dependabot/cargo/taffy-0.8
150 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
ebf87f56ef
|
Use SlotMap s to store systems and system sets in Schedule s (#19352)
# Objective - First step towards #279 ## Solution Makes the necessary internal data structure changes in order to allow system removal to be added in a future PR: `Vec`s storing systems and system sets in `ScheduleGraph` have been replaced with `SlotMap`s. See the included migration guide for the required changes. ## Testing Internal changes only and no new features *should* mean no new tests are requried. |
||
![]() |
4e694aea53
|
ECS: put strings only used for debug behind a feature (#19558)
# Objective - Many strings in bevy_ecs are created but only used for debug: system name, component name, ... - Those strings make a significant part of the final binary and are no use in a released game ## Solution - Use [`strings`](https://linux.die.net/man/1/strings) to find ... strings in a binary - Try to find where they come from - Many are made from `type_name::<T>()` and only used in error / debug messages - Add a new structure `DebugName` that holds no value if `debug` feature is disabled - Replace `core::any::type_name::<T>()` by `DebugName::type_name::<T>()` ## Testing Measurements were taken without the new feature being enabled by default, to help with commands ### File Size I tried building the `breakout` example with `cargo run --release --example breakout` |`debug` enabled|`debug` disabled| |-|-| |81621776 B|77735728B| |77.84MB|74.13MB| ### Compilation time `hyperfine --min-runs 15 --prepare "cargo clean && sleep 5" 'RUSTC_WRAPPER="" cargo build --release --example breakout' 'RUSTC_WRAPPER="" cargo build --release --example breakout --features debug'` ``` breakout' 'RUSTC_WRAPPER="" cargo build --release --example breakout --features debug' Benchmark 1: RUSTC_WRAPPER="" cargo build --release --example breakout Time (mean ± σ): 84.856 s ± 3.565 s [User: 1093.817 s, System: 32.547 s] Range (min … max): 78.038 s … 89.214 s 15 runs Benchmark 2: RUSTC_WRAPPER="" cargo build --release --example breakout --features debug Time (mean ± σ): 92.303 s ± 2.466 s [User: 1193.443 s, System: 33.803 s] Range (min … max): 90.619 s … 99.684 s 15 runs Summary RUSTC_WRAPPER="" cargo build --release --example breakout ran 1.09 ± 0.05 times faster than RUSTC_WRAPPER="" cargo build --release --example breakout --features debug ``` |
||
![]() |
a750cfe4a1
|
Split CursorOptions off of Window (#19668)
# Objective - Fixes #19627 - Tackles part of #19644 - Supersedes #19629 - `Window` has become a very very very big component - As such, our change detection does not *really* work on it, as e.g. moving the mouse will cause a change for the entire window - We circumvented this with a cache - But, some things *shouldn't* be cached as they can be changed from outside the user's control, notably the cursor grab mode on web - So, we need to disable the cache for that - But because change detection is broken, that would result in the cursor grab mode being set every frame the mouse is moved - That is usually *not* what a dev wants, as it forces the cursor to be locked even when the end-user is trying to free the cursor on the browser - the cache in this situation is invalid due to #8949 ## Solution - Split `Window` into multiple components, each with working change detection - Disable caching of the cursor grab mode - This will only attempt to force the grab mode when the `CursorOptions` were touched by the user, which is *much* rarer than simply moving the mouse. - If this PR is merged, I'll do the exact same for the other constituents of `Window` as a follow-up ## Testing - Ran all the changed examples |
||
![]() |
38c3423693
|
Event Split: Event , EntityEvent , and BufferedEvent (#19647)
# Objective Closes #19564. The current `Event` trait looks like this: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The `Event` trait is used by both buffered events (`EventReader`/`EventWriter`) and observer events. If they are observer events, they can optionally be targeted at specific `Entity`s or `ComponentId`s, and can even be propagated to other entities. However, there has long been a desire to split the trait semantically for a variety of reasons, see #14843, #14272, and #16031 for discussion. Some reasons include: - It's very uncommon to use a single event type as both a buffered event and targeted observer event. They are used differently and tend to have distinct semantics. - A common footgun is using buffered events with observers or event readers with observer events, as there is no type-level error that prevents this kind of misuse. - #19440 made `Trigger::target` return an `Option<Entity>`. This *seriously* hurts ergonomics for the general case of entity observers, as you need to `.unwrap()` each time. If we could statically determine whether the event is expected to have an entity target, this would be unnecessary. There's really two main ways that we can categorize events: push vs. pull (i.e. "observer event" vs. "buffered event") and global vs. targeted: | | Push | Pull | | ------------ | --------------- | --------------------------- | | **Global** | Global observer | `EventReader`/`EventWriter` | | **Targeted** | Entity observer | - | There are many ways to approach this, each with their tradeoffs. Ultimately, we kind of want to split events both ways: - A type-level distinction between observer events and buffered events, to prevent people from using the wrong kind of event in APIs - A statically designated entity target for observer events to avoid accidentally using untargeted events for targeted APIs This PR achieves these goals by splitting event traits into `Event`, `EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait implemented by all events. ## `Event`, `EntityEvent`, and `BufferedEvent` `Event` is now a very simple trait shared by all events. ```rust pub trait Event: Send + Sync + 'static { // Required for observer APIs fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` You can call `trigger` for *any* event, and use a global observer for listening to the event. ```rust #[derive(Event)] struct Speak { message: String, } // ... app.add_observer(|trigger: On<Speak>| { println!("{}", trigger.message); }); // ... commands.trigger(Speak { message: "Y'all like these reworked events?".to_string(), }); ``` To allow an event to be targeted at entities and even propagated further, you can additionally implement the `EntityEvent` trait: ```rust pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This lets you call `trigger_targets`, and to use targeted observer APIs like `EntityCommands::observe`: ```rust #[derive(Event, EntityEvent)] #[entity_event(traversal = &'static ChildOf, auto_propagate)] struct Damage { amount: f32, } // ... let enemy = commands.spawn((Enemy, Health(100.0))).id(); // Spawn some armor as a child of the enemy entity. // When the armor takes damage, it will bubble the event up to the enemy. let armor_piece = commands .spawn((ArmorPiece, Health(25.0), ChildOf(enemy))) .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| { // Note: `On::target` only exists because this is an `EntityEvent`. let mut health = query.get(trigger.target()).unwrap(); health.0 -= trigger.amount(); }); commands.trigger_targets(Damage { amount: 10.0 }, armor_piece); ``` > [!NOTE] > You *can* still also trigger an `EntityEvent` without targets using `trigger`. We probably *could* make this an either-or thing, but I'm not sure that's actually desirable. To allow an event to be used with the buffered API, you can implement `BufferedEvent`: ```rust pub trait BufferedEvent: Event {} ``` The event can then be used with `EventReader`/`EventWriter`: ```rust #[derive(Event, BufferedEvent)] struct Message(String); fn write_hello(mut writer: EventWriter<Message>) { writer.write(Message("I hope these examples are alright".to_string())); } fn read_messages(mut reader: EventReader<Message>) { // Process all buffered events of type `Message`. for Message(message) in reader.read() { println!("{message}"); } } ``` In summary: - Need a basic event you can trigger and observe? Derive `Event`! - Need the event to be targeted at an entity? Derive `EntityEvent`! - Need the event to be buffered and support the `EventReader`/`EventWriter` API? Derive `BufferedEvent`! ## Alternatives I'll now cover some of the alternative approaches I have considered and briefly explored. I made this section collapsible since it ended up being quite long :P <details> <summary>Expand this to see alternatives</summary> ### 1. Unified `Event` Trait One option is not to have *three* separate traits (`Event`, `EntityEvent`, `BufferedEvent`), and to instead just use associated constants on `Event` to determine whether an event supports targeting and buffering or not: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; const BUFFERED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` Methods can then use bounds like `where E: Event<TARGETED = true>` or `where E: Event<BUFFERED = true>` to limit APIs to specific kinds of events. This would keep everything under one `Event` trait, but I don't think it's necessarily a good idea. It makes APIs harder to read, and docs can't easily refer to specific types of events. You can also create weird invariants: what if you specify `TARGETED = false`, but have `Traversal` and/or `AUTO_PROPAGATE` enabled? ### 2. `Event` and `Trigger` Another option is to only split the traits between buffered events and observer events, since that is the main thing people have been asking for, and they have the largest API difference. If we did this, I think we would need to make the terms *clearly* separate. We can't really use `Event` and `BufferedEvent` as the names, since it would be strange that `BufferedEvent` doesn't implement `Event`. Something like `ObserverEvent` and `BufferedEvent` could work, but it'd be more verbose. For this approach, I would instead keep `Event` for the current `EventReader`/`EventWriter` API, and call the observer event a `Trigger`, since the "trigger" terminology is already used in the observer context within Bevy (both as a noun and a verb). This is also what a long [bikeshed on Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791) seemed to land on at the end of last year. ```rust // For `EventReader`/`EventWriter` pub trait Event: Send + Sync + 'static {} // For observers pub trait Trigger: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The problem is that "event" is just a really good term for something that "happens". Observers are rapidly becoming the more prominent API, so it'd be weird to give them the `Trigger` name and leave the good `Event` name for the less common API. So, even though a split like this seems neat on the surface, I think it ultimately wouldn't really work. We want to keep the `Event` name for observer events, and there is no good alternative for the buffered variant. (`Message` was suggested, but saying stuff like "sends a collision message" is weird.) ### 3. `GlobalEvent` + `TargetedEvent` What if instead of focusing on the buffered vs. observed split, we *only* make a distinction between global and targeted events? ```rust // A shared event trait to allow global observers to work pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For buffered events and non-targeted observer events pub trait GlobalEvent: Event {} // For targeted observer events pub trait TargetedEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is actually the first approach I implemented, and it has the neat characteristic that you can only use non-targeted APIs like `trigger` with a `GlobalEvent` and targeted APIs like `trigger_targets` with a `TargetedEvent`. You have full control over whether the entity should or should not have a target, as they are fully distinct at the type-level. However, there's a few problems: - There is no type-level indication of whether a `GlobalEvent` supports buffered events or just non-targeted observer events - An `Event` on its own does literally nothing, it's just a shared trait required to make global observers accept both non-targeted and targeted events - If an event is both a `GlobalEvent` and `TargetedEvent`, global observers again have ambiguity on whether an event has a target or not, undermining some of the benefits - The names are not ideal ### 4. `Event` and `EntityEvent` We can fix some of the problems of Alternative 3 by accepting that targeted events can also be used in non-targeted contexts, and simply having the `Event` and `EntityEvent` traits: ```rust // For buffered events and non-targeted observer events pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For targeted observer events pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is essentially identical to this PR, just without a dedicated `BufferedEvent`. The remaining major "problem" is that there is still zero type-level indication of whether an `Event` event *actually* supports the buffered API. This leads us to the solution proposed in this PR, using `Event`, `EntityEvent`, and `BufferedEvent`. </details> ## Conclusion The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR aims to solve all the common problems with Bevy's current event model while keeping the "weirdness" factor minimal. It splits in terms of both the push vs. pull *and* global vs. targeted aspects, while maintaining a shared concept for an "event". ### Why I Like This - The term "event" remains as a single concept for all the different kinds of events in Bevy. - Despite all event types being "events", they use fundamentally different APIs. Instead of assuming that you can use an event type with any pattern (when only one is typically supported), you explicitly opt in to each one with dedicated traits. - Using separate traits for each type of event helps with documentation and clearer function signatures. - I can safely make assumptions on expected usage. - If I see that an event is an `EntityEvent`, I can assume that I can use `observe` on it and get targeted events. - If I see that an event is a `BufferedEvent`, I can assume that I can use `EventReader` to read events. - If I see both `EntityEvent` and `BufferedEvent`, I can assume that both APIs are supported. In summary: This allows for a unified concept for events, while limiting the different ways to use them with opt-in traits. No more guess-work involved when using APIs. ### Problems? - Because `BufferedEvent` implements `Event` (for more consistent semantics etc.), you can still use all buffered events for non-targeted observers. I think this is fine/good. The important part is that if you see that an event implements `BufferedEvent`, you know that the `EventReader`/`EventWriter` API should be supported. Whether it *also* supports other APIs is secondary. - I currently only support `trigger_targets` for an `EntityEvent`. However, you can technically target components too, without targeting any entities. I consider that such a niche and advanced use case that it's not a huge problem to only support it for `EntityEvent`s, but we could also split `trigger_targets` into `trigger_entities` and `trigger_components` if we wanted to (or implement components as entities :P). - You can still trigger an `EntityEvent` *without* targets. I consider this correct, since `Event` implements the non-targeted behavior, and it'd be weird if implementing another trait *removed* behavior. However, it does mean that global observers for entity events can technically return `Entity::PLACEHOLDER` again (since I got rid of the `Option<Entity>` added in #19440 for ergonomics). I think that's enough of an edge case that it's not a huge problem, but it is worth keeping in mind. - ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type currently duplicates the `Event` implementation, so you instead need to manually implement one of them.~~ Changed to always requiring `Event` to be derived. ## Related Work There are plans to implement multi-event support for observers, especially for UI contexts. [Cart's example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508) API looked like this: ```rust // Truncated for brevity trigger: Trigger<( OnAdd<Pressed>, OnRemove<Pressed>, OnAdd<InteractionDisabled>, OnRemove<InteractionDisabled>, OnInsert<Hovered>, )>, ``` I believe this shouldn't be in conflict with this PR. If anything, this PR might *help* achieve the multi-event pattern for entity observers with fewer footguns: by statically enforcing that all of these events are `EntityEvent`s in the context of `EntityCommands::observe`, we can avoid misuse or weird cases where *some* events inside the trigger are targeted while others are not. |
||
![]() |
a8376e982e
|
Rename Timer::finished and Timer::paused to is_finished and is_paused (#19386)
# Objective Renames `Timer::finished` and `Timer::paused` to `Timer::is_finished` and `Timer::is_paused` to align the public APIs for `Time`, `Timer`, and `Stopwatch`. Fixes #19110 |
||
![]() |
8a223be651
|
Enable state scoped entities by default (#19354)
# Objective - Enable state scoped entities by default - Provide a way to disable it when needed --------- Co-authored-by: Ben Frankel <ben.frankel7@gmail.com> |
||
![]() |
7a1fcb7fe7
|
Rename StateScoped to DespawnOnExitState and add DespawnOnEnterState (#18818)
# Objective - Alternative to and builds on top of #16284. - Fixes #15849. ## Solution - Rename component `StateScoped` to `DespawnOnExitState`. - Rename system `clear_state_scoped_entities` to `despawn_entities_on_exit_state`. - Add `DespawnOnEnterState` and `despawn_entities_on_enter_state` which is the `OnEnter` equivalent. > [!NOTE] > Compared to #16284, the main change is that I did the rename in such a way as to keep the terms `OnExit` and `OnEnter` together. In my own game, I was adding `VisibleOnEnterState` and `HiddenOnExitState` and when naming those, I kept the `OnExit` and `OnEnter` together. When I checked #16284 it stood out to me that the naming was a bit awkward. Putting the `State` in the middle and breaking up `OnEnter` and `OnExit` also breaks searching for those terms. ## Open questions 1. Should we split `enable_state_scoped_entities` into two functions, one for the `OnEnter` and one for the `OnExit`? I personally have zero need thus far for the `OnEnter` version, so I'd be interested in not having this enabled unless I ask for it. 2. If yes to 1., should we follow my lead in my `Visibility` state components (see below) and name these `app.enable_despawn_entities_on_enter_state()` and `app.enable_despawn_entities_on_exit_state()`, which IMO says what it does on the tin? ## Testing Ran all changed examples. ## Side note: `VisibleOnEnterState` and `HiddenOnExitState` For reference to anyone else and to help with the open questions, I'm including the code I wrote for controlling entity visibility when a state is entered/exited. <details> <summary>visibility.rs</summary> ```rust use bevy_app::prelude::*; use bevy_ecs::prelude::*; use bevy_reflect::prelude::*; use bevy_render::prelude::*; use bevy_state::{prelude::*, state::StateTransitionSteps}; use tracing::*; pub trait AppExtStates { fn enable_visible_entities_on_enter_state<S: States>(&mut self) -> &mut Self; fn enable_hidden_entities_on_exit_state<S: States>(&mut self) -> &mut Self; } impl AppExtStates for App { fn enable_visible_entities_on_enter_state<S: States>(&mut self) -> &mut Self { self.main_mut() .enable_visible_entities_on_enter_state::<S>(); self } fn enable_hidden_entities_on_exit_state<S: States>(&mut self) -> &mut Self { self.main_mut().enable_hidden_entities_on_exit_state::<S>(); self } } impl AppExtStates for SubApp { fn enable_visible_entities_on_enter_state<S: States>(&mut self) -> &mut Self { if !self .world() .contains_resource::<Events<StateTransitionEvent<S>>>() { let name = core::any::type_name::<S>(); warn!("Visible entities on enter state are enabled for state `{}`, but the state isn't installed in the app!", name); } // We work with [`StateTransition`] in set // [`StateTransitionSteps::ExitSchedules`] as opposed to [`OnExit`], // because [`OnExit`] only runs for one specific variant of the state. self.add_systems( StateTransition, update_to_visible_on_enter_state::<S>.in_set(StateTransitionSteps::ExitSchedules), ) } fn enable_hidden_entities_on_exit_state<S: States>(&mut self) -> &mut Self { if !self .world() .contains_resource::<Events<StateTransitionEvent<S>>>() { let name = core::any::type_name::<S>(); warn!("Hidden entities on exit state are enabled for state `{}`, but the state isn't installed in the app!", name); } // We work with [`StateTransition`] in set // [`StateTransitionSteps::ExitSchedules`] as opposed to [`OnExit`], // because [`OnExit`] only runs for one specific variant of the state. self.add_systems( StateTransition, update_to_hidden_on_exit_state::<S>.in_set(StateTransitionSteps::ExitSchedules), ) } } #[derive(Clone, Component, Debug, Reflect)] #[reflect(Component, Debug)] pub struct VisibleOnEnterState<S: States>(pub S); #[derive(Clone, Component, Debug, Reflect)] #[reflect(Component, Debug)] pub struct HiddenOnExitState<S: States>(pub S); /// Makes entities marked with [`VisibleOnEnterState<S>`] visible when the state /// `S` is entered. pub fn update_to_visible_on_enter_state<S: States>( mut transitions: EventReader<StateTransitionEvent<S>>, mut query: Query<(&VisibleOnEnterState<S>, &mut Visibility)>, ) { // We use the latest event, because state machine internals generate at most // 1 transition event (per type) each frame. No event means no change // happened and we skip iterating all entities. let Some(transition) = transitions.read().last() else { return; }; if transition.entered == transition.exited { return; } let Some(entered) = &transition.entered else { return; }; for (binding, mut visibility) in query.iter_mut() { if binding.0 == *entered { visibility.set_if_neq(Visibility::Visible); } } } /// Makes entities marked with [`HiddenOnExitState<S>`] invisible when the state /// `S` is exited. pub fn update_to_hidden_on_exit_state<S: States>( mut transitions: EventReader<StateTransitionEvent<S>>, mut query: Query<(&HiddenOnExitState<S>, &mut Visibility)>, ) { // We use the latest event, because state machine internals generate at most // 1 transition event (per type) each frame. No event means no change // happened and we skip iterating all entities. let Some(transition) = transitions.read().last() else { return; }; if transition.entered == transition.exited { return; } let Some(exited) = &transition.exited else { return; }; for (binding, mut visibility) in query.iter_mut() { if binding.0 == *exited { visibility.set_if_neq(Visibility::Hidden); } } } ``` </details> --------- Co-authored-by: Benjamin Brienen <Benjamin.Brienen@outlook.com> Co-authored-by: Ben Frankel <ben.frankel7@gmail.com> |
||
![]() |
ec822c8c3b
|
Update breakout example's stepping plugin to use children (#18271)
# Objective Contributes to #18238 Updates the `SteppingPlugin` of the `breakout` example to use the `children!` macro. Note that in order to test this usage you must use `--features bevy_debug_stepping` and hit the back-tick key to enable stepping mode to see the proper text spans rendered. ## Solution Updates examples to use the Improved Spawning API merged in https://github.com/bevyengine/bevy/pull/17521 ## Testing - Did you test these changes? If so, how? - Opened the examples before and after and verified the same behavior was observed. I did this on Ubuntu 24.04.2 LTS using `--features wayland`. - Are there any parts that need more testing? - Other OS's and features can't hurt, but this is such a small change it shouldn't be a problem. - How can other people (reviewers) test your changes? Is there anything specific they need to know? - Run the examples yourself with and without these changes. - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? - see above --- ## Showcase n/a ## Migration Guide n/a |
||
![]() |
c3ff6d4136
|
Fix non-crate typos (#18219)
# Objective Correct spelling ## Solution Fix typos, specifically ones that I found in folders other than /crates ## Testing CI --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
2ad5908e58
|
Make Query::single (and friends) return a Result (#18082)
# Objective As discussed in #14275, Bevy is currently too prone to panic, and makes the easy / beginner-friendly way to do a large number of operations just to panic on failure. This is seriously frustrating in library code, but also slows down development, as many of the `Query::single` panics can actually safely be an early return (these panics are often due to a small ordering issue or a change in game state. More critically, in most "finished" products, panics are unacceptable: any unexpected failures should be handled elsewhere. That's where the new With the advent of good system error handling, we can now remove this. Note: I was instrumental in a) introducing this idea in the first place and b) pushing to make the panicking variant the default. The introduction of both `let else` statements in Rust and the fancy system error handling work in 0.16 have changed my mind on the right balance here. ## Solution 1. Make `Query::single` and `Query::single_mut` (and other random related methods) return a `Result`. 2. Handle all of Bevy's internal usage of these APIs. 3. Deprecate `Query::get_single` and friends, since we've moved their functionality to the nice names. 4. Add detailed advice on how to best handle these errors. Generally I like the diff here, although `get_single().unwrap()` in tests is a bit of a downgrade. ## Testing I've done a global search for `.single` to track down any missed deprecated usages. As to whether or not all the migrations were successful, that's what CI is for :) ## Future work ~~Rename `Query::get_single` and friends to `Query::single`!~~ ~~I've opted not to do this in this PR, and smear it across two releases in order to ease the migration. Successive deprecations are much easier to manage than the semantics and types shifting under your feet.~~ Cart has convinced me to change my mind on this; see https://github.com/bevyengine/bevy/pull/18082#discussion_r1974536085. ## Migration guide `Query::single`, `Query::single_mut` and their `QueryState` equivalents now return a `Result`. Generally, you'll want to: 1. Use Bevy 0.16's system error handling to return a `Result` using the `?` operator. 2. Use a `let else Ok(data)` block to early return if it's an expected failure. 3. Use `unwrap()` or `Ok` destructuring inside of tests. The old `Query::get_single` (etc) methods which did this have been deprecated. |
||
![]() |
5241e09671
|
Upgrade to Rust Edition 2024 (#17967)
# Objective - Fixes #17960 ## Solution - Followed the [edition upgrade guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html) ## Testing - CI --- ## Summary of Changes ### Documentation Indentation When using lists in documentation, proper indentation is now linted for. This means subsequent lines within the same list item must start at the same indentation level as the item. ```rust /* Valid */ /// - Item 1 /// Run-on sentence. /// - Item 2 struct Foo; /* Invalid */ /// - Item 1 /// Run-on sentence. /// - Item 2 struct Foo; ``` ### Implicit `!` to `()` Conversion `!` (the never return type, returned by `panic!`, etc.) no longer implicitly converts to `()`. This is particularly painful for systems with `todo!` or `panic!` statements, as they will no longer be functions returning `()` (or `Result<()>`), making them invalid systems for functions like `add_systems`. The ideal fix would be to accept functions returning `!` (or rather, _not_ returning), but this is blocked on the [stabilisation of the `!` type itself](https://doc.rust-lang.org/std/primitive.never.html), which is not done. The "simple" fix would be to add an explicit `-> ()` to system signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`). However, this is _also_ banned, as there is an existing lint which (IMO, incorrectly) marks this as an unnecessary annotation. So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ... }` closuers into variables and give the variable an explicit type (e.g., `fn()`). ```rust // Valid let system: fn() = || todo!("Not implemented yet!"); app.add_systems(..., system); // Invalid app.add_systems(..., || todo!("Not implemented yet!")); ``` ### Temporary Variable Lifetimes The order in which temporary variables are dropped has changed. The simple fix here is _usually_ to just assign temporaries to a named variable before use. ### `gen` is a keyword We can no longer use the name `gen` as it is reserved for a future generator syntax. This involved replacing uses of the name `gen` with `r#gen` (the raw-identifier syntax). ### Formatting has changed Use statements have had the order of imports changed, causing a substantial +/-3,000 diff when applied. For now, I have opted-out of this change by amending `rustfmt.toml` ```toml style_edition = "2021" ``` This preserves the original formatting for now, reducing the size of this PR. It would be a simple followup to update this to 2024 and run `cargo fmt`. ### New `use<>` Opt-Out Syntax Lifetimes are now implicitly included in RPIT types. There was a handful of instances where it needed to be added to satisfy the borrow checker, but there may be more cases where it _should_ be added to avoid breakages in user code. ### `MyUnitStruct { .. }` is an invalid pattern Previously, you could match against unit structs (and unit enum variants) with a `{ .. }` destructuring. This is no longer valid. ### Pretty much every use of `ref` and `mut` are gone Pattern binding has changed to the point where these terms are largely unused now. They still serve a purpose, but it is far more niche now. ### `iter::repeat(...).take(...)` is bad New lint recommends using the more explicit `iter::repeat_n(..., ...)` instead. ## Migration Guide The lifetimes of functions using return-position impl-trait (RPIT) are likely _more_ conservative than they had been previously. If you encounter lifetime issues with such a function, please create an issue to investigate the addition of `+ use<...>`. ## Notes - Check the individual commits for a clearer breakdown for what _actually_ changed. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
![]() |
5f86668bbb
|
Renamed EventWriter::send methods to write . (#17977)
Fixes #17856. ## Migration Guide - `EventWriter::send` has been renamed to `EventWriter::write`. - `EventWriter::send_batch` has been renamed to `EventWriter::write_batch`. - `EventWriter::send_default` has been renamed to `EventWriter::write_default`. --------- Co-authored-by: François Mockers <mockersf@gmail.com> |
||
![]() |
ea578415e1
|
Improved Spawn APIs and Bundle Effects (#17521)
## Objective A major critique of Bevy at the moment is how boilerplatey it is to compose (and read) entity hierarchies: ```rust commands .spawn(Foo) .with_children(|p| { p.spawn(Bar).with_children(|p| { p.spawn(Baz); }); p.spawn(Bar).with_children(|p| { p.spawn(Baz); }); }); ``` There is also currently no good way to statically define and return an entity hierarchy from a function. Instead, people often do this "internally" with a Commands function that returns nothing, making it impossible to spawn the hierarchy in other cases (direct World spawns, ChildSpawner, etc). Additionally, because this style of API results in creating the hierarchy bits _after_ the initial spawn of a bundle, it causes ECS archetype changes (and often expensive table moves). Because children are initialized after the fact, we also can't count them to pre-allocate space. This means each time a child inserts itself, it has a high chance of overflowing the currently allocated capacity in the `RelationshipTarget` collection, causing literal worst-case reallocations. We can do better! ## Solution The Bundle trait has been extended to support an optional `BundleEffect`. This is applied directly to World immediately _after_ the Bundle has fully inserted. Note that this is [intentionally](https://github.com/bevyengine/bevy/discussions/16920) _not done via a deferred Command_, which would require repeatedly copying each remaining subtree of the hierarchy to a new command as we walk down the tree (_not_ good performance). This allows us to implement the new `SpawnRelated` trait for all `RelationshipTarget` impls, which looks like this in practice: ```rust world.spawn(( Foo, Children::spawn(( Spawn(( Bar, Children::spawn(Spawn(Baz)), )), Spawn(( Bar, Children::spawn(Spawn(Baz)), )), )) )) ``` `Children::spawn` returns `SpawnRelatedBundle<Children, L: SpawnableList>`, which is a `Bundle` that inserts `Children` (preallocated to the size of the `SpawnableList::size_hint()`). `Spawn<B: Bundle>(pub B)` implements `SpawnableList` with a size of 1. `SpawnableList` is also implemented for tuples of `SpawnableList` (same general pattern as the Bundle impl). There are currently three built-in `SpawnableList` implementations: ```rust world.spawn(( Foo, Children::spawn(( Spawn(Name::new("Child1")), SpawnIter(["Child2", "Child3"].into_iter().map(Name::new), SpawnWith(|parent: &mut ChildSpawner| { parent.spawn(Name::new("Child4")); parent.spawn(Name::new("Child5")); }) )), )) ``` We get the benefits of "structured init", but we have nice flexibility where it is required! Some readers' first instinct might be to try to remove the need for the `Spawn` wrapper. This is impossible in the Rust type system, as a tuple of "child Bundles to be spawned" and a "tuple of Components to be added via a single Bundle" is ambiguous in the Rust type system. There are two ways to resolve that ambiguity: 1. By adding support for variadics to the Rust type system (removing the need for nested bundles). This is out of scope for this PR :) 2. Using wrapper types to resolve the ambiguity (this is what I did in this PR). For the single-entity spawn cases, `Children::spawn_one` does also exist, which removes the need for the wrapper: ```rust world.spawn(( Foo, Children::spawn_one(Bar), )) ``` ## This works for all Relationships This API isn't just for `Children` / `ChildOf` relationships. It works for any relationship type, and they can be mixed and matched! ```rust world.spawn(( Foo, Observers::spawn(( Spawn(Observer::new(|trigger: Trigger<FuseLit>| {})), Spawn(Observer::new(|trigger: Trigger<Exploded>| {})), )), OwnerOf::spawn(Spawn(Bar)) Children::spawn(Spawn(Baz)) )) ``` ## Macros While `Spawn` is necessary to satisfy the type system, we _can_ remove the need to express it via macros. The example above can be expressed more succinctly using the new `children![X]` macro, which internally produces `Children::spawn(Spawn(X))`: ```rust world.spawn(( Foo, children![ ( Bar, children![Baz], ), ( Bar, children![Baz], ), ] )) ``` There is also a `related!` macro, which is a generic version of the `children!` macro that supports any relationship type: ```rust world.spawn(( Foo, related!(Children[ ( Bar, related!(Children[Baz]), ), ( Bar, related!(Children[Baz]), ), ]) )) ``` ## Returning Hierarchies from Functions Thanks to these changes, the following pattern is now possible: ```rust fn button(text: &str, color: Color) -> impl Bundle { ( Node { width: Val::Px(300.), height: Val::Px(100.), ..default() }, BackgroundColor(color), children![ Text::new(text), ] ) } fn ui() -> impl Bundle { ( Node { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default(), }, children![ button("hello", BLUE), button("world", RED), ] ) } // spawn from a system fn system(mut commands: Commands) { commands.spawn(ui()); } // spawn directly on World world.spawn(ui()); ``` ## Additional Changes and Notes * `Bundle::from_components` has been split out into `BundleFromComponents::from_components`, enabling us to implement `Bundle` for types that cannot be "taken" from the ECS (such as the new `SpawnRelatedBundle`). * The `NoBundleEffect` trait (which implements `BundleEffect`) is implemented for empty tuples (and tuples of empty tuples), which allows us to constrain APIs to only accept bundles that do not have effects. This is critical because the current batch spawn APIs cannot efficiently apply BundleEffects in their current form (as doing so in-place could invalidate the cached raw pointers). We could consider allocating a buffer of the effects to be applied later, but that does have performance implications that could offset the balance and value of the batched APIs (and would likely require some refactors to the underlying code). I've decided to be conservative here. We can consider relaxing that requirement on those APIs later, but that should be done in a followup imo. * I've ported a few examples to illustrate real-world usage. I think in a followup we should port all examples to the `children!` form whenever possible (and for cases that require things like SpawnIter, use the raw APIs). * Some may ask "why not use the `Relationship` to spawn (ex: `ChildOf::spawn(Foo)`) instead of the `RelationshipTarget` (ex: `Children::spawn(Spawn(Foo))`)?". That _would_ allow us to remove the `Spawn` wrapper. I've explicitly chosen to disallow this pattern. `Bundle::Effect` has the ability to create _significant_ weirdness. Things in `Bundle` position look like components. For example `world.spawn((Foo, ChildOf::spawn(Bar)))` _looks and reads_ like Foo is a child of Bar. `ChildOf` is in Foo's "component position" but it is not a component on Foo. This is a huge problem. Now that `Bundle::Effect` exists, we should be _very_ principled about keeping the "weird and unintuitive behavior" to a minimum. Things that read like components _should be the components they appear to be". ## Remaining Work * The macros are currently trivially implemented using macro_rules and are currently limited to the max tuple length. They will require a proc_macro implementation to work around the tuple length limit. ## Next Steps * Port the remaining examples to use `children!` where possible and raw `Spawn` / `SpawnIter` / `SpawnWith` where the flexibility of the raw API is required. ## Migration Guide Existing spawn patterns will continue to work as expected. Manual Bundle implementations now require a `BundleEffect` associated type. Exisiting bundles would have no bundle effect, so use `()`. Additionally `Bundle::from_components` has been moved to the new `BundleFromComponents` trait. ```rust // Before unsafe impl Bundle for X { unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self { } /* remaining bundle impl here */ } // After unsafe impl Bundle for X { type Effect = (); /* remaining bundle impl here */ } unsafe impl BundleFromComponents for X { unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self { } } ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: Emerson Coskey <emerson@coskey.dev> |
||
![]() |
dfac3b9bfd
|
Fix window close in example cause panic (#17533)
# Objective Fixes #17532 ## Solution - check window valide |
||
![]() |
21f1e3045c
|
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with planned paths for fragmenting and non-fragmenting many-to-many relationships). "Non-fragmenting" means that entities with the same relationship type, but different relationship targets, are not forced into separate tables (which would cause "table fragmentation"). Functionally, this fills a similar niche as the current Parent/Children system. The biggest differences are: 1. Relationships have simpler internals and significantly improved performance and UX. Commands and specialized APIs are no longer necessary to keep everything in sync. Just spawn entities with the relationship components you want and everything "just works". 2. Relationships are generalized. Bevy can provide additional built in relationships, and users can define their own. **REQUEST TO REVIEWERS**: _please don't leave top level comments and instead comment on specific lines of code. That way we can take advantage of threaded discussions. Also dont leave comments simply pointing out CI failures as I can read those just fine._ ## Built on top of what we have Relationships are implemented on top of the Bevy ECS features we already have: components, immutability, and hooks. This makes them immediately compatible with all of our existing (and future) APIs for querying, spawning, removing, scenes, reflection, etc. The fewer specialized APIs we need to build, maintain, and teach, the better. ## Why focus on one-to-many non-fragmenting first? 1. This allows us to improve Parent/Children relationships immediately, in a way that is reasonably uncontroversial. Switching our hierarchy to fragmenting relationships would have significant performance implications. ~~Flecs is heavily considering a switch to non-fragmenting relations after careful considerations of the performance tradeoffs.~~ _(Correction from @SanderMertens: Flecs is implementing non-fragmenting storage specialized for asset hierarchies, where asset hierarchies are many instances of small trees that have a well defined structure)_ 2. Adding generalized one-to-many relationships is currently a priority for the [Next Generation Scene / UI effort](https://github.com/bevyengine/bevy/discussions/14437). Specifically, we're interested in building reactions and observers on top. ## The changes This PR does the following: 1. Adds a generic one-to-many Relationship system 3. Ports the existing Parent/Children system to Relationships, which now lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been removed. 4. Adds on_despawn component hooks 5. Relationships can opt-in to "despawn descendants" behavior, meaning that the entire relationship hierarchy is despawned when `entity.despawn()` is called. The built in Parent/Children hierarchies enable this behavior, and `entity.despawn_recursive()` has been removed. 6. `world.spawn` now applies commands after spawning. This ensures that relationship bookkeeping happens immediately and removes the need to manually flush. This is in line with the equivalent behaviors recently added to the other APIs (ex: insert). 7. Removes the ValidParentCheckPlugin (system-driven / poll based) in favor of a `validate_parent_has_component` hook. ## Using Relationships The `Relationship` trait looks like this: ```rust pub trait Relationship: Component + Sized { type RelationshipSources: RelationshipSources<Relationship = Self>; fn get(&self) -> Entity; fn from(entity: Entity) -> Self; } ``` A relationship is a component that: 1. Is a simple wrapper over a "target" Entity. 2. Has a corresponding `RelationshipSources` component, which is a simple wrapper over a collection of entities. Every "target entity" targeted by a "source entity" with a `Relationship` has a `RelationshipSources` component, which contains every "source entity" that targets it. For example, the `Parent` component (as it currently exists in Bevy) is the `Relationship` component and the entity containing the Parent is the "source entity". The entity _inside_ the `Parent(Entity)` component is the "target entity". And that target entity has a `Children` component (which implements `RelationshipSources`). In practice, the Parent/Children relationship looks like this: ```rust #[derive(Relationship)] #[relationship(relationship_sources = Children)] pub struct Parent(pub Entity); #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent)] pub struct Children(Vec<Entity>); ``` The Relationship and RelationshipSources derives automatically implement Component with the relevant configuration (namely, the hooks necessary to keep everything in sync). The most direct way to add relationships is to spawn entities with relationship components: ```rust let a = world.spawn_empty().id(); let b = world.spawn(Parent(a)).id(); assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]); ``` There are also convenience APIs for spawning more than one entity with the same relationship: ```rust world.spawn_empty().with_related::<Children>(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` The existing `with_children` API is now a simpler wrapper over `with_related`. This makes this change largely non-breaking for existing spawn patterns. ```rust world.spawn_empty().with_children(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` There are also other relationship APIs, such as `add_related` and `despawn_related`. ## Automatic recursive despawn via the new on_despawn hook `RelationshipSources` can opt-in to "despawn descendants" behavior, which will despawn all related entities in the relationship hierarchy: ```rust #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent, despawn_descendants)] pub struct Children(Vec<Entity>); ``` This means that `entity.despawn_recursive()` is no longer required. Instead, just use `entity.despawn()` and the relevant related entities will also be despawned. To despawn an entity _without_ despawning its parent/child descendants, you should remove the `Children` component first, which will also remove the related `Parent` components: ```rust entity .remove::<Children>() .despawn() ``` This builds on the on_despawn hook introduced in this PR, which is fired when an entity is despawned (before other hooks). ## Relationships are the source of truth `Relationship` is the _single_ source of truth component. `RelationshipSources` is merely a reflection of what all the `Relationship` components say. By embracing this, we are able to significantly improve the performance of the system as a whole. We can rely on component lifecycles to protect us against duplicates, rather than needing to scan at runtime to ensure entities don't already exist (which results in quadratic runtime). A single source of truth gives us constant-time inserts. This does mean that we cannot directly spawn populated `Children` components (or directly add or remove entities from those components). I personally think this is a worthwhile tradeoff, both because it makes the performance much better _and_ because it means theres exactly one way to do things (which is a philosophy we try to employ for Bevy APIs). As an aside: treating both sides of the relationship as "equivalent source of truth relations" does enable building simple and flexible many-to-many relationships. But this introduces an _inherent_ need to scan (or hash) to protect against duplicates. [`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations) has a very nice implementation of the "symmetrical many-to-many" approach. Unfortunately I think the performance issues inherent to that approach make it a poor choice for Bevy's default relationship system. ## Followup Work * Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in this PR to keep the diff reasonable, but I'm personally biased toward this change (and using that naming pattern generally for relationships). * [Improved spawning ergonomics](https://github.com/bevyengine/bevy/discussions/16920) * Consider adding relationship observers/triggers for "relationship targets" whenever a source is added or removed. This would replace the current "hierarchy events" system, which is unused upstream but may have existing users downstream. I think triggers are the better fit for this than a buffered event queue, and would prefer not to add that back. * Fragmenting relations: My current idea hinges on the introduction of "value components" (aka: components whose type _and_ value determines their ComponentId, via something like Hashing / PartialEq). By labeling a Relationship component such as `ChildOf(Entity)` as a "value component", `ChildOf(e1)` and `ChildOf(e2)` would be considered "different components". This makes the transition between fragmenting and non-fragmenting a single flag, and everything else continues to work as expected. * Many-to-many support * Non-fragmenting: We can expand Relationship to be a list of entities instead of a single entity. I have largely already written the code for this. * Fragmenting: With the "value component" impl mentioned above, we get many-to-many support "for free", as it would allow inserting multiple copies of a Relationship component with different target entities. Fixes #3742 (If this PR is merged, I think we should open more targeted followup issues for the work above, with a fresh tracking issue free of the large amount of less-directed historical context) Fixes #17301 Fixes #12235 Fixes #15299 Fixes #15308 ## Migration Guide * Replace `ChildBuilder` with `ChildSpawnerCommands`. * Replace calls to `.set_parent(parent_id)` with `.insert(Parent(parent_id))`. * Replace calls to `.replace_children()` with `.remove::<Children>()` followed by `.add_children()`. Note that you'll need to manually despawn any children that are not carried over. * Replace calls to `.despawn_recursive()` with `.despawn()`. * Replace calls to `.despawn_descendants()` with `.despawn_related::<Children>()`. * If you have any calls to `.despawn()` which depend on the children being preserved, you'll need to remove the `Children` component first. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
9e4c07238b
|
Fix logic error in loading_screen.rs (#16989)
# Objective Fix #16792 ## Solution Fix the logic to retain loaded ones ## Testing Unable to test due to #16988 |
||
![]() |
711246aa34
|
Update hashbrown to 0.15 (#15801)
Updating dependencies; adopted version of #15696. (Supercedes #15696.) Long answer: hashbrown is no longer using ahash by default, meaning that we can't use the default-hasher methods with ahasher. So, we have to use the longer-winded versions instead. This takes the opportunity to also switch our default hasher as well, but without actually enabling the default-hasher feature for hashbrown, meaning that we'll be able to change our hasher more easily at the cost of all of these method calls being obnoxious forever. One large change from 0.15 is that `insert_unique_unchecked` is now `unsafe`, and for cases where unsafe code was denied at the crate level, I replaced it with `insert`. ## Migration Guide `bevy_utils` has updated its version of `hashbrown` to 0.15 and now defaults to `foldhash` instead of `ahash`. This means that if you've hard-coded your hasher to `bevy_utils::AHasher` or separately used the `ahash` crate in your code, you may need to switch to `foldhash` to ensure that everything works like it does in Bevy. |
||
![]() |
1d3950a82a
|
Replace deperacted bundle mention in the comment (#16699)
Clean up left over comments after changes were made from bundles to required components |
||
![]() |
48fb4aa6d5
|
Update breakout to use Required Components (#16577)
# Objective This PR update breakout to use the new 0.15 Required Component feature instead of the Bundle. Add more information in the comment about where to find more info about Required Components. ## Solution Replace `#[derive(Bundle)]` with a new Wall component and `#[require()]` Macro to include the other components. ## Testing Tested with `cargo test` as well tested the game manually with `cargo run --example breakout` It looks to me that it works like it used to before the changes. Tested on Arch Linux, Wayland --------- Co-authored-by: Arnav Mummineni <45217840+RCoder01@users.noreply.github.com> Co-authored-by: Joona Aalto <jondolf.dev@gmail.com> |
||
![]() |
f754cecb49
|
UiImage -> ImageNode, UiImageSize -> ImageNodeSize (#16271)
# Objective Align `UiImage` with the new `XNode` naming convention. ## Solution - Rename `UiImage` to `ImageNode` - Rename `UiImageSize` to `ImageNodeSize` --- ## Migration Guide Before: ```rust commands.spawn(UiImage::new(image)); ```` After: ```rust commands.spawn(ImageNode::new(image)); ``` |
||
![]() |
94f2fe35f7
|
Fix alien_cake_addict example (#16281)
# Objective Fixes #15729 ## Solution Use the state-scoped pattern. ## Testing Tested manually. See the showcase. --- ## Showcase https://github.com/user-attachments/assets/14ffefca-40c6-4c7e-b15b-f92466a2b0a5 |
||
![]() |
015f2c69ca
|
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ``` |
||
![]() |
eb19a9ea0b
|
Migrate UI bundles to required components (#15898)
# Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
7482a0d26d
|
aligning public apis of Time,Timer and Stopwatch (#15962)
Fixes #15834 ## Migration Guide The APIs of `Time`, `Timer` and `Stopwatch` have been cleaned up for consistency with each other and the standard library's `Duration` type. The following methods have been renamed: - `Stowatch::paused` -> `Stopwatch::is_paused` - `Time::elapsed_seconds` -> `Time::elasped_secs` (including `_f64` and `_wrapped` variants) |
||
![]() |
424e563184
|
Make contributors example deterministic in CI (#15901)
# Objective - Make the example deterministic when run with CI, so that the [screenshot comparison](https://thebevyflock.github.io/bevy-example-runner/) is stable - Preserve the "truly random on each run" behavior so that every page load in the example showcase shows a different contributor first ## Solution - Fall back to the static default contributor list in CI - Store contributors in a `Vec` so that we can show repeats of the fallback contributor list, giving the appearance of lots of overlapping contributors in CI - Use a shared seeded RNG throughout the app - Give contributor birds a `z` value so that their depth is stable - Remove the shuffle, which was redundant because contributors are first collected into a hashmap - `chain` the systems so that the physics is deterministic from run to run ## Testing ```bash echo '(setup: (fixed_frame_time: Some(0.05)), events: [(100, Screenshot), (500, AppExit)])' > config.ron CI_TESTING_CONFIG=config.ron cargo run --example contributors --features=bevy_ci_testing mv screenshot-100.png screenshot-100-a.png CI_TESTING_CONFIG=config.ron cargo run --example contributors --features=bevy_ci_testing diff screenshot-100.png screenshot-100-a.png ``` ## Alternatives I'd also be fine with removing this example from the list of examples that gets screenshot-tested in CI. Coverage from other 2d examples is probably adequate. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
f602edad09
|
Text Rework cleanup (#15887)
# Objective Cleanup naming and docs, add missing migration guide after #15591 All text root nodes now use `Text` (UI) / `Text2d`. All text readers/writers use `Text<Type>Reader`/`Text<Type>Writer` convention. --- ## Migration Guide Doubles as #15591 migration guide. Text bundles (`TextBundle` and `Text2dBundle`) were removed in favor of `Text` and `Text2d`. Shared configuration fields were replaced with `TextLayout`, `TextFont` and `TextColor` components. Just `TextBundle`'s additional field turned into `TextNodeFlags` component, while `Text2dBundle`'s additional fields turned into `TextBounds` and `Anchor` components. Text sections were removed in favor of hierarchy-based approach. For root text entities with `Text` or `Text2d` components, child entities with `TextSpan` will act as additional text sections. To still access text spans by index, use the new `TextUiReader`, `Text2dReader` and `TextUiWriter`, `Text2dWriter` system parameters. |
||
![]() |
93fc2d12cf
|
Remove incorrect equality comparisons for asset load error types (#15890)
# Objective The type `AssetLoadError` has `PartialEq` and `Eq` impls, which is problematic due to the fact that the `AssetLoaderError` and `AddAsyncError` variants lie in their impls: they will return `true` for any `Box<dyn Error>` with the same `TypeId`, even if the actual value is different. This can lead to subtle bugs if a user relies on the equality comparison to ensure that two values are equal. The same is true for `DependencyLoadState`, `RecursiveDependencyLoadState`. More generally, it is an anti-pattern for large error types involving dynamic dispatch, such as `AssetLoadError`, to have equality comparisons. Directly comparing two errors for equality is usually not desired -- if some logic needs to branch based on the value of an error, it is usually more correct to check for specific variants and inspect their fields. As far as I can tell, the only reason these errors have equality comparisons is because the `LoadState` enum wraps `AssetLoadError` for its `Failed` variant. This equality comparison is only used to check for `== LoadState::Loaded`, which we can easily replace with an `is_loaded` method. ## Solution Remove the `{Partial}Eq` impls from `LoadState`, which also allows us to remove it from the error types. ## Migration Guide The types `bevy_asset::AssetLoadError` and `bevy_asset::LoadState` no longer support equality comparisons. If you need to check for an asset's load state, consider checking for a specific variant using `LoadState::is_loaded` or the `matches!` macro. Similarly, consider using the `matches!` macro to check for specific variants of the `AssetLoadError` type if you need to inspect the value of an asset load error in your code. `DependencyLoadState` and `RecursiveDependencyLoadState` are not released yet, so no migration needed, --------- Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com> |
||
![]() |
d96a9d15f6
|
Migrate from Query::single and friends to Single (#15872)
# Objective - closes #15866 ## Solution - Simply migrate where possible. ## Testing - Expect that CI will do most of the work. Examples is another way of testing this, as most of the work is in that area. --- ## Notes For now, this PR doesn't migrate `QueryState::single` and friends as for now, this look like another issue. So for example, QueryBuilders that used single or `World::query` that used single wasn't migrated. If there is a easy way to migrate those, please let me know. Most of the uses of `Query::single` were removed, the only other uses that I found was related to tests of said methods, so will probably be removed when we remove `Query::single`. |
||
![]() |
bdd0af6bfb
|
Deprecate SpatialBundle (#15830)
# Objective - Required components replace bundles, but `SpatialBundle` is yet to be deprecated ## Solution - Deprecate `SpatialBundle` - Insert `Transform` and `Visibility` instead in examples using it - In `spawn` or `insert` inserting a default `Transform` or `Visibility` with component already requiring either, remove those components from the tuple ## Testing - Did you test these changes? If so, how? Yes, I ran the examples I changed and tests - Are there any parts that need more testing? The `gamepad_viewer` and and `custom_shader_instancing` examples don't work as intended due to entirely unrelated code, didn't check main. - How can other people (reviewers) test your changes? Is there anything specific they need to know? Run examples, or just check that all spawned values are identical - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? Linux, wayland trough x11 (cause that's the default feature) --- ## Migration Guide `SpatialBundle` is now deprecated, insert `Transform` and `Visibility` instead which will automatically insert all other components that were in the bundle. If you do not specify these values and any other components in your `spawn`/`insert` call already requires either of these components you can leave that one out. before: ```rust commands.spawn(SpatialBundle::default()); ``` after: ```rust commands.spawn((Transform::default(), Visibility::default()); ``` |
||
![]() |
6f7d0e5725
|
split up TextStyle (#15857)
# Objective Currently text is recomputed unnecessarily on any changes to its color, which is extremely expensive. ## Solution Split up `TextStyle` into two separate components `TextFont` and `TextColor`. ## Testing I added this system to `many_buttons`: ```rust fn set_text_colors_changed(mut colors: Query<&mut TextColor>) { for mut text_color in colors.iter_mut() { text_color.set_changed(); } } ``` reports ~4fps on main, ~50fps with this PR. ## Migration Guide `TextStyle` has been renamed to `TextFont` and its `color` field has been moved to a separate component named `TextColor` which newtypes `Color`. |
||
![]() |
6701ad25db
|
Fix loading_screen example (#15845)
# Objective Since #15641, `loading_screen` panics. ``` called `Result::unwrap()` on an `Err` value: MultipleEntities("bevy_ecs::query::state::QueryState<&mut bevy_render::view::visibility::Visibility, bevy_ecs::query::filter::With<loading_screen::LoadingScreen>>") ``` Before that PR, the camera did not have a `Visibility` component. But `Visibility` is now a required component of `Camera`. So the query matches multiple entities. ## Solution Minimal change to make the example behave like it used to. Plus a tiny drive-by cleanup to remove a redundant unwrap. ## Testing `cargo run --example loading_screen` |
||
![]() |
c2c19e5ae4
|
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
7d40e3ec87
|
Migrate bevy_sprite to required components (#15489)
# Objective Continue migration of bevy APIs to required components, following guidance of https://hackmd.io/@bevy/required_components/ ## Solution - Make `Sprite` require `Transform` and `Visibility` and `SyncToRenderWorld` - move image and texture atlas handles into `Sprite` - deprecate `SpriteBundle` - remove engine uses of `SpriteBundle` ## Testing ran cargo tests on bevy_sprite and tested several sprite examples. --- ## Migration Guide Replace all uses of `SpriteBundle` with `Sprite`. There are several new convenience constructors: `Sprite::from_image`, `Sprite::from_atlas_image`, `Sprite::from_color`. WARNING: use of `Handle<Image>` and `TextureAtlas` as components on sprite entities will NO LONGER WORK. Use the fields on `Sprite` instead. I would have removed the `Component` impls from `TextureAtlas` and `Handle<Image>` except it is still used within ui. We should fix this moving forward with the migration. |
||
![]() |
25bfa80e60
|
Migrate cameras to required components (#15641)
# Objective Yet another PR for migrating stuff to required components. This time, cameras! ## Solution As per the [selected proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected), deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d` and `Camera3d`. Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning, as suggested by Cart [on Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273). I would personally like cameras to work a bit differently and be split into a few more components, to avoid some footguns and confusing semantics, but that is more controversial, and shouldn't block this core migration. ## Testing I ran a few 2D and 3D examples, and tried cameras with and without render graphs. --- ## Migration Guide `Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of `Camera2d` and `Camera3d`. Inserting them will now also insert the other components required by them automatically. |
||
![]() |
461305b3d7
|
Revert "Have EntityCommands methods consume self for easier chaining" (#15523)
As discussed in #15521 - Partial revert of #14897, reverting the change to the methods to consume `self` - The `insert_if` method is kept The migration guide of #14897 should be removed Closes #15521 --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
ed151e756c
|
Migrate audio to required components (#15573)
# Objective What's that? Another PR for the grand migration to required components? This time, audio! ## Solution Deprecate `AudioSourceBundle`, `AudioBundle`, and `PitchBundle`, as per the [chosen proposal](https://hackmd.io/@bevy/required_components/%2Fzxgp-zMMRUCdT7LY1ZDQwQ). However, we cannot call the component `AudioSource`, because that's what the stored asset is called. I deliberated on a few names, like `AudioHandle`, or even just `Audio`, but landed on `AudioPlayer`, since it's probably the most accurate and "nice" name for this. Open to alternatives though. --- ## Migration Guide Replace all insertions of `AudioSoucreBundle`, `AudioBundle`, and `PitchBundle` with the `AudioPlayer` component. The other components required by it will now be inserted automatically. In cases where the generics cannot be inferred, you may need to specify them explicitly. For example: ```rust commands.spawn(AudioPlayer::<AudioSource>(asset_server.load("sounds/sick_beats.ogg"))); ``` |
||
![]() |
eb51b4c28e
|
Migrate scenes to required components (#15579)
# Objective A step in the migration to required components: scenes! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2FPJtNGVMMQhyM0zIvCJSkbA): - Deprecate `SceneBundle` and `DynamicSceneBundle`. - Add `SceneRoot` and `DynamicSceneRoot` components, which wrap a `Handle<Scene>` and `Handle<DynamicScene>` respectively. ## Migration Guide Asset handles for scenes and dynamic scenes must now be wrapped in the `SceneRoot` and `DynamicSceneRoot` components. Raw handles as components no longer spawn scenes. Additionally, `SceneBundle` and `DynamicSceneBundle` have been deprecated. Instead, use the scene components directly. Previously: ```rust let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf")); commands.spawn(SceneBundle { scene: model_scene, transform: Transform::from_xyz(-4.0, 0.0, -3.0), ..default() }); ``` Now: ```rust let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf")); commands.spawn(( SceneRoot(model_scene), Transform::from_xyz(-4.0, 0.0, -3.0), )); ``` |
||
![]() |
54006b107b
|
Migrate meshes and materials to required components (#15524)
# Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material:   Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
de888a373d
|
Migrate lights to required components (#15554)
# Objective Another step in the migration to required components: lights! Note that this does not include `EnvironmentMapLight` or reflection probes yet, because their API hasn't been fully chosen yet. ## Solution As per the [selected proposals](https://hackmd.io/@bevy/required_components/%2FLLnzwz9XTxiD7i2jiUXkJg): - Deprecate `PointLightBundle` in favor of the `PointLight` component - Deprecate `SpotLightBundle` in favor of the `PointLight` component - Deprecate `DirectionalLightBundle` in favor of the `DirectionalLight` component ## Testing I ran some examples with lights. --- ## Migration Guide `PointLightBundle`, `SpotLightBundle`, and `DirectionalLightBundle` have been deprecated. Use the `PointLight`, `SpotLight`, and `DirectionalLight` components instead. Adding them will now insert the other components required by them automatically. |
||
![]() |
efda7f3f9c
|
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ``` |
||
![]() |
29508f065f
|
Fix floating point math (#15239)
# Objective - Fixes #15236 ## Solution - Use bevy_math::ops instead of std floating point operations. ## Testing - Did you test these changes? If so, how? Unit tests and `cargo run -p ci -- test` - How can other people (reviewers) test your changes? Is there anything specific they need to know? Execute `cargo run -p ci -- test` on Windows. - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? Windows ## Migration Guide - Not a breaking change - Projects should use bevy math where applicable --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: IQuick 143 <IQuick143cz@gmail.com> Co-authored-by: Joona Aalto <jondolf.dev@gmail.com> |
||
![]() |
522d82b21a
|
Fixing text sizes for examples (#15190)
# Objective - Fixes #14265 ## Solution - Go through Pixel Eagle examples (and examples all in all) - If default size is used it is usually left there - If size of font is touched try dividing with 1.2 and round it to nearest whole number ## Testing - Run example before and after - Make sure examples text are readable or like before cosmic-text change --- ## Showcase Before:  After:  |
||
![]() |
37316c7706
|
Fix "game_menu" example buttons not changing color on Interaction (#15153)
# Objective Fixes #15079 , repairing the `game_menu` example ## Solution - Changed the target component for the color updates from `UiImage` to `BackgroundColor`. - Changed the width of the `button_style` to `300px` to prevent overlap with the text. ## Testing Checked that buttons now correctly update their background color on hover/exit/press. --- ## Showcase https://github.com/user-attachments/assets/8f7ede9b-c271-4b59-91f9-27d9e3db1429 |
||
![]() |
ec728c31c1
|
style: simplify string formatting for readability (#15033)
# Objective The goal of this change is to improve code readability and maintainability. |
||
![]() |
c620eb7833
|
Return Result s from Camera 's world/viewport conversion methods (#14989)
# Objective - Fixes https://github.com/bevyengine/bevy/issues/14593. ## Solution - Add `ViewportConversionError` and return it from viewport conversion methods on Camera. ## Testing - I successfully compiled and ran all changed examples. ## Migration Guide The following methods on `Camera` now return a `Result` instead of an `Option` so that they can provide more information about failures: - `world_to_viewport` - `world_to_viewport_with_depth` - `viewport_to_world` - `viewport_to_world_2d` Call `.ok()` on the `Result` to turn it back into an `Option`, or handle the `Result` directly. --------- Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
![]() |
484721be80
|
Have EntityCommands methods consume self for easier chaining (#14897)
# Objective Fixes #14883 ## Solution Pretty simple update to `EntityCommands` methods to consume `self` and return it rather than taking `&mut self`. The things probably worth noting: * I added `#[allow(clippy::should_implement_trait)]` to the `add` method because it causes a linting conflict with `std::ops::Add`. * `despawn` and `log_components` now return `Self`. I'm not sure if that's exactly the desired behavior so I'm happy to adjust if that seems wrong. ## Testing Tested with `cargo run -p ci`. I think that should be sufficient to call things good. ## Migration Guide The most likely migration needed is changing code from this: ``` let mut entity = commands.get_or_spawn(entity); if depth_prepass { entity.insert(DepthPrepass); } if normal_prepass { entity.insert(NormalPrepass); } if motion_vector_prepass { entity.insert(MotionVectorPrepass); } if deferred_prepass { entity.insert(DeferredPrepass); } ``` to this: ``` let mut entity = commands.get_or_spawn(entity); if depth_prepass { entity = entity.insert(DepthPrepass); } if normal_prepass { entity = entity.insert(NormalPrepass); } if motion_vector_prepass { entity = entity.insert(MotionVectorPrepass); } if deferred_prepass { entity.insert(DeferredPrepass); } ``` as can be seen in several of the example code updates here. There will probably also be instances where mutable `EntityCommands` vars no longer need to be mutable. |
||
![]() |
48bd810451
|
Rename Commands::register_one_shot_system -> register_system (#14910)
# Objective
Improve naming consistency for functions that deal with one-shot systems
via `SystemId`:
- `App::register_system`
- `SubApp::register_system`
- `World::run_system`
- `World::register_system`
- `Commands::run_system`
- ❌ `Commands::register_one_shot_system`
## Solution
Rename `Commands::register_one_shot_system` -> `register_system`.
## Testing
Not tested besides CI.
## Migration Guide
`Commands::register_one_shot_system` has been renamed to
`register_system`.
|
||
![]() |
938d810766
|
Apply unused_qualifications lint (#14828)
# Objective Fixes #14782 ## Solution Enable the lint and fix all upcoming hints (`--fix`). Also tried to figure out the false-positive (see review comment). Maybe split this PR up into multiple parts where only the last one enables the lint, so some can already be merged resulting in less many files touched / less potential for merge conflicts? Currently, there are some cases where it might be easier to read the code with the qualifier, so perhaps remove the import of it and adapt its cases? In the current stage it's just a plain adoption of the suggestions in order to have a base to discuss. ## Testing `cargo clippy` and `cargo run -p ci` are happy. |
||
![]() |
47c4e3084a
|
Add custom cursors (#14284)
# Objective - Add custom images as cursors - Fixes #9557 ## Solution - Change cursor type to accommodate both native and image cursors - I don't really like this solution because I couldn't use `Handle<Image>` directly. I would need to import `bevy_assets` and that causes a circular dependency. Alternatively we could use winit's `CustomCursor` smart pointers, but that seems hard because the event loop is needed to create those and is not easily accessable for users. So now I need to copy around rgba buffers which is sad. - I use a cache because especially on the web creating cursor images is really slow - Sorry to #14196 for yoinking, I just wanted to make a quick solution for myself and thought that I should probably share it too. Update: - Now uses `Handle<Image>`, reads rgba data in `bevy_render` and uses resources to send the data to `bevy_winit`, where the final cursors are created. ## Testing - Added example which works fine at least on Linux Wayland (winit side has been tested with all platforms). - I haven't tested if the url cursor works. ## Migration Guide - `CursorIcon` is no longer a field in `Window`, but a separate component can be inserted to a window entity. It has been changed to an enum that can hold custom images in addition to system icons. - `Cursor` is renamed to `CursorOptions` and `cursor` field of `Window` is renamed to `cursor_options` - `CursorIcon` is renamed to `SystemCursorIcon` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Jan Hohenheim <jan@hohenheim.ch> |
||
![]() |
336fddb101
|
Make default behavior for BackgroundColor and BorderColor more intuitive (#14017)
# Objective In Bevy 0.13, `BackgroundColor` simply tinted the image of any `UiImage`. This was confusing: in every other case (e.g. Text), this added a solid square behind the element. #11165 changed this, but removed `BackgroundColor` from `ImageBundle` to avoid confusion, since the semantic meaning had changed. However, this resulted in a serious UX downgrade / inconsistency, as this behavior was no longer part of the bundle (unlike for `TextBundle` or `NodeBundle`), leaving users with a relatively frustrating upgrade path. Additionally, adding both `BackgroundColor` and `UiImage` resulted in a bizarre effect, where the background color was seemingly ignored as it was covered by a solid white placeholder image. Fixes #13969. ## Solution Per @viridia's design: > - if you don't specify a background color, it's transparent. > - if you don't specify an image color, it's white (because it's a multiplier). > - if you don't specify an image, no image is drawn. > - if you specify both a background color and an image color, they are independent. > - the background color is drawn behind the image (in whatever pixels are transparent) As laid out by @benfrankel, this involves: 1. Changing the default `UiImage` to use a transparent texture but a pure white tint. 2. Adding `UiImage::solid_color` to quickly set placeholder images. 3. Changing the default `BorderColor` and `BackgroundColor` to transparent. 4. Removing the default overrides for these values in the other assorted UI bundles. 5. Adding `BackgroundColor` back to `ImageBundle` and `ButtonBundle`. 6. Adding a 1x1 `Image::transparent`, which can be accessed from `Assets<Image>` via the `TRANSPARENT_IMAGE_HANDLE` constant. Huge thanks to everyone who helped out with the design in the linked issue and [the Discord thread](https://discord.com/channels/691052431525675048/1255209923890118697/1255209999278280844): this was very much a joint design. @cart helped me figure out how to set the UiImage's default texture to a transparent 1x1 image, which is a much nicer fix. ## Testing I've checked the examples modified by this PR, and the `ui` example as well just to be sure. ## Migration Guide - `BackgroundColor` no longer tints the color of images in `ImageBundle` or `ButtonBundle`. Set `UiImage::color` to tint images instead. - The default texture for `UiImage` is now a transparent white square. Use `UiImage::solid_color` to quickly draw debug images. - The default value for `BackgroundColor` and `BorderColor` is now transparent. Set the color to white manually to return to previous behavior. |