectParametersBuffers<IP>,
|
|
batch_sets: &mut Vec<BinnedRenderPhaseBatchSet<BPI::BinKey>>,
|
|
) where
|
|
IP: Clone + ShaderSize + WriteInto,
|
|
{
|
|
let current_indexed_batch_set_index = self.batch_set_index;
|
|
let current_output_index = *output_index;
|
|
|
|
let indirect_parameters_base = self.indirect_parameters_index;
|
|
|
|
// We're going to write the first entity into the batch set. Do this
|
|
// here so that we can preload the bin into cache as a side effect.
|
|
let Some((first_bin_key, first_bin)) = bins.iter().next() else {
|
|
return;
|
|
};
|
|
let first_bin_len = first_bin.entities().len();
|
|
let first_bin_entity = first_bin
|
|
.entities()
|
|
.keys()
|
|
.next()
|
|
.copied()
|
|
.unwrap_or(MainEntity::from(Entity::PLACEHOLDER));
|
|
|
|
// Traverse the batch set, processing each bin.
|
|
for bin in bins.values() {
|
|
// Record the first output index for this batch, as well as its own
|
|
// index.
|
|
mesh_class_buffers
|
|
.cpu_metadata
|
|
.push(IndirectParametersCpuMetadata {
|
|
base_output_index: *output_index,
|
|
batch_set_index: self.batch_set_index,
|
|
});
|
|
|
|
// Traverse the bin, pushing `PreprocessWorkItem`s for each entity
|
|
// within it. This is a hot loop, so make it as fast as possible.
|
|
for &input_index in bin.entities().values() {
|
|
indexed_work_item_buffer.push(PreprocessWorkItem {
|
|
input_index: *input_index,
|
|
output_or_indirect_parameters_index: self.indirect_parameters_index,
|
|
});
|
|
}
|
|
|
|
// Reserve space for the appropriate number of entities in the data
|
|
// buffer. Also, advance the output index and work item count.
|
|
let bin_entity_count = bin.entities().len();
|
|
data_buffer.add_multiple(bin_entity_count);
|
|
*output_index += bin_entity_count as u32;
|
|
self.work_item_count += bin_entity_count;
|
|
|
|
self.indirect_parameters_index += 1;
|
|
}
|
|
|
|
// Reserve space for the bins in this batch set in the GPU buffers.
|
|
let bin_count = bins.len();
|
|
mesh_class_buffers.gpu_metadata.add_multiple(bin_count);
|
|
mesh_class_buffers.data.add_multiple(bin_count);
|
|
|
|
// Write the information the GPU will need about this batch set.
|
|
mesh_class_buffers.batch_sets.push(IndirectBatchSet {
|
|
indirect_parameters_base,
|
|
indirect_parameters_count: 0,
|
|
});
|
|
|
|
self.batch_set_index += 1;
|
|
|
|
// Record the batch set. The render node later processes this record to
|
|
// render the batches.
|
|
batch_sets.push(BinnedRenderPhaseBatchSet {
|
|
first_batch: BinnedRenderPhaseBatch {
|
|
representative_entity: (Entity::PLACEHOLDER, first_bin_entity),
|
|
instance_range: current_output_index..(current_output_index + first_bin_len as u32),
|
|
extra_index: PhaseItemExtraIndex::maybe_indirect_parameters_index(NonMaxU32::new(
|
|
indirect_parameters_base,
|
|
)),
|
|
},
|
|
bin_key: (*first_bin_key).clone(),
|
|
batch_count: self.indirect_parameters_index - indirect_parameters_base,
|
|
index: current_indexed_batch_set_index,
|
|
});
|
|
}
|
|
}
|
|
|
|
/// A system that gathers up the per-phase GPU buffers and inserts them into the
|
|
/// [`BatchedInstanceBuffers`] and [`IndirectParametersBuffers`] tables.
|
|
///
|
|
/// This runs after the [`batch_and_prepare_binned_render_phase`] or
|
|
/// [`batch_and_prepare_sorted_render_phase`] systems. It takes the per-phase
|
|
/// [`PhaseBatchedInstanceBuffers`] and [`PhaseIndirectParametersBuffers`]
|
|
/// resources and inserts them into the global [`BatchedInstanceBuffers`] and
|
|
/// [`IndirectParametersBuffers`] tables.
|
|
///
|
|
/// This system exists so that the [`batch_and_prepare_binned_render_phase`] and
|
|
/// [`batch_and_prepare_sorted_render_phase`] can run in parallel with one
|
|
/// another. If those two systems manipulated [`BatchedInstanceBuffers`] and
|
|
/// [`IndirectParametersBuffers`] directly, then they wouldn't be able to run in
|
|
/// parallel.
|
|
pub fn collect_buffers_for_phase<PI, GFBD>(
|
|
mut phase_batched_instance_buffers: ResMut<PhaseBatchedInstanceBuffers<PI, GFBD::BufferData>>,
|
|
mut phase_indirect_parameters_buffers: ResMut<PhaseIndirectParametersBuffers<PI>>,
|
|
mut batched_instance_buffers: ResMut<
|
|
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
|
|
>,
|
|
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
|
|
) where
|
|
PI: PhaseItem,
|
|
GFBD: GetFullBatchData + Send + Sync + 'static,
|
|
{
|
|
// Insert the `PhaseBatchedInstanceBuffers` into the global table. Replace
|
|
// the contents of the per-phase resource with the old batched instance
|
|
// buffers in order to reuse allocations.
|
|
let untyped_phase_batched_instance_buffers =
|
|
mem::take(&mut phase_batched_instance_buffers.buffers);
|
|
if let Some(mut old_untyped_phase_batched_instance_buffers) = batched_instance_buffers
|
|
.phase_instance_buffers
|
|
.insert(TypeId::of::<PI>(), untyped_phase_batched_instance_buffers)
|
|
{
|
|
old_untyped_phase_batched_instance_buffers.clear();
|
|
phase_batched_instance_buffers.buffers = old_untyped_phase_batched_instance_buffers;
|
|
}
|
|
|
|
// Insert the `PhaseIndirectParametersBuffers` into the global table.
|
|
// Replace the contents of the per-phase resource with the old indirect
|
|
// parameters buffers in order to reuse allocations.
|
|
let untyped_phase_indirect_parameters_buffers = mem::replace(
|
|
&mut phase_indirect_parameters_buffers.buffers,
|
|
UntypedPhaseIndirectParametersBuffers::new(
|
|
indirect_parameters_buffers.allow_copies_from_indirect_parameter_buffers,
|
|
),
|
|
);
|
|
if let Some(mut old_untyped_phase_indirect_parameters_buffers) = indirect_parameters_buffers
|
|
.insert(
|
|
TypeId::of::<PI>(),
|
|
untyped_phase_indirect_parameters_buffers,
|
|
)
|
|
{
|
|
old_untyped_phase_indirect_parameters_buffers.clear();
|
|
phase_indirect_parameters_buffers.buffers = old_untyped_phase_indirect_parameters_buffers;
|
|
}
|
|
}
|
|
|
|
/// A system that writes all instance buffers to the GPU.
|
|
pub fn write_batched_instance_buffers<GFBD>(
|
|
render_device: Res<RenderDevice>,
|
|
render_queue: Res<RenderQueue>,
|
|
gpu_array_buffer: ResMut<BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>>,
|
|
) where
|
|
GFBD: GetFullBatchData,
|
|
{
|
|
let BatchedInstanceBuffers {
|
|
current_input_buffer,
|
|
previous_input_buffer,
|
|
phase_instance_buffers,
|
|
} = gpu_array_buffer.into_inner();
|
|
|
|
current_input_buffer
|
|
.buffer
|
|
.write_buffer(&render_device, &render_queue);
|
|
previous_input_buffer
|
|
.buffer
|
|
.write_buffer(&render_device, &render_queue);
|
|
|
|
for phase_instance_buffers in phase_instance_buffers.values_mut() {
|
|
let UntypedPhaseBatchedInstanceBuffers {
|
|
ref mut data_buffer,
|
|
ref mut work_item_buffers,
|
|
ref mut late_indexed_indirect_parameters_buffer,
|
|
ref mut late_non_indexed_indirect_parameters_buffer,
|
|
} = *phase_instance_buffers;
|
|
|
|
data_buffer.write_buffer(&render_device);
|
|
late_indexed_indirect_parameters_buffer.write_buffer(&render_device, &render_queue);
|
|
late_non_indexed_indirect_parameters_buffer.write_buffer(&render_device, &render_queue);
|
|
|
|
for phase_work_item_buffers in work_item_buffers.values_mut() {
|
|
match *phase_work_item_buffers {
|
|
PreprocessWorkItemBuffers::Direct(ref mut buffer_vec) => {
|
|
buffer_vec.write_buffer(&render_device, &render_queue);
|
|
}
|
|
PreprocessWorkItemBuffers::Indirect {
|
|
ref mut indexed,
|
|
ref mut non_indexed,
|
|
ref mut gpu_occlusion_culling,
|
|
} => {
|
|
indexed.write_buffer(&render_device, &render_queue);
|
|
non_indexed.write_buffer(&render_device, &render_queue);
|
|
|
|
if let Some(GpuOcclusionCullingWorkItemBuffers {
|
|
ref mut late_indexed,
|
|
ref mut late_non_indexed,
|
|
late_indirect_parameters_indexed_offset: _,
|
|
late_indirect_parameters_non_indexed_offset: _,
|
|
}) = *gpu_occlusion_culling
|
|
{
|
|
if !late_indexed.is_empty() {
|
|
late_indexed.write_buffer(&render_device);
|
|
}
|
|
if !late_non_indexed.is_empty() {
|
|
late_non_indexed.write_buffer(&render_device);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn clear_indirect_parameters_buffers(
|
|
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
|
|
) {
|
|
for phase_indirect_parameters_buffers in indirect_parameters_buffers.values_mut() {
|
|
phase_indirect_parameters_buffers.clear();
|
|
}
|
|
}
|
|
|
|
pub fn write_indirect_parameters_buffers(
|
|
render_device: Res<RenderDevice>,
|
|
render_queue: Res<RenderQueue>,
|
|
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
|
|
) {
|
|
for phase_indirect_parameters_buffers in indirect_parameters_buffers.values_mut() {
|
|
phase_indirect_parameters_buffers
|
|
.indexed
|
|
.data
|
|
.write_buffer(&render_device);
|
|
phase_indirect_parameters_buffers
|
|
.non_indexed
|
|
.data
|
|
.write_buffer(&render_device);
|
|
|
|
phase_indirect_parameters_buffers
|
|
.indexed
|
|
.cpu_metadata
|
|
.write_buffer(&render_device, &render_queue);
|
|
phase_indirect_parameters_buffers
|
|
.non_indexed
|
|
.cpu_metadata
|
|
.write_buffer(&render_device, &render_queue);
|
|
|
|
phase_indirect_parameters_buffers
|
|
.non_indexed
|
|
.gpu_metadata
|
|
.write_buffer(&render_device);
|
|
phase_indirect_parameters_buffers
|
|
.indexed
|
|
.gpu_metadata
|
|
.write_buffer(&render_device);
|
|
|
|
phase_indirect_parameters_buffers
|
|
.indexed
|
|
.batch_sets
|
|
.write_buffer(&render_device, &render_queue);
|
|
phase_indirect_parameters_buffers
|
|
.non_indexed
|
|
.batch_sets
|
|
.write_buffer(&render_device, &render_queue);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn instance_buffer_correct_behavior() {
|
|
let mut instance_buffer = InstanceInputUniformBuffer::new();
|
|
|
|
let index = instance_buffer.add(2);
|
|
instance_buffer.remove(index);
|
|
assert_eq!(instance_buffer.get_unchecked(index), 2);
|
|
assert_eq!(instance_buffer.get(index), None);
|
|
|
|
instance_buffer.add(5);
|
|
assert_eq!(instance_buffer.buffer().len(), 1);
|
|
}
|
|
}
|