Merge branch 'main' into typed_rpc_commands

This commit is contained in:
MevLyshkin 2025-07-12 11:20:49 +02:00 committed by GitHub
commit a550b92daf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 85 additions and 55 deletions

View File

@ -15,6 +15,7 @@ use bevy_utils::{default, prelude::DebugName, TypeIdMap};
use core::{
any::{Any, TypeId},
fmt::{Debug, Write},
ops::Range,
};
use fixedbitset::FixedBitSet;
use log::{error, info, warn};
@ -752,11 +753,31 @@ new_key_type! {
pub struct SystemSetKey;
}
/// A node in a [`ScheduleGraph`] with a system or conditions that have not been
/// initialized yet.
///
/// We have to defer initialization of nodes in the graph until we have
/// `&mut World` access, so we store these in a list ([`ScheduleGraph::uninit`])
/// until then. In most cases, initialization occurs upon the first run of the
/// schedule.
enum UninitializedId {
/// A system and its conditions that have not been initialized yet.
System(SystemKey),
/// A system set's conditions that have not been initialized yet.
Set {
key: SystemSetKey,
first_uninit_condition: usize,
/// The range of indices in [`SystemSets::conditions`] that correspond
/// to conditions that have not been initialized yet.
///
/// [`SystemSets::conditions`] for a given set may be appended to
/// multiple times (e.g. when `configure_sets` is called multiple with
/// the same set), so we need to track which conditions in that list
/// are newly added and not yet initialized.
///
/// Systems don't need this tracking because each `add_systems` call
/// creates separate nodes in the graph with their own conditions,
/// so all conditions are initialized together.
uninitialized_conditions: Range<usize>,
},
}
@ -793,8 +814,8 @@ pub struct ScheduleGraph {
pub system_conditions: SecondaryMap<SystemKey, Vec<ConditionWithAccess>>,
/// Data about system sets in the schedule
system_sets: SystemSets,
/// Systems that have not been initialized yet; for system sets, we store the index of the first uninitialized condition
/// (all the conditions after that index still need to be initialized)
/// Systems, their conditions, and system set conditions that need to be
/// initialized before the schedule can be run.
uninit: Vec<UninitializedId>,
/// Directed acyclic graph of the hierarchy (which systems/sets are children of which sets)
hierarchy: Dag,
@ -807,7 +828,6 @@ pub struct ScheduleGraph {
anonymous_sets: usize,
changed: bool,
settings: ScheduleBuildSettings,
passes: BTreeMap<TypeId, Box<dyn ScheduleBuildPassObj>>,
}
@ -1101,9 +1121,10 @@ impl ScheduleGraph {
// system init has to be deferred (need `&mut World`)
let system_set_conditions = self.system_sets.conditions.entry(key).unwrap().or_default();
let start = system_set_conditions.len();
self.uninit.push(UninitializedId::Set {
key,
first_uninit_condition: system_set_conditions.len(),
uninitialized_conditions: start..(start + conditions.len()),
});
system_set_conditions.extend(conditions.into_iter().map(ConditionWithAccess::new));
@ -1189,11 +1210,9 @@ impl ScheduleGraph {
}
UninitializedId::Set {
key,
first_uninit_condition,
uninitialized_conditions,
} => {
for condition in self.system_sets.conditions[key]
.iter_mut()
.skip(first_uninit_condition)
for condition in &mut self.system_sets.conditions[key][uninitialized_conditions]
{
condition.access = condition.condition.initialize(world);
}

View File

@ -422,11 +422,7 @@ fn sample_shadow_cubemap_gaussian(
) -> f32 {
// Create an orthonormal basis so we can apply a 2D sampling pattern to a
// cubemap.
var up = vec3(0.0, 1.0, 0.0);
if (dot(up, normalize(light_local)) > 0.99) {
up = vec3(1.0, 0.0, 0.0); // Avoid creating a degenerate basis.
}
let basis = orthonormalize(light_local, up) * scale * distance_to_light;
let basis = orthonormalize(normalize(light_local)) * scale * distance_to_light;
var sum: f32 = 0.0;
sum += sample_shadow_cubemap_at_offset(
@ -469,11 +465,7 @@ fn sample_shadow_cubemap_jittered(
) -> f32 {
// Create an orthonormal basis so we can apply a 2D sampling pattern to a
// cubemap.
var up = vec3(0.0, 1.0, 0.0);
if (dot(up, normalize(light_local)) > 0.99) {
up = vec3(1.0, 0.0, 0.0); // Avoid creating a degenerate basis.
}
let basis = orthonormalize(light_local, up) * scale * distance_to_light;
let basis = orthonormalize(normalize(light_local)) * scale * distance_to_light;
let rotation_matrix = random_rotation_matrix(vec2(1.0), temporal);
@ -553,11 +545,7 @@ fn search_for_blockers_in_shadow_cubemap(
) -> f32 {
// Create an orthonormal basis so we can apply a 2D sampling pattern to a
// cubemap.
var up = vec3(0.0, 1.0, 0.0);
if (dot(up, normalize(light_local)) > 0.99) {
up = vec3(1.0, 0.0, 0.0); // Avoid creating a degenerate basis.
}
let basis = orthonormalize(light_local, up) * scale * distance_to_light;
let basis = orthonormalize(normalize(light_local)) * scale * distance_to_light;
var sum: vec2<f32> = vec2(0.0);
sum += search_for_blockers_in_shadow_cubemap_at_offset(

View File

@ -63,17 +63,19 @@ fn mat4x4_to_mat3x3(m: mat4x4<f32>) -> mat3x3<f32> {
return mat3x3<f32>(m[0].xyz, m[1].xyz, m[2].xyz);
}
// Creates an orthonormal basis given a Z vector and an up vector (which becomes
// Y after orthonormalization).
// Creates an orthonormal basis given a normalized Z vector.
//
// The results are equivalent to the Gram-Schmidt process [1].
//
// [1]: https://math.stackexchange.com/a/1849294
fn orthonormalize(z_unnormalized: vec3<f32>, up: vec3<f32>) -> mat3x3<f32> {
let z_basis = normalize(z_unnormalized);
let x_basis = normalize(cross(z_basis, up));
let y_basis = cross(z_basis, x_basis);
return mat3x3(x_basis, y_basis, z_basis);
fn orthonormalize(z_normalized: vec3<f32>) -> mat3x3<f32> {
var up = vec3(0.0, 1.0, 0.0);
if (abs(dot(up, z_normalized)) > 0.99) {
up = vec3(1.0, 0.0, 0.0); // Avoid creating a degenerate basis.
}
let x_basis = normalize(cross(z_normalized, up));
let y_basis = cross(z_normalized, x_basis);
return mat3x3(x_basis, y_basis, z_normalized);
}
// Returns true if any part of a sphere is on the positive side of a plane.

View File

@ -7,7 +7,7 @@ use bevy_tasks::ComputeTaskPool;
use bevy_utils::WgpuWrapper;
pub use graph_runner::*;
pub use render_device::*;
use tracing::{debug, error, info, info_span, trace, warn};
use tracing::{debug, error, info, info_span, warn};
use crate::{
diagnostic::{internal::DiagnosticsRecorder, RecordDiagnostics},
@ -145,6 +145,33 @@ const GPU_NOT_FOUND_ERROR_MESSAGE: &str = if cfg!(target_os = "linux") {
"Unable to find a GPU! Make sure you have installed required drivers!"
};
#[cfg(not(target_family = "wasm"))]
fn find_adapter_by_name(
instance: &Instance,
options: &WgpuSettings,
compatible_surface: Option<&wgpu::Surface<'_>>,
adapter_name: &str,
) -> Option<Adapter> {
for adapter in
instance.enumerate_adapters(options.backends.expect(
"The `backends` field of `WgpuSettings` must be set to use a specific adapter.",
))
{
tracing::trace!("Checking adapter: {:?}", adapter.get_info());
let info = adapter.get_info();
if let Some(surface) = compatible_surface {
if !adapter.is_surface_supported(surface) {
continue;
}
}
if info.name.eq_ignore_ascii_case(adapter_name) {
return Some(adapter);
}
}
None
}
/// Initializes the renderer by retrieving and preparing the GPU instance, device and queue
/// for the specified backend.
pub async fn initialize_renderer(
@ -153,36 +180,30 @@ pub async fn initialize_renderer(
request_adapter_options: &RequestAdapterOptions<'_, '_>,
desired_adapter_name: Option<String>,
) -> (RenderDevice, RenderQueue, RenderAdapterInfo, RenderAdapter) {
#[cfg(not(target_family = "wasm"))]
let mut selected_adapter = desired_adapter_name.and_then(|adapter_name| {
find_adapter_by_name(
instance,
options,
request_adapter_options.compatible_surface,
&adapter_name,
)
});
#[cfg(target_family = "wasm")]
let mut selected_adapter = None;
if let Some(adapter_name) = &desired_adapter_name {
debug!("Searching for adapter with name: {}", adapter_name);
for adapter in instance.enumerate_adapters(options.backends.expect(
"The `backends` field of `WgpuSettings` must be set to use a specific adapter.",
)) {
trace!("Checking adapter: {:?}", adapter.get_info());
let info = adapter.get_info();
if let Some(surface) = request_adapter_options.compatible_surface {
if !adapter.is_surface_supported(surface) {
continue;
}
}
if info
.name
.to_lowercase()
.contains(&adapter_name.to_lowercase())
{
selected_adapter = Some(adapter);
break;
}
}
} else {
#[cfg(target_family = "wasm")]
if desired_adapter_name.is_some() {
warn!("Choosing an adapter is not supported on wasm.");
}
if selected_adapter.is_none() {
debug!(
"Searching for adapter with options: {:?}",
request_adapter_options
);
selected_adapter = instance.request_adapter(request_adapter_options).await.ok();
};
}
let adapter = selected_adapter.expect(GPU_NOT_FOUND_ERROR_MESSAGE);
let adapter_info = adapter.get_info();