# Objective
Fixes#19029 (also maybe sorta #18002, but we may want to handle the SPA
issue I outlined there more gracefully?)
## Solution
The most minimal / surgical approach I could think of, hopefully
cherry-pickable for a point release.
It seems that it's not *entirely* crazy for web services to return 403
for an item that was not found. Here's an example from [Amazon
CloudFront
docs](https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/http-403-permission-denied.html#s3-origin-403-error).
If it is somewhat common for web services to behave this way, then I
think it's best to also treat these responses as if they were "not
found."
I was previously of the opinion that any 400 level error "might as well"
get this treatment, but I'm now thinking that's probably overkill and
there are quite a few 400 level statuses that would indicate some
problem that needs to be fixed, and interpreting these as "not found"
might add confusion to the debugging process.
## Testing
Tested this with a web server that returns 403 for requests to meta
files.
```bash
cargo run -p build-wasm-example -- --api webgl2 sprite && \
open "http://localhost:4000" && \
python3 test_403.py examples/wasm
```
`test_403.py`:
```python
from http.server import HTTPServer, SimpleHTTPRequestHandler
import os
import sys
class CustomHandler(SimpleHTTPRequestHandler):
def do_GET(self):
if self.path.endswith(".meta"):
self.send_response(403)
self.send_header("Content-type", "text/plain")
self.end_headers()
self.wfile.write(b"403 Forbidden: Testing.\n")
else:
super().do_GET()
if __name__ == "__main__":
if len(sys.argv) != 2:
print(f"Usage: {sys.argv[0]} <directory>")
sys.exit(1)
os.chdir(sys.argv[1])
server_address = ("", 4000)
httpd = HTTPServer(server_address, CustomHandler)
httpd.serve_forever()
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Fixed#19035. Fixed#18882. It consisted of two different bugs:
- The allocations where being incremented even when a Data binding was
created.
- The ref counting on the binding was broken.
## Solution
- Stopped incrementing the allocations when a data binding was created.
- Rewrote the ref counting code to more reliably track the ref count.
## Testing
Tested my fix for 10 minutes with the `examples/3d/animated_material.rs`
example. I changed the example to spawn 51x51 meshes instead of 3x3
meshes to heighten the effects of the bug.
My branch: (After 10 minutes of running the modified example)
GPU: 172 MB
CPU: ~700 MB
Main branch: (After 2 minutes of running the modified example, my
computer started to stutter so I had to end it early)
GPU: 376 MB
CPU: ~1300 MB
# Objective
after #15156 it seems like using distinct directional lights on
different views is broken (and will probably break spotlights too). fix
them
## Solution
the reason is a bit hairy so with an example:
- camera 0 on layer 0
- camera 1 on layer 1
- dir light 0 on layer 0 (2 cascades)
- dir light 1 on layer 1 (2 cascades)
in render/lights.rs:
- outside of any view loop,
- we count the total number of shadow casting directional light cascades
(4) and assign an incrementing `depth_texture_base_index` for each (0-1
for one light, 2-3 for the other, depending on iteration order) (line
1034)
- allocate a texture array for the total number of cascades plus
spotlight maps (4) (line 1106)
- in the view loop, for directional lights we
- skip lights that don't intersect on renderlayers (line 1440)
- assign an incrementing texture layer to each light/cascade starting
from 0 (resets to 0 per view) (assigning 0 and 1 each time for the 2
cascades of the intersecting light) (line 1509, init at 1421)
then in the rendergraph:
- camera 0 renders the shadow map for light 0 to texture indices 0 and 1
- camera 0 renders using shadows from the `depth_texture_base_index`
(maybe 0-1, maybe 2-3 depending on the iteration order)
- camera 1 renders the shadow map for light 1 to texture indices 0 and 1
- camera 0 renders using shadows from the `depth_texture_base_index`
(maybe 0-1, maybe 2-3 depending on the iteration order)
issues:
- one of the views uses empty shadow maps (bug)
- we allocated a texture layer per cascade per light, even though not
all lights are used on all views (just inefficient)
- I think we're allocating texture layers even for lights with
`shadows_enabled: false` (just inefficient)
solution:
- calculate upfront the view with the largest number of directional
cascades
- allocate this many layers (plus layers for spotlights) in the texture
array
- keep using texture layers 0..n in the per-view loop, but build
GpuLights.gpu_directional_lights within the loop too so it refers to the
same layers we render to
nice side effects:
- we can now use `max_texture_array_layers / MAX_CASCADES_PER_LIGHT`
shadow-casting directional lights per view, rather than overall.
- we can remove the `GpuDirectionalLight::skip` field, since the gpu
lights struct is constructed per view
a simpler approach would be to keep everything the same, and just
increment the texture layer index in the view loop even for
non-intersecting lights. this pr reduces the total shadowmap vram used
as well and isn't *much* extra complexity. but if we want something less
risky/intrusive for 16.1 that would be the way.
## Testing
i edited the split screen example to put separate lights on layer 1 and
layer 2, and put the plane and fox on both layers (using lots of
unrelated code for render layer propagation from #17575).
without the fix the directional shadows will only render on one of the
top 2 views even though there are directional lights on both layers.
```rs
//! Renders two cameras to the same window to accomplish "split screen".
use std::f32::consts::PI;
use bevy::{
pbr::CascadeShadowConfigBuilder, prelude::*, render:📷:Viewport, window::WindowResized,
};
use bevy_render::view::RenderLayers;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugins(HierarchyPropagatePlugin::<RenderLayers>::default())
.add_systems(Startup, setup)
.add_systems(Update, (set_camera_viewports, button_system))
.run();
}
/// set up a simple 3D scene
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
let all_layers = RenderLayers::layer(1).with(2).with(3).with(4);
// plane
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(100.0, 100.0))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
all_layers.clone()
));
commands.spawn((
SceneRoot(
asset_server.load(GltfAssetLabel::Scene(0).from_asset("models/animated/Fox.glb")),
),
Propagate(all_layers.clone()),
));
// Light
commands.spawn((
Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
DirectionalLight {
shadows_enabled: true,
..default()
},
CascadeShadowConfigBuilder {
num_cascades: if cfg!(all(
feature = "webgl2",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
// Limited to 1 cascade in WebGL
1
} else {
2
},
first_cascade_far_bound: 200.0,
maximum_distance: 280.0,
..default()
}
.build(),
RenderLayers::layer(1),
));
commands.spawn((
Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
DirectionalLight {
shadows_enabled: true,
..default()
},
CascadeShadowConfigBuilder {
num_cascades: if cfg!(all(
feature = "webgl2",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
// Limited to 1 cascade in WebGL
1
} else {
2
},
first_cascade_far_bound: 200.0,
maximum_distance: 280.0,
..default()
}
.build(),
RenderLayers::layer(2),
));
// Cameras and their dedicated UI
for (index, (camera_name, camera_pos)) in [
("Player 1", Vec3::new(0.0, 200.0, -150.0)),
("Player 2", Vec3::new(150.0, 150., 50.0)),
("Player 3", Vec3::new(100.0, 150., -150.0)),
("Player 4", Vec3::new(-100.0, 80., 150.0)),
]
.iter()
.enumerate()
{
let camera = commands
.spawn((
Camera3d::default(),
Transform::from_translation(*camera_pos).looking_at(Vec3::ZERO, Vec3::Y),
Camera {
// Renders cameras with different priorities to prevent ambiguities
order: index as isize,
..default()
},
CameraPosition {
pos: UVec2::new((index % 2) as u32, (index / 2) as u32),
},
RenderLayers::layer(index+1)
))
.id();
// Set up UI
commands
.spawn((
UiTargetCamera(camera),
Node {
width: Val::Percent(100.),
height: Val::Percent(100.),
..default()
},
))
.with_children(|parent| {
parent.spawn((
Text::new(*camera_name),
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.),
left: Val::Px(12.),
..default()
},
));
buttons_panel(parent);
});
}
fn buttons_panel(parent: &mut ChildSpawnerCommands) {
parent
.spawn(Node {
position_type: PositionType::Absolute,
width: Val::Percent(100.),
height: Val::Percent(100.),
display: Display::Flex,
flex_direction: FlexDirection::Row,
justify_content: JustifyContent::SpaceBetween,
align_items: AlignItems::Center,
padding: UiRect::all(Val::Px(20.)),
..default()
})
.with_children(|parent| {
rotate_button(parent, "<", Direction::Left);
rotate_button(parent, ">", Direction::Right);
});
}
fn rotate_button(parent: &mut ChildSpawnerCommands, caption: &str, direction: Direction) {
parent
.spawn((
RotateCamera(direction),
Button,
Node {
width: Val::Px(40.),
height: Val::Px(40.),
border: UiRect::all(Val::Px(2.)),
justify_content: JustifyContent::Center,
align_items: AlignItems::Center,
..default()
},
BorderColor(Color::WHITE),
BackgroundColor(Color::srgb(0.25, 0.25, 0.25)),
))
.with_children(|parent| {
parent.spawn(Text::new(caption));
});
}
}
#[derive(Component)]
struct CameraPosition {
pos: UVec2,
}
#[derive(Component)]
struct RotateCamera(Direction);
enum Direction {
Left,
Right,
}
fn set_camera_viewports(
windows: Query<&Window>,
mut resize_events: EventReader<WindowResized>,
mut query: Query<(&CameraPosition, &mut Camera)>,
) {
// We need to dynamically resize the camera's viewports whenever the window size changes
// so then each camera always takes up half the screen.
// A resize_event is sent when the window is first created, allowing us to reuse this system for initial setup.
for resize_event in resize_events.read() {
let window = windows.get(resize_event.window).unwrap();
let size = window.physical_size() / 2;
for (camera_position, mut camera) in &mut query {
camera.viewport = Some(Viewport {
physical_position: camera_position.pos * size,
physical_size: size,
..default()
});
}
}
}
fn button_system(
interaction_query: Query<
(&Interaction, &ComputedNodeTarget, &RotateCamera),
(Changed<Interaction>, With<Button>),
>,
mut camera_query: Query<&mut Transform, With<Camera>>,
) {
for (interaction, computed_target, RotateCamera(direction)) in &interaction_query {
if let Interaction::Pressed = *interaction {
// Since TargetCamera propagates to the children, we can use it to find
// which side of the screen the button is on.
if let Some(mut camera_transform) = computed_target
.camera()
.and_then(|camera| camera_query.get_mut(camera).ok())
{
let angle = match direction {
Direction::Left => -0.1,
Direction::Right => 0.1,
};
camera_transform.rotate_around(Vec3::ZERO, Quat::from_axis_angle(Vec3::Y, angle));
}
}
}
}
use std::marker::PhantomData;
use bevy::{
app::{App, Plugin, Update},
ecs::query::QueryFilter,
prelude::{
Changed, Children, Commands, Component, Entity, Local, Query,
RemovedComponents, SystemSet, With, Without,
},
};
/// Causes the inner component to be added to this entity and all children.
/// A child with a Propagate<C> component of it's own will override propagation from
/// that point in the tree
#[derive(Component, Clone, PartialEq)]
pub struct Propagate<C: Component + Clone + PartialEq>(pub C);
/// Internal struct for managing propagation
#[derive(Component, Clone, PartialEq)]
pub struct Inherited<C: Component + Clone + PartialEq>(pub C);
/// Stops the output component being added to this entity.
/// Children will still inherit the component from this entity or its parents
#[derive(Component, Default)]
pub struct PropagateOver<C: Component + Clone + PartialEq>(PhantomData<fn() -> C>);
/// Stops the propagation at this entity. Children will not inherit the component.
#[derive(Component, Default)]
pub struct PropagateStop<C: Component + Clone + PartialEq>(PhantomData<fn() -> C>);
pub struct HierarchyPropagatePlugin<C: Component + Clone + PartialEq, F: QueryFilter = ()> {
_p: PhantomData<fn() -> (C, F)>,
}
impl<C: Component + Clone + PartialEq, F: QueryFilter> Default for HierarchyPropagatePlugin<C, F> {
fn default() -> Self {
Self {
_p: Default::default(),
}
}
}
#[derive(SystemSet, Clone, PartialEq, PartialOrd, Ord)]
pub struct PropagateSet<C: Component + Clone + PartialEq> {
_p: PhantomData<fn() -> C>,
}
impl<C: Component + Clone + PartialEq> std::fmt::Debug for PropagateSet<C> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("PropagateSet")
.field("_p", &self._p)
.finish()
}
}
impl<C: Component + Clone + PartialEq> Eq for PropagateSet<C> {}
impl<C: Component + Clone + PartialEq> std:#️⃣:Hash for PropagateSet<C> {
fn hash<H: std:#️⃣:Hasher>(&self, state: &mut H) {
self._p.hash(state);
}
}
impl<C: Component + Clone + PartialEq> Default for PropagateSet<C> {
fn default() -> Self {
Self {
_p: Default::default(),
}
}
}
impl<C: Component + Clone + PartialEq, F: QueryFilter + 'static> Plugin
for HierarchyPropagatePlugin<C, F>
{
fn build(&self, app: &mut App) {
app.add_systems(
Update,
(
update_source::<C, F>,
update_stopped::<C, F>,
update_reparented::<C, F>,
propagate_inherited::<C, F>,
propagate_output::<C, F>,
)
.chain()
.in_set(PropagateSet::<C>::default()),
);
}
}
pub fn update_source<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
changed: Query<(Entity, &Propagate<C>), (Changed<Propagate<C>>, Without<PropagateStop<C>>)>,
mut removed: RemovedComponents<Propagate<C>>,
) {
for (entity, source) in &changed {
commands
.entity(entity)
.try_insert(Inherited(source.0.clone()));
}
for removed in removed.read() {
if let Ok(mut commands) = commands.get_entity(removed) {
commands.remove::<(Inherited<C>, C)>();
}
}
}
pub fn update_stopped<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
q: Query<Entity, (With<Inherited<C>>, F, With<PropagateStop<C>>)>,
) {
for entity in q.iter() {
let mut cmds = commands.entity(entity);
cmds.remove::<Inherited<C>>();
}
}
pub fn update_reparented<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
moved: Query<
(Entity, &ChildOf, Option<&Inherited<C>>),
(
Changed<ChildOf>,
Without<Propagate<C>>,
Without<PropagateStop<C>>,
F,
),
>,
parents: Query<&Inherited<C>>,
) {
for (entity, parent, maybe_inherited) in &moved {
if let Ok(inherited) = parents.get(parent.parent()) {
commands.entity(entity).try_insert(inherited.clone());
} else if maybe_inherited.is_some() {
commands.entity(entity).remove::<(Inherited<C>, C)>();
}
}
}
pub fn propagate_inherited<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
changed: Query<
(&Inherited<C>, &Children),
(Changed<Inherited<C>>, Without<PropagateStop<C>>, F),
>,
recurse: Query<
(Option<&Children>, Option<&Inherited<C>>),
(Without<Propagate<C>>, Without<PropagateStop<C>>, F),
>,
mut to_process: Local<Vec<(Entity, Option<Inherited<C>>)>>,
mut removed: RemovedComponents<Inherited<C>>,
) {
// gather changed
for (inherited, children) in &changed {
to_process.extend(
children
.iter()
.map(|child| (child, Some(inherited.clone()))),
);
}
// and removed
for entity in removed.read() {
if let Ok((Some(children), _)) = recurse.get(entity) {
to_process.extend(children.iter().map(|child| (child, None)))
}
}
// propagate
while let Some((entity, maybe_inherited)) = (*to_process).pop() {
let Ok((maybe_children, maybe_current)) = recurse.get(entity) else {
continue;
};
if maybe_current == maybe_inherited.as_ref() {
continue;
}
if let Some(children) = maybe_children {
to_process.extend(
children
.iter()
.map(|child| (child, maybe_inherited.clone())),
);
}
if let Some(inherited) = maybe_inherited {
commands.entity(entity).try_insert(inherited.clone());
} else {
commands.entity(entity).remove::<(Inherited<C>, C)>();
}
}
}
pub fn propagate_output<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
changed: Query<
(Entity, &Inherited<C>, Option<&C>),
(Changed<Inherited<C>>, Without<PropagateOver<C>>, F),
>,
) {
for (entity, inherited, maybe_current) in &changed {
if maybe_current.is_some_and(|c| &inherited.0 == c) {
continue;
}
commands.entity(entity).try_insert(inherited.0.clone());
}
}
```
# Objective
Fixes#19219
## Solution
Instead of calling `world.commands().trigger` and
`world.commands().trigger_targets` whenever each scene is spawned, save
the `instance_id` and optional parent entity to perform all such calls
at the end. This prevents the potential flush of the world command queue
that can happen if `add_child` is called from causing the crash.
## Testing
- Did you test these changes? If so, how?
- Verified that I can no longer reproduce the bug with the instructions
at #19219.
- Ran `bevy_scene` tests
- Visually verified that the following examples still run as expected
`many_foxes`, `scene` . (should I test any more?)
- Are there any parts that need more testing?
- Pending to run `cargo test` at the root to test that all examples
still build; I will update the PR when that's done
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run bevy as usual
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- N/a (tested on Linux/wayland but it shouldn't be relevant)
---
# Objective
Fix#19324
## Solution
`EntityCloner` replaces required components when filtering. This is
unexpected when comparing with the way the rest of bevy handles required
components. This PR separates required components from explicit
components when filtering in `EntityClonerBuilder`.
## Testing
Added a regression test for this case.
# Objective
Fixes#18905
## Solution
`world.commands().entity(target_entity).queue(command)` calls
`commands.with_entity` without an error handler, instead queue on
`Commands` with an error handler
## Testing
Added unit test
Co-authored-by: Heart <>
# Objective
cargo update was required to build because into_values was added in a
patch version
## Solution
Depend on the new patch
## Testing
Builds locally now
# Objective
Fixes#18790.
Simpler alternative to #19195.
## Solution
As suggested by @PixelDust22, simply avoid overwriting the pass if the
schedule already has auto sync points enabled.
Leave pass logic untouched.
It still is probably a bad idea to add systems/set configs before
changing the build settings, but that is not important as long there are
no more complex build passes.
## Testing
Added a test.
---------
Co-authored-by: Thierry Berger <contact@thierryberger.com>
# Objective
- The WakeUp event is never added to the app. If you need to use that
event you currently need to add it yourself.
## Solution
- Add the WakeUp event to the App in the WinitPlugin
## Testing
- I tested the window_setting example and it compiled and worked
# Objective
- The tigger_screenshots system gets added in `.build()` but relies on a
resource that is only inserted in `.finish()`
- This isn't a bug for most users, but when doing headless mode testing
it can technically work without ever calling `.finish()` and did work
before bevy 0.15 but while migrating my work codebase I had an issue of
test failing because of this
## Solution
- Move the trigger_screenshots system to `.finish()`
## Testing
- I ran the screenshot example and it worked as expected
similar to https://github.com/bevyengine/bevy/pull/12030
# Objective
`bevy_mod_debugdump` uses the `SystemTypeSet::system_type` to look up
constrains like `(system_1, system_2.after(system_1))`. For that it
needs to find the type id in `schedule.graph().systems()`
Now with systems being wrapped in an `InfallibleSystemWrapper` this
association was no longer possible.
## Solution
By forwarding the type id in `InfallibleSystemWrapper`,
`bevy_mod_debugdump` can resolve the dependencies as before, and the
wrapper is an unnoticable implementation detail.
## Testing
- `cargo test -p bevy_ecs`
I'm not sure what exactly could break otherwise.
# Objective
- Fixes#18869.
## Solution
The issue was the `?` after a `Result` raising the error, instead of
treating it.
Instead it is handled with `ok`, `and_then`, `map` ...
_Edit: I added the following logic._
On `bevy/query` remote requests, when `strict` is false:
- Unregistered components in `option` and `without` are ignored.
- Unregistered components in `has` are considered absent from the
entity.
- Unregistered components in `components` and `with` result in an empty
response since they specify hard requirements.
I made the `get_component_ids` function return a
`AnyhowResult<(Vec<(TypeId, ComponentId)>, Vec<String>)>` instead of the
previous `AnyhowResult<Vec<(TypeId, ComponentId)>>`; that is I added the
list of unregistered components.
## Testing
I tested changes using the same procedure as in the linked issue:
```sh
cargo run --example server --features="bevy_remote"
```
In another terminal:
```sh
# Not strict:
$ curl -X POST http://localhost:15702 -H "Content-Type: application/json" -d '{ "jsonrpc": "2.0", "method": "bevy/query", "id": 0, "params": { "data": { "components": [ "foo::bar::MyComponent" ] } } }'
{"jsonrpc":"2.0","id":0,"result":[]}
# Strict:
$ curl -X POST http://localhost:15702 -H "Content-Type: application/json" -d '{ "jsonrpc": "2.0", "method": "bevy/query", "id": 0, "params": { "data": { "components": [ "foo::bar::MyComponent" ] }, "strict": true } }'
{"jsonrpc":"2.0","id":0,"error":{"code":-23402,"message":"Component `foo::bar::MyComponent` isn't registered or used in the world"}}
```
# Objective
Fix incorrect average returned by `Diagnostic` after `clear_history` is
called.
## Solution
Reset sum and ema values in `Diagnostic::clear_history`.
## Testing
I have added a cargo test for `Diagnostic::clear_history` that checks
average and smoothed average. This test passes, and should not be
platform dependent.
# Objective
allow serialization / deserialization on the `ChildOf` entity, for
example in network usage.
my usage was for the bevy_replicon crate, to replicate `ChildOf`.
## Solution
same implementation of serde as other types in the bevy repo
---------
Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
# Objective
Spot light shadows are still broken after fixing point lights in #19265
## Solution
Fix spot lights in the same way, just using the spot light specific
visible entities component. I also changed the query to be directly in
the render world instead of being extracted to be more accurate.
## Testing
Tested with the same code but changing `PointLight` to `SpotLight`.
# Objective
Fixes#19150
## Solution
Normally the `validate_cached_entity` in
86cc02dca2/crates/bevy_pbr/src/prepass/mod.rs (L1109-L1126)
marks unchanged entites as clean, which makes them remain in the phase.
If a material is changed to an `alpha_mode` that isn't supposed to be
added to the prepass pipeline, the specialization system just
`continue`s and doesn't indicate to the cache that the entity is not
clean anymore.
I made these invalid entities get removed from the pipeline cache so
that they are correctly not marked clean and then removed from the
phase.
## Testing
Tested with the example code from the issue.
# Objective
Fixes#18945
## Solution
Entities that are not visible in any view (camera or light), get their
render meshes removed. When they become visible somewhere again, the
meshes get recreated and assigned possibly different ids.
Point/spot light visible entities weren't cleared when the lights
themseves went out of view, which caused them to try to queue these fake
visible entities for rendering every frame. The shadow phase cache
usually flushes non visible entites, but because of this bug it never
flushed them and continued to queue meshes with outdated ids.
The simple solution is to every frame clear all visible entities for all
point/spot lights that may or may not be visible. The visible entities
get repopulated directly afterwards. I also renamed the
`global_point_lights` to `global_visible_clusterable` to make it clear
that it includes only visible things.
## Testing
- Tested with the code from the issue.
# Objective
- transitive shader imports sometimes fail to load silently and return
Ok
- Fixes#19226
## Solution
- Don't return Ok, return the appropriate error code which will retry
the load later when the dependencies load
## Testing
- `bevy run --example=3d_scene web --open`
Note: this is was theoretically a problem before the hot reloading PR,
but probably extremely unlikely to occur.
# Objective
Fixes#19027
## Solution
Query for the material binding id if using fallback CPU processing
## Testing
I've honestly no clue how to test for this, and I imagine that this
isn't entirely failsafe :( but would highly appreciate a suggestion!
To verify this works, please run the the texture.rs example using WebGL
2.
Additionally, I'm extremely naive about the nuances of pbr. This PR is
essentially to kinda *get the ball rolling* of sorts. Thanks :)
---------
Co-authored-by: Gilles Henaux <ghx_github_priv@fastmail.com>
Co-authored-by: charlotte <charlotte.c.mcelwain@gmail.com>
# Objective
Fixes#19130
## Solution
Fully quality `Result::Ok` so as to not accidentally invoke the anyhow
function of the same name
## Testing
Tested on this minimal repro with and without change.
main.rs
```rs
use anyhow::Ok;
use bevy::ecs::system::SystemParam;
#[derive(SystemParam)]
pub struct SomeParams;
fn main() {
}
```
Cargo.toml
```toml
[package]
name = "bevy-playground"
version = "0.1.0"
edition = "2024"
[dependencies]
anyhow = "1.0.98"
bevy = { path = "../bevy" }
```
# Objective
resolves#19092
## Solution
- remove the `.saturating_sub` from the index transformation
- add `.saturating_add` to the internal offset calculation
## Testing
- added regression test, confirming 0 index order + testing max bound
# Objective
`RelatedSpawnerCommands` offers methods to get the underlying
`Commands`.
`RelatedSpawner` does not expose the inner `World` reference so far.
I currently want to write extension traits for both of them but I need
to duplicate the whole API for the latter because I cannot get it's
`&mut World`.
## Solution
Add methods for immutable and mutable `World` access
# Objective
I've been tinkering with ECS insertion/removal lately, and noticed that
sparse sets just... don't interact with `InsertMode` at all. Sure
enough, using `insert_if_new` with a sparse component does the same
thing as `insert`.
# Solution
- Add a check in `BundleInfo::write_components` to drop the new value if
the entity already has the component and `InsertMode` is `Keep`.
- Add necessary methods to sparse set internals to fetch the drop
function.
# Testing
Minimal reproduction:
<details>
<summary>Code</summary>
```
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(PostStartup, component_print)
.run();
}
#[derive(Component)]
#[component(storage = "SparseSet")]
struct SparseComponent(u32);
fn setup(mut commands: Commands) {
let mut entity = commands.spawn_empty();
entity.insert(SparseComponent(1));
entity.insert(SparseComponent(2));
let mut entity = commands.spawn_empty();
entity.insert(SparseComponent(3));
entity.insert_if_new(SparseComponent(4));
}
fn component_print(query: Query<&SparseComponent>) {
for component in &query {
info!("{}", component.0);
}
}
```
</details>
Here it is on Bevy Playground (0.15.3):
https://learnbevy.com/playground?share=2a96a68a81e804d3fdd644a833c1d51f7fa8dd33fc6192fbfd077b082a6b1a41
Output on `main`:
```
2025-05-04T17:50:50.401328Z INFO system{name="fork::component_print"}: fork: 2
2025-05-04T17:50:50.401583Z INFO system{name="fork::component_print"}: fork: 4
```
Output with this PR :
```
2025-05-04T17:51:33.461835Z INFO system{name="fork::component_print"}: fork: 2
2025-05-04T17:51:33.462091Z INFO system{name="fork::component_print"}: fork: 3
```
# Objective
Fixes#18969
## Solution
Also updated `Aabb3d` implementation for consistency.
## Testing
Added tests for `Aabb2d` and `Aabb3d` to verify correct rotation
behavior for angles greater than 90 degrees.
# Objective
Fixes#18943
## Solution
Reintroduces support for `hashbrown`'s `HashMap` and `HashSet` types.
These were inadvertently removed when `bevy_platform` newtyped the
`hashbrown` types.
Since we removed our `hashbrown` dependency, I gated these impls behind
a `hashbrown` feature. Not entirely sure if this is necessary since we
enabled it for `bevy_reflect` through `bevy_platform` anyways. (Complex
features still confuse me a bit so let me know if I can just remove it!)
I also went ahead and preemptively implemented `TypePath` for `PassHash`
while I was here.
## Testing
You can test that it works by adding the following to a Bevy example
based on this PR (you'll also need to include `hashbrown` of course):
```rust
#[derive(Reflect)]
struct Foo(hashbrown::HashMap<String, String>);
```
Then check it compiles with:
```
cargo check --example hello_world --no-default-features --features=bevy_reflect/hashbrown
```
# Objective
- Fixes#18856.
## Solution
After PR #17633, `Camera::viewport_to_world` method corrects
`viewport_position` passed in that input so that it's offset by camera's
viewport. `Camera::viewport_to_world` is used by `make_ray` function
which in turn also offsets pointer position by viewport position, which
causes picking objects to be shifted by viewport position, and it wasn't
removed in the aforementioned PR. This second offsetting in `make_ray`
was removed.
## Testing
- I tested simple_picking example by applying some horizontal offset to
camera's viewport.
- I tested my application that displayed a single rectangle with picking
on two cameras arranged in a row. When using local bevy with this fix,
both cameras can be used for picking correctly.
- I modified split_screen example: I added observer to ground plane that
changes color on hover, and removed UI as it interfered with picking
both on master and my branch. On master, only top left camera was
triggering the observer, and on my branch all cameras could change
plane's color on hover.
- I added viewport offset to mesh_picking, with my changes it works
correctly, while on master picking ray is shifted.
- Sprite picking with viewport offset doesn't work both on master and on
this branch.
These are the only scenarios I tested. I think other picking functions
that use this function should be tested but I couldn't track more uses
of it.
Co-authored-by: Krzysztof Zywiecki <krzysiu@pop-os.Dlink>
# Objective
Fixes#18843
## Solution
We need to account for the material being added and removed in the
course of the same frame. We evict the caches first because the entity
will be re-added if it was marked as needing specialization, which
avoids another check on removed components to see if it was "really"
despawned.
# Objective
One to one relationships (added in
https://github.com/bevyengine/bevy/pull/18087) can currently easily be
invalidated by having two entities relate to the same target.
Alternative to #18817 (removing one-to-one relationships)
## Solution
Panic if a RelationshipTarget is already targeted. Thanks @urben1680 for
the idea!
---------
Co-authored-by: François Mockers <mockersf@gmail.com>
There's still a race resulting in blank materials whenever a material of
type A is added on the same frame that a material of type B is removed.
PR #18734 improved the situation, but ultimately didn't fix the race
because of two issues:
1. The `late_sweep_material_instances` system was never scheduled. This
PR fixes the problem by scheduling that system.
2. `early_sweep_material_instances` needs to be called after *every*
material type has been extracted, not just when the material of *that*
type has been extracted. The `chain()` added during the review process
in PR #18734 broke this logic. This PR reverts that and fixes the
ordering by introducing a new `SystemSet` that contains all material
extraction systems.
I also took the opportunity to switch a manual reference to
`AssetId::<StandardMaterial>::invalid()` to the new
`DUMMY_MESH_MATERIAL` constant for clarity.
Because this is a bug that can affect any application that switches
material types in a single frame, I think this should be uplifted to
Bevy 0.16.
This reverts commit ac52cca033.
Fixes#18815
the interest of providing no_std support, specifically no_atomic
support). That tradeoff isn't worth it, especially given that tracing is
likely to get no_atomic support.
Revert #18782
Fixes#18834.
`EntityWorldMut::remove_children` and `EntityCommands::remove_children`
were removed in the relationships overhaul (#17398) and never got
replaced.
I don't *think* this was intentional (the methods were never mentioned
in the PR or its comments), but I could've missed something.
# Objective
I was wrong about how RPITIT works when I wrote this stuff initially,
and in order to actually give people access to all the traits
implemented by the output (e.g. Debug and so on) it's important to
expose the real output type, even if it makes the trait uglier and less
comprehensible. (☹️)
## Solution
Expose the curve output type of the `CurveWithDerivative` trait and its
double-derivative companion. I also added a bunch of trait derives to
`WithDerivative<T>`, since I think that was just an oversight.
# Objective
After #17967, closures which always panic no longer satisfy various Bevy
traits. Principally, this affects observers, systems and commands.
While this may seem pointless (systems which always panic are kind of
useless), it is distinctly annoying when using the `todo!` macro, or
when writing tests that should panic.
Fixes#18778.
## Solution
- Add failing tests to demonstrate the problem
- Add the trick from
[`never_say_never`](https://docs.rs/never-say-never/latest/never_say_never/)
to name the `!` type on stable Rust
- Write looots of docs explaining what the heck is going on and why
we've done this terrible thing
## To do
Unfortunately I couldn't figure out how to avoid conflicting impls, and
I am out of time for today, the week and uh the week after that.
Vacation! If you feel like finishing this for me, please submit PRs to
my branch and I can review and press the button for it while I'm off.
Unless you're Cart, in which case you have write permissions to my
branch!
- [ ] fix for commands
- [ ] fix for systems
- [ ] fix for observers
- [ ] revert https://github.com/bevyengine/bevy-website/pull/2092/
## Testing
I've added a compile test for these failure cases and a few adjacent
non-failing cases (with explicit return types).
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Fixes a small mix-up from #18058, which added bulk relationship
replacement methods.
`EntityCommands::replace_related_with_difference` calls
`EntityWorldMut::replace_children_with_difference` instead of
`EntityWorldMut::replace_related_with_difference`, which means it always
operates on the `ChildOf` relationship instead of the `R: Relationship`
generic it's provided.
`EntityCommands::replace_children_with_difference` takes an `R:
Relationship` generic that it shouldn't, but it accidentally works
correctly on `main` because it calls the above method.
The parameter `In` of `call_inner` is completely unconstrained by its
arguments and return type. We are only able to infer it by assuming that
the only associated type equal to `In::Param<'_>` is `In::Param<'_>`
itself. It could just as well be some other associated type which only
normalizes to `In::Param<'_>`. This will change with the next-generation
trait solver and was encountered by a crater run
https://github.com/rust-lang/rust/pull/133502-
cc
https://github.com/rust-lang/trait-system-refactor-initiative/issues/168
I couldn't think of a cleaner alternative here. I first tried to just
provide `In` as an explicit type parameter. This is also kinda ugly as I
need to provide a variable number of them and `${ignore(..)}` is
currently still unstable https://github.com/rust-lang/rust/issues/83527.
Sorry for the inconvenience. Also fun that this function exists to avoid
a separate solver bug in the first place 😅
Fixes#18809Fixes#18823
Meshes despawned in `Last` can still be in visisible entities if they
were visible as of `PostUpdate`. Sanity check that the mesh actually
exists before we specialize. We still want to unconditionally assume
that the entity is in `EntitySpecializationTicks` as its absence from
that cache would likely suggest another bug.
# Objective
Fixes#18808
## Solution
When an asset emits a removed event, mark it as modified in the render
world to ensure any appropriate bookkeeping runs as necessary.
The goal of `bevy_platform_support` is to provide a set of platform
agnostic APIs, alongside platform-specific functionality. This is a high
traffic crate (providing things like HashMap and Instant). Especially in
light of https://github.com/bevyengine/bevy/discussions/18799, it
deserves a friendlier / shorter name.
Given that it hasn't had a full release yet, getting this change in
before Bevy 0.16 makes sense.
- Rename `bevy_platform_support` to `bevy_platform`.
# Objective
- `bevy_dylib` currently doesn't build independently
```
cargo build -p bevy_dylib
Compiling bevy_dylib v0.16.0-rc.4 (/crates/bevy_dylib)
error: no global memory allocator found but one is required; link to std or add `#[global_allocator]` to a static item that implements the GlobalAlloc trait
error: `#[panic_handler]` function required, but not found
error: unwinding panics are not supported without std
|
= help: using nightly cargo, use -Zbuild-std with panic="abort" to avoid unwinding
= note: since the core library is usually precompiled with panic="unwind", rebuilding your crate with panic="abort" may not be enough to fix the problem
error: could not compile `bevy_dylib` (lib) due to 3 previous errors
```
## Solution
- remove `#![no_std]` from `bevy_dylib`
## Testing
- it builds now