bevy/crates/bevy_render/src/extract_component.rs
Alice Cecile 206c7ce219 Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.

# Objective

- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45

## Solution

- [x]  Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests

## Changelog

### Added

- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`

### Removed

- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.

### Changed

- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
-  `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. 
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.

## Migration Guide

- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage`  enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
  - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
  - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
  - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with 
  - `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`

## TODO

- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
  - [x] unbreak directional lights
  - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
  - [x] game menu example shows loading screen and menu simultaneously
  - [x] display settings menu is a blank screen
  - [x] `without_winit` example panics
- [x] ensure all tests pass
  - [x] SubApp doc test fails
  - [x] runs_spawn_local tasks fails
  - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)

## Points of Difficulty and Controversy

**Reviewers, please give feedback on these and look closely**

1.  Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.

## Future Work (ideally before 0.10)

- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00

235 lines
7.4 KiB
Rust

use crate::{
render_resource::{encase::internal::WriteInto, DynamicUniformBuffer, ShaderType},
renderer::{RenderDevice, RenderQueue},
view::ComputedVisibility,
Extract, ExtractSchedule, RenderApp, RenderSet,
};
use bevy_app::{App, Plugin};
use bevy_asset::{Asset, Handle};
use bevy_ecs::{
component::Component,
prelude::*,
query::{QueryItem, ReadOnlyWorldQuery, WorldQuery},
system::lifetimeless::Read,
};
use std::{marker::PhantomData, ops::Deref};
pub use bevy_render_macros::ExtractComponent;
/// Stores the index of a uniform inside of [`ComponentUniforms`].
#[derive(Component)]
pub struct DynamicUniformIndex<C: Component> {
index: u32,
marker: PhantomData<C>,
}
impl<C: Component> DynamicUniformIndex<C> {
#[inline]
pub fn index(&self) -> u32 {
self.index
}
}
/// Describes how a component gets extracted for rendering.
///
/// Therefore the component is transferred from the "app world" into the "render world"
/// in the [`ExtractSchedule`](crate::ExtractSchedule) step.
pub trait ExtractComponent: Component {
/// ECS [`WorldQuery`] to fetch the components to extract.
type Query: WorldQuery + ReadOnlyWorldQuery;
/// Filters the entities with additional constraints.
type Filter: WorldQuery + ReadOnlyWorldQuery;
/// The output from extraction.
///
/// Returning `None` based on the queried item can allow early optimization,
/// for example if there is an `enabled: bool` field on `Self`, or by only accepting
/// values within certain thresholds.
///
/// The output may be different from the queried component.
/// This can be useful for example if only a subset of the fields are useful
/// in the render world.
///
/// `Out` has a [`Bundle`] trait bound instead of a [`Component`] trait bound in order to allow use cases
/// such as tuples of components as output.
type Out: Bundle;
// TODO: https://github.com/rust-lang/rust/issues/29661
// type Out: Component = Self;
/// Defines how the component is transferred into the "render world".
fn extract_component(item: QueryItem<'_, Self::Query>) -> Option<Self::Out>;
}
/// This plugin prepares the components of the corresponding type for the GPU
/// by transforming them into uniforms.
///
/// They can then be accessed from the [`ComponentUniforms`] resource.
/// For referencing the newly created uniforms a [`DynamicUniformIndex`] is inserted
/// for every processed entity.
///
/// Therefore it sets up the [`RenderSet::Prepare`](crate::RenderSet::Prepare) step
/// for the specified [`ExtractComponent`].
pub struct UniformComponentPlugin<C>(PhantomData<fn() -> C>);
impl<C> Default for UniformComponentPlugin<C> {
fn default() -> Self {
Self(PhantomData)
}
}
impl<C: Component + ShaderType + WriteInto + Clone> Plugin for UniformComponentPlugin<C> {
fn build(&self, app: &mut App) {
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.insert_resource(ComponentUniforms::<C>::default())
.add_system(prepare_uniform_components::<C>.in_set(RenderSet::Prepare));
}
}
}
/// Stores all uniforms of the component type.
#[derive(Resource)]
pub struct ComponentUniforms<C: Component + ShaderType> {
uniforms: DynamicUniformBuffer<C>,
}
impl<C: Component + ShaderType> Deref for ComponentUniforms<C> {
type Target = DynamicUniformBuffer<C>;
#[inline]
fn deref(&self) -> &Self::Target {
&self.uniforms
}
}
impl<C: Component + ShaderType> ComponentUniforms<C> {
#[inline]
pub fn uniforms(&self) -> &DynamicUniformBuffer<C> {
&self.uniforms
}
}
impl<C: Component + ShaderType> Default for ComponentUniforms<C> {
fn default() -> Self {
Self {
uniforms: Default::default(),
}
}
}
/// This system prepares all components of the corresponding component type.
/// They are transformed into uniforms and stored in the [`ComponentUniforms`] resource.
fn prepare_uniform_components<C: Component>(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut component_uniforms: ResMut<ComponentUniforms<C>>,
components: Query<(Entity, &C)>,
) where
C: ShaderType + WriteInto + Clone,
{
component_uniforms.uniforms.clear();
let entities = components
.iter()
.map(|(entity, component)| {
(
entity,
DynamicUniformIndex::<C> {
index: component_uniforms.uniforms.push(component.clone()),
marker: PhantomData,
},
)
})
.collect::<Vec<_>>();
commands.insert_or_spawn_batch(entities);
component_uniforms
.uniforms
.write_buffer(&render_device, &render_queue);
}
/// This plugin extracts the components into the "render world".
///
/// Therefore it sets up the [`ExtractSchedule`](crate::ExtractSchedule) step
/// for the specified [`ExtractComponent`].
pub struct ExtractComponentPlugin<C, F = ()> {
only_extract_visible: bool,
marker: PhantomData<fn() -> (C, F)>,
}
impl<C, F> Default for ExtractComponentPlugin<C, F> {
fn default() -> Self {
Self {
only_extract_visible: false,
marker: PhantomData,
}
}
}
impl<C, F> ExtractComponentPlugin<C, F> {
pub fn extract_visible() -> Self {
Self {
only_extract_visible: true,
marker: PhantomData,
}
}
}
impl<C: ExtractComponent> Plugin for ExtractComponentPlugin<C> {
fn build(&self, app: &mut App) {
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
if self.only_extract_visible {
render_app.add_system_to_schedule(ExtractSchedule, extract_visible_components::<C>);
} else {
render_app.add_system_to_schedule(ExtractSchedule, extract_components::<C>);
}
}
}
}
impl<T: Asset> ExtractComponent for Handle<T> {
type Query = Read<Handle<T>>;
type Filter = ();
type Out = Handle<T>;
#[inline]
fn extract_component(handle: QueryItem<'_, Self::Query>) -> Option<Self::Out> {
Some(handle.clone_weak())
}
}
/// This system extracts all components of the corresponding [`ExtractComponent`] type.
fn extract_components<C: ExtractComponent>(
mut commands: Commands,
mut previous_len: Local<usize>,
query: Extract<Query<(Entity, C::Query), C::Filter>>,
) {
let mut values = Vec::with_capacity(*previous_len);
for (entity, query_item) in &query {
if let Some(component) = C::extract_component(query_item) {
values.push((entity, component));
}
}
*previous_len = values.len();
commands.insert_or_spawn_batch(values);
}
/// This system extracts all visible components of the corresponding [`ExtractComponent`] type.
fn extract_visible_components<C: ExtractComponent>(
mut commands: Commands,
mut previous_len: Local<usize>,
query: Extract<Query<(Entity, &ComputedVisibility, C::Query), C::Filter>>,
) {
let mut values = Vec::with_capacity(*previous_len);
for (entity, computed_visibility, query_item) in &query {
if computed_visibility.is_visible() {
if let Some(component) = C::extract_component(query_item) {
values.push((entity, component));
}
}
}
*previous_len = values.len();
commands.insert_or_spawn_batch(values);
}