Commit Graph

376 Commits

Author SHA1 Message Date
Tim
57086d4416
Remove the need to derive Event when deriving EntityEvent (#20104)
# Objective
Since we are planning to remove the need to derive both `Event` and
`EntityEvent` in 0.17 either way, I'm choosing to do the easy thing in
this PR so we can get the churn out of the way early.

Context from
[discord](https://discordapp.com/channels/691052431525675048/1383928409784193024/1393463673137401946).
Related to, and will conflict slightly with #20101.

## Solution

- Derive `Event` as part of the `EntityEvent` derive
- Remove any `Event` derives that were made unnecessary
- Update release notes
2025-07-15 16:45:38 +00:00
Tim
4e9e78c31e
Split BufferedEvent from Event (#20101)
# Objective

> I think we should axe the shared `Event` trait entirely
It doesn't serve any functional purpose, and I don't think it's useful
pedagogically
@alice-i-cecile on discord

## Solution

- Remove `Event` as a supertrait of `BufferedEvent`
- Remove any `Event` derives that were made unnecessary
- Update release notes

---------

Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net>
2025-07-14 21:31:48 +00:00
AlephCubed
3aed85a88b
Rename send_event and similar methods to write_event (#20017)
Fixes: #18963
Follows up on: #17977
Adopts: #18966

In 0.16, `EventWriter::send` was renamed to `EventWriter::write`, but
many methods were missed (sorry about that). This completes that
refactor by renaming all `send` methods and internals.

| Old | New |

|-------------------------------------|--------------------------------------|
| `World::send_event` | `World::write_event` |
| `World::send_event_default` | `World::write_event_default` |
| `World::send_event_batch` | `World::write_event_batch` |
| `DeferredWorld::send_event` | `DeferredWorld::write_event` |
| `DeferredWorld::send_event_default` |
`DeferredWorld::write_event_default` |
| `DeferredWorld::send_event_batch` | `DeferredWorld::write_event_batch`
|
| `Commands::send_event` | `Commmands::write_event` |
| `Events::send` | `Events::write` |
| `Events::send_default` | `Events::write_default` |
| `Events::send_batch` | `Events::write_batch` |
| `RemovedComponentEvents::send` | `RemovedComponentEvents::write` |
| `command::send_event` | `commmand::write_event` |
| `SendBatchIds` | `WriteBatchIds` |

---------

Co-authored-by: shwwwa <shwwwa.dev@gmail.com>
2025-07-07 22:05:16 +00:00
charlotte 🌸
92e65d5eb1
Upgrade to Rust 1.88 (#19825) 2025-06-26 19:38:19 +00:00
Chris Russell
f7e112a3c9
Let query items borrow from query state to avoid needing to clone (#15396)
# Objective

Improve the performance of `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.

`FilteredEntityRef` needs an `Access<ComponentId>` to determine what
components it can access. There is one stored in the query state, but
query items cannot borrow from the state, so it has to `clone()` the
access for each row. Cloning the access involves memory allocations and
can be expensive.


## Solution

Let query items borrow from their query state.  

Add an `'s` lifetime to `WorldQuery::Item` and `WorldQuery::Fetch`,
similar to the one in `SystemParam`, and provide `&'s Self::State` to
the fetch so that it can borrow from the state.

Unfortunately, there are a few cases where we currently return query
items from temporary query states: the sorted iteration methods create a
temporary state to query the sort keys, and the
`EntityRef::components<Q>()` methods create a temporary state for their
query.

To allow these to continue to work with most `QueryData`
implementations, introduce a new subtrait `ReleaseStateQueryData` that
converts a `QueryItem<'w, 's>` to `QueryItem<'w, 'static>`, and is
implemented for everything except `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.

`#[derive(QueryData)]` will generate `ReleaseStateQueryData`
implementations that apply when all of the subqueries implement
`ReleaseStateQueryData`.

This PR does not actually change the implementation of
`FilteredEntity(Ref|Mut)` or `Entity(Ref|Mut)Except`! That will be done
as a follow-up PR so that the changes are easier to review. I have
pushed the changes as chescock/bevy#5.

## Testing

I ran performance traces of many_foxes, both against main and against
chescock/bevy#5, both including #15282. These changes do appear to make
generalized animation a bit faster:

(Red is main, yellow is chescock/bevy#5)

![image](https://github.com/user-attachments/assets/de900117-0c6a-431d-ab62-c013834f97a9)


## Migration Guide

The `WorldQuery::Item` and `WorldQuery::Fetch` associated types and the
`QueryItem` and `ROQueryItem` type aliases now have an additional
lifetime parameter corresponding to the `'s` lifetime in `Query`. Manual
implementations of `WorldQuery` will need to update the method
signatures to include the new lifetimes. Other uses of the types will
need to be updated to include a lifetime parameter, although it can
usually be passed as `'_`. In particular, `ROQueryItem` is used when
implementing `RenderCommand`.

Before: 

```rust
fn render<'w>(
    item: &P,
    view: ROQueryItem<'w, Self::ViewQuery>,
    entity: Option<ROQueryItem<'w, Self::ItemQuery>>,
    param: SystemParamItem<'w, '_, Self::Param>,
    pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```

After: 

```rust
fn render<'w>(
    item: &P,
    view: ROQueryItem<'w, '_, Self::ViewQuery>,
    entity: Option<ROQueryItem<'w, '_, Self::ItemQuery>>,
    param: SystemParamItem<'w, '_, Self::Param>,
    pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```

---

Methods on `QueryState` that take `&mut self` may now result in
conflicting borrows if the query items capture the lifetime of the
mutable reference. This affects `get()`, `iter()`, and others. To fix
the errors, first call `QueryState::update_archetypes()`, and then
replace a call `state.foo(world, param)` with
`state.query_manual(world).foo_inner(param)`. Alternately, you may be
able to restructure the code to call `state.query(world)` once and then
make multiple calls using the `Query`.

Before:
```rust
let mut state: QueryState<_, _> = ...;
let d1 = state.get(world, e1);
let d2 = state.get(world, e2); // Error: cannot borrow `state` as mutable more than once at a time
println!("{d1:?}");
println!("{d2:?}");
```

After: 
```rust
let mut state: QueryState<_, _> = ...;

state.update_archetypes(world);
let d1 = state.get_manual(world, e1);
let d2 = state.get_manual(world, e2);
// OR
state.update_archetypes(world);
let d1 = state.query(world).get_inner(e1);
let d2 = state.query(world).get_inner(e2);
// OR
let query = state.query(world);
let d1 = query.get_inner(e1);
let d1 = query.get_inner(e2);

println!("{d1:?}");
println!("{d2:?}");
```
2025-06-16 21:05:41 +00:00
Alice Cecile
b7d2cb8547
Provide access to the original target of entity-events in observers (#19663)
# Objective

Getting access to the original target of an entity-event is really
helpful when working with bubbled / propagated events.

`bevy_picking` special-cases this, but users have requested this for all
sorts of bubbled events.

The existing naming convention was also very confusing. Fixes
https://github.com/bevyengine/bevy/issues/17112, but also see #18982.

## Solution

1. Rename `ObserverTrigger::target` -> `current_target`.
1. Store `original_target: Option<Entity>` in `ObserverTrigger`.
1. Wire it up so this field gets set correctly.
1. Remove the `target` field on the `Pointer` events from
`bevy_picking`.

Closes https://github.com/bevyengine/bevy/pull/18710, which attempted
the same thing. Thanks @emfax!

## Testing

I've modified an existing test to check that the entities returned
during event bubbling / propagation are correct.

## Notes to reviewers

It's a little weird / sad that you can no longer access this infromation
via the buffered events for `Pointer`. That said, you already couldn't
access any bubbled target. We should probably remove the `BufferedEvent`
form of `Pointer` to reduce confusion and overhead, but I didn't want to
do so here.

Observer events can be trivially converted into buffered events (write
an observer with an EventWriter), and I suspect that that is the better
migration if you want the controllable timing or performance
characteristics of buffered events for your specific use case.

## Future work

It would be nice to not store this data at all (and not expose any
methods) if propagation was disabled. That involves more trait
shuffling, and I don't think we should do it here for reviewability.

---------

Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
2025-06-15 20:53:25 +00:00
Joona Aalto
38c3423693
Event Split: Event, EntityEvent, and BufferedEvent (#19647)
# Objective

Closes #19564.

The current `Event` trait looks like this:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The `Event` trait is used by both buffered events
(`EventReader`/`EventWriter`) and observer events. If they are observer
events, they can optionally be targeted at specific `Entity`s or
`ComponentId`s, and can even be propagated to other entities.

However, there has long been a desire to split the trait semantically
for a variety of reasons, see #14843, #14272, and #16031 for discussion.
Some reasons include:

- It's very uncommon to use a single event type as both a buffered event
and targeted observer event. They are used differently and tend to have
distinct semantics.
- A common footgun is using buffered events with observers or event
readers with observer events, as there is no type-level error that
prevents this kind of misuse.
- #19440 made `Trigger::target` return an `Option<Entity>`. This
*seriously* hurts ergonomics for the general case of entity observers,
as you need to `.unwrap()` each time. If we could statically determine
whether the event is expected to have an entity target, this would be
unnecessary.

There's really two main ways that we can categorize events: push vs.
pull (i.e. "observer event" vs. "buffered event") and global vs.
targeted:

|              | Push            | Pull                        |
| ------------ | --------------- | --------------------------- |
| **Global**   | Global observer | `EventReader`/`EventWriter` |
| **Targeted** | Entity observer | -                           |

There are many ways to approach this, each with their tradeoffs.
Ultimately, we kind of want to split events both ways:

- A type-level distinction between observer events and buffered events,
to prevent people from using the wrong kind of event in APIs
- A statically designated entity target for observer events to avoid
accidentally using untargeted events for targeted APIs

This PR achieves these goals by splitting event traits into `Event`,
`EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait
implemented by all events.

## `Event`, `EntityEvent`, and `BufferedEvent`

`Event` is now a very simple trait shared by all events.

```rust
pub trait Event: Send + Sync + 'static {
    // Required for observer APIs
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

You can call `trigger` for *any* event, and use a global observer for
listening to the event.

```rust
#[derive(Event)]
struct Speak {
    message: String,
}

// ...

app.add_observer(|trigger: On<Speak>| {
    println!("{}", trigger.message);
});

// ...

commands.trigger(Speak {
    message: "Y'all like these reworked events?".to_string(),
});
```

To allow an event to be targeted at entities and even propagated
further, you can additionally implement the `EntityEvent` trait:

```rust
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This lets you call `trigger_targets`, and to use targeted observer APIs
like `EntityCommands::observe`:

```rust
#[derive(Event, EntityEvent)]
#[entity_event(traversal = &'static ChildOf, auto_propagate)]
struct Damage {
    amount: f32,
}

// ...

let enemy = commands.spawn((Enemy, Health(100.0))).id();

// Spawn some armor as a child of the enemy entity.
// When the armor takes damage, it will bubble the event up to the enemy.
let armor_piece = commands
    .spawn((ArmorPiece, Health(25.0), ChildOf(enemy)))
    .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| {
        // Note: `On::target` only exists because this is an `EntityEvent`.
        let mut health = query.get(trigger.target()).unwrap();
        health.0 -= trigger.amount();
    });

commands.trigger_targets(Damage { amount: 10.0 }, armor_piece);
```

> [!NOTE]
> You *can* still also trigger an `EntityEvent` without targets using
`trigger`. We probably *could* make this an either-or thing, but I'm not
sure that's actually desirable.

To allow an event to be used with the buffered API, you can implement
`BufferedEvent`:

```rust
pub trait BufferedEvent: Event {}
```

The event can then be used with `EventReader`/`EventWriter`:

```rust
#[derive(Event, BufferedEvent)]
struct Message(String);

fn write_hello(mut writer: EventWriter<Message>) {
    writer.write(Message("I hope these examples are alright".to_string()));
}

fn read_messages(mut reader: EventReader<Message>) {
    // Process all buffered events of type `Message`.
    for Message(message) in reader.read() {
        println!("{message}");
    }
}
```

In summary:

- Need a basic event you can trigger and observe? Derive `Event`!
- Need the event to be targeted at an entity? Derive `EntityEvent`!
- Need the event to be buffered and support the
`EventReader`/`EventWriter` API? Derive `BufferedEvent`!

## Alternatives

I'll now cover some of the alternative approaches I have considered and
briefly explored. I made this section collapsible since it ended up
being quite long :P

<details>

<summary>Expand this to see alternatives</summary>

### 1. Unified `Event` Trait

One option is not to have *three* separate traits (`Event`,
`EntityEvent`, `BufferedEvent`), and to instead just use associated
constants on `Event` to determine whether an event supports targeting
and buffering or not:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    const BUFFERED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

Methods can then use bounds like `where E: Event<TARGETED = true>` or
`where E: Event<BUFFERED = true>` to limit APIs to specific kinds of
events.

This would keep everything under one `Event` trait, but I don't think
it's necessarily a good idea. It makes APIs harder to read, and docs
can't easily refer to specific types of events. You can also create
weird invariants: what if you specify `TARGETED = false`, but have
`Traversal` and/or `AUTO_PROPAGATE` enabled?

### 2. `Event` and `Trigger`

Another option is to only split the traits between buffered events and
observer events, since that is the main thing people have been asking
for, and they have the largest API difference.

If we did this, I think we would need to make the terms *clearly*
separate. We can't really use `Event` and `BufferedEvent` as the names,
since it would be strange that `BufferedEvent` doesn't implement
`Event`. Something like `ObserverEvent` and `BufferedEvent` could work,
but it'd be more verbose.

For this approach, I would instead keep `Event` for the current
`EventReader`/`EventWriter` API, and call the observer event a
`Trigger`, since the "trigger" terminology is already used in the
observer context within Bevy (both as a noun and a verb). This is also
what a long [bikeshed on
Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791)
seemed to land on at the end of last year.

```rust
// For `EventReader`/`EventWriter`
pub trait Event: Send + Sync + 'static {}

// For observers
pub trait Trigger: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The problem is that "event" is just a really good term for something
that "happens". Observers are rapidly becoming the more prominent API,
so it'd be weird to give them the `Trigger` name and leave the good
`Event` name for the less common API.

So, even though a split like this seems neat on the surface, I think it
ultimately wouldn't really work. We want to keep the `Event` name for
observer events, and there is no good alternative for the buffered
variant. (`Message` was suggested, but saying stuff like "sends a
collision message" is weird.)

### 3. `GlobalEvent` + `TargetedEvent`

What if instead of focusing on the buffered vs. observed split, we
*only* make a distinction between global and targeted events?

```rust
// A shared event trait to allow global observers to work
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For buffered events and non-targeted observer events
pub trait GlobalEvent: Event {}

// For targeted observer events
pub trait TargetedEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is actually the first approach I implemented, and it has the neat
characteristic that you can only use non-targeted APIs like `trigger`
with a `GlobalEvent` and targeted APIs like `trigger_targets` with a
`TargetedEvent`. You have full control over whether the entity should or
should not have a target, as they are fully distinct at the type-level.

However, there's a few problems:

- There is no type-level indication of whether a `GlobalEvent` supports
buffered events or just non-targeted observer events
- An `Event` on its own does literally nothing, it's just a shared trait
required to make global observers accept both non-targeted and targeted
events
- If an event is both a `GlobalEvent` and `TargetedEvent`, global
observers again have ambiguity on whether an event has a target or not,
undermining some of the benefits
- The names are not ideal

### 4. `Event` and `EntityEvent`

We can fix some of the problems of Alternative 3 by accepting that
targeted events can also be used in non-targeted contexts, and simply
having the `Event` and `EntityEvent` traits:

```rust
// For buffered events and non-targeted observer events
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For targeted observer events
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is essentially identical to this PR, just without a dedicated
`BufferedEvent`. The remaining major "problem" is that there is still
zero type-level indication of whether an `Event` event *actually*
supports the buffered API. This leads us to the solution proposed in
this PR, using `Event`, `EntityEvent`, and `BufferedEvent`.

</details>

## Conclusion

The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR
aims to solve all the common problems with Bevy's current event model
while keeping the "weirdness" factor minimal. It splits in terms of both
the push vs. pull *and* global vs. targeted aspects, while maintaining a
shared concept for an "event".

### Why I Like This

- The term "event" remains as a single concept for all the different
kinds of events in Bevy.
- Despite all event types being "events", they use fundamentally
different APIs. Instead of assuming that you can use an event type with
any pattern (when only one is typically supported), you explicitly opt
in to each one with dedicated traits.
- Using separate traits for each type of event helps with documentation
and clearer function signatures.
- I can safely make assumptions on expected usage.
- If I see that an event is an `EntityEvent`, I can assume that I can
use `observe` on it and get targeted events.
- If I see that an event is a `BufferedEvent`, I can assume that I can
use `EventReader` to read events.
- If I see both `EntityEvent` and `BufferedEvent`, I can assume that
both APIs are supported.

In summary: This allows for a unified concept for events, while limiting
the different ways to use them with opt-in traits. No more guess-work
involved when using APIs.

### Problems?

- Because `BufferedEvent` implements `Event` (for more consistent
semantics etc.), you can still use all buffered events for non-targeted
observers. I think this is fine/good. The important part is that if you
see that an event implements `BufferedEvent`, you know that the
`EventReader`/`EventWriter` API should be supported. Whether it *also*
supports other APIs is secondary.
- I currently only support `trigger_targets` for an `EntityEvent`.
However, you can technically target components too, without targeting
any entities. I consider that such a niche and advanced use case that
it's not a huge problem to only support it for `EntityEvent`s, but we
could also split `trigger_targets` into `trigger_entities` and
`trigger_components` if we wanted to (or implement components as
entities :P).
- You can still trigger an `EntityEvent` *without* targets. I consider
this correct, since `Event` implements the non-targeted behavior, and
it'd be weird if implementing another trait *removed* behavior. However,
it does mean that global observers for entity events can technically
return `Entity::PLACEHOLDER` again (since I got rid of the
`Option<Entity>` added in #19440 for ergonomics). I think that's enough
of an edge case that it's not a huge problem, but it is worth keeping in
mind.
- ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type
currently duplicates the `Event` implementation, so you instead need to
manually implement one of them.~~ Changed to always requiring `Event` to
be derived.

## Related Work

There are plans to implement multi-event support for observers,
especially for UI contexts. [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)
API looked like this:

```rust
// Truncated for brevity
trigger: Trigger<(
    OnAdd<Pressed>,
    OnRemove<Pressed>,
    OnAdd<InteractionDisabled>,
    OnRemove<InteractionDisabled>,
    OnInsert<Hovered>,
)>,
```

I believe this shouldn't be in conflict with this PR. If anything, this
PR might *help* achieve the multi-event pattern for entity observers
with fewer footguns: by statically enforcing that all of these events
are `EntityEvent`s in the context of `EntityCommands::observe`, we can
avoid misuse or weird cases where *some* events inside the trigger are
targeted while others are not.
2025-06-15 16:46:34 +00:00
Joona Aalto
e5dc177b4b
Rename Trigger to On (#19596)
# Objective

Currently, the observer API looks like this:

```rust
app.add_observer(|trigger: Trigger<Explode>| {
    info!("Entity {} exploded!", trigger.target());
});
```

Future plans for observers also include "multi-event observers" with a
trigger that looks like this (see [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)):

```rust
trigger: Trigger<(
    OnAdd<Pressed>,
    OnRemove<Pressed>,
    OnAdd<InteractionDisabled>,
    OnRemove<InteractionDisabled>,
    OnInsert<Hovered>,
)>,
```

In scenarios like this, there is a lot of repetition of `On`. These are
expected to be very high-traffic APIs especially in UI contexts, so
ergonomics and readability are critical.

By renaming `Trigger` to `On`, we can make these APIs read more cleanly
and get rid of the repetition:

```rust
app.add_observer(|trigger: On<Explode>| {
    info!("Entity {} exploded!", trigger.target());
});
```

```rust
trigger: On<(
    Add<Pressed>,
    Remove<Pressed>,
    Add<InteractionDisabled>,
    Remove<InteractionDisabled>,
    Insert<Hovered>,
)>,
```

Names like `On<Add<Pressed>>` emphasize the actual event listener nature
more than `Trigger<OnAdd<Pressed>>`, and look cleaner. This *also* frees
up the `Trigger` name if we want to use it for the observer event type,
splitting them out from buffered events (bikeshedding this is out of
scope for this PR though).

For prior art:
[`bevy_eventlistener`](https://github.com/aevyrie/bevy_eventlistener)
used
[`On`](https://docs.rs/bevy_eventlistener/latest/bevy_eventlistener/event_listener/struct.On.html)
for its event listener type. Though in our case, the observer is the
event listener, and `On` is just a type containing information about the
triggered event.

## Solution

Steal from `bevy_event_listener` by @aevyrie and use `On`.

- Rename `Trigger` to `On`
- Rename `OnAdd` to `Add`
- Rename `OnInsert` to `Insert`
- Rename `OnReplace` to `Replace`
- Rename `OnRemove` to `Remove`
- Rename `OnDespawn` to `Despawn`

## Discussion

### Naming Conflicts??

Using a name like `Add` might initially feel like a very bad idea, since
it risks conflict with `core::ops::Add`. However, I don't expect this to
be a big problem in practice.

- You rarely need to actually implement the `Add` trait, especially in
modules that would use the Bevy ECS.
- In the rare cases where you *do* get a conflict, it is very easy to
fix by just disambiguating, for example using `ops::Add`.
- The `Add` event is a struct while the `Add` trait is a trait (duh), so
the compiler error should be very obvious.

For the record, renaming `OnAdd` to `Add`, I got exactly *zero* errors
or conflicts within Bevy itself. But this is of course not entirely
representative of actual projects *using* Bevy.

You might then wonder, why not use `Added`? This would conflict with the
`Added` query filter, so it wouldn't work. Additionally, the current
naming convention for observer events does not use past tense.

### Documentation

This does make documentation slightly more awkward when referring to
`On` or its methods. Previous docs often referred to `Trigger::target`
or "sends a `Trigger`" (which is... a bit strange anyway), which would
now be `On::target` and "sends an observer `Event`".

You can see the diff in this PR to see some of the effects. I think it
should be fine though, we may just need to reword more documentation to
read better.
2025-06-12 18:22:33 +00:00
Alice Cecile
6ddd0f16a8
Component lifecycle reorganization and documentation (#19543)
# Objective

I set out with one simple goal: clearly document the differences between
each of the component lifecycle events via module docs.

Unfortunately, no such module existed: the various lifecycle code was
scattered to the wind.
Without a unified module, it's very hard to discover the related types,
and there's nowhere good to put my shiny new documentation.

## Solution

1. Unify the assorted types into a single
`bevy_ecs::component_lifecycle` module.
2. Write docs.
3. Write a migration guide.

## Testing

Thanks CI!

## Follow-up

1. The lifecycle event names are pretty confusing, especially
`OnReplace`. We should consider renaming those. No bikeshedding in my PR
though!
2. Observers need real module docs too :(
3. Any additional functional changes should be done elsewhere; this is a
simple docs and re-org PR.

---------

Co-authored-by: theotherphil <phil.j.ellison@gmail.com>
2025-06-10 00:59:16 +00:00
ickshonpe
02fa833be1
Rename JustifyText to Justify (#19522)
# Objective

Rename `JustifyText`:

* The name `JustifyText` is just ugly.
* It's inconsistent since no other `bevy_text` types have a `Text-`
suffix, only prefix.
* It's inconsistent with the other text layout enum `Linebreak` which
doesn't have a prefix or suffix.

Fixes #19521.

## Solution

Rename `JustifyText` to `Justify`.

Without other context, it's natural to assume the name `Justify` refers
to text justification.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-06-09 19:59:48 +00:00
Eagster
064e5e48b4
Remove entity placeholder from observers (#19440)
# Objective

`Entity::PLACEHOLDER` acts as a magic number that will *probably* never
really exist, but it certainly could. And, `Entity` has a niche, so the
only reason to use `PLACEHOLDER` is as an alternative to `MaybeUninit`
that trades safety risks for logic risks.

As a result, bevy has generally advised against using `PLACEHOLDER`, but
we still use if for a lot internally. This pr starts removing internal
uses of it, starting from observers.

## Solution

Change all trigger target related types from `Entity` to
`Option<Entity>`

Small migration guide to come.

## Testing

CI

## Future Work

This turned a lot of code from 

```rust
trigger.target()
```

to 

```rust
trigger.target().unwrap()
```

The extra panic is no worse than before; it's just earlier than
panicking after passing the placeholder to something else.

But this is kinda annoying. 

I would like to add a `TriggerMode` or something to `Event` that would
restrict what kinds of targets can be used for that event. Many events
like `Removed` etc, are always triggered with a target. We can make
those have a way to assume Some, etc. But I wanted to save that for a
future pr.
2025-06-09 19:37:56 +00:00
François Mockers
7a7bff8c17
Hot patching systems with subsecond (#19309)
# Objective

- Enable hot patching systems with subsecond
- Fixes #19296 

## Solution

- First commit is the naive thin layer
- Second commit only check the jump table when the code is hot patched
instead of on every system execution
- Depends on https://github.com/DioxusLabs/dioxus/pull/4153 for a nicer
API, but could be done without
- Everything in second commit is feature gated, it has no impact when
the feature is not enabled

## Testing

- Check dependencies without the feature enabled: nothing dioxus in tree
- Run the new example: text and color can be changed

---------

Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
2025-06-03 21:12:38 +00:00
Chris Berger
a8376e982e
Rename Timer::finished and Timer::paused to is_finished and is_paused (#19386)
# Objective
Renames `Timer::finished` and `Timer::paused` to `Timer::is_finished`
and `Timer::is_paused` to align the public APIs for `Time`, `Timer`, and
`Stopwatch`.

Fixes #19110
2025-05-27 22:24:18 +00:00
François Mockers
8a223be651
Enable state scoped entities by default (#19354)
# Objective

- Enable state scoped entities by default
- Provide a way to disable it when needed

---------

Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
2025-05-26 20:26:41 +00:00
SpecificProtagonist
e7e9973c80
Per world error handler (#18810)
# Objective

[see original
comment](https://github.com/bevyengine/bevy/pull/18801#issuecomment-2796981745)
> Alternately, could we store it on the World instead of a global? I
think we have a World nearby whenever we call default_error_handler().
That would avoid the need for atomics or locks, since we could do
ordinary reads and writes to the World.

Global error handlers don't actually need to be global – per world is
enough. This allows using different handlers for different worlds and
also removes the restrictions on changing the handler only once.

## Solution

Each `World` can now store its own error handler in a resource.

For convenience, you can also set the default error handler for an
`App`, which applies it to the worlds of all `SubApp`s. The old behavior
of only being able to set the error handler once is kept for apps.

We also don't need the `configurable_error_handler` feature anymore now.

## Testing

New/adjusted tests for failing schedule systems & observers.

---

## Showcase

```rust
App::new()
    .set_error_handler(info)
    …
```
2025-05-19 01:35:07 +00:00
Eagster
0b4858726c
Make entity::index non max (#18704)
# Objective

There are two problems this aims to solve. 

First, `Entity::index` is currently a `u32`. That means there are
`u32::MAX + 1` possible entities. Not only is that awkward, but it also
make `Entity` allocation more difficult. I discovered this while working
on remote entity reservation, but even on main, `Entities` doesn't
handle the `u32::MAX + 1` entity very well. It can not be batch reserved
because that iterator uses exclusive ranges, which has a maximum upper
bound of `u32::MAX - 1`. In other words, having `u32::MAX` as a valid
index can be thought of as a bug right now. We either need to make that
invalid (this PR), which makes Entity allocation cleaner and makes
remote reservation easier (because the length only needs to be u32
instead of u64, which, in atomics is a big deal), or we need to take
another pass at `Entities` to make it handle the `u32::MAX` index
properly.

Second, `TableRow`, `ArchetypeRow` and `EntityIndex` (a type alias for
u32) all have `u32` as the underlying type. That means using these as
the index type in a `SparseSet` uses 64 bits for the sparse list because
it stores `Option<IndexType>`. By using `NonMaxU32` here, we cut the
memory of that list in half. To my knowledge, `EntityIndex` is the only
thing that would really benefit from this niche. `TableRow` and
`ArchetypeRow` I think are not stored in an `Option` in bulk. But if
they ever are, this would help. Additionally this ensures
`TableRow::INVALID` and `ArchetypeRow::INVALID` never conflict with an
actual row, which in a nice bonus.

As a related note, if we do components as entities where `ComponentId`
becomes `Entity`, the the `SparseSet<ComponentId>` will see a similar
memory improvement too.

## Solution

Create a new type `EntityRow` that wraps `NonMaxU32`, similar to
`TableRow` and `ArchetypeRow`.
Change `Entity::index` to this type.

## Downsides

`NonMax` is implemented as a `NonZero` with a binary inversion. That
means accessing and storing the value takes one more instruction. I
don't think that's a big deal, but it's worth mentioning.

As a consequence, `to_bits` uses `transmute` to skip the inversion which
keeps it a nop. But that also means that ordering has now flipped. In
other words, higher indices are considered less than lower indices. I
don't think that's a problem, but it's also worth mentioning.

## Alternatives

We could keep the index as a u32 type and just document that `u32::MAX`
is invalid, modifying `Entities` to ensure it never gets handed out.
(But that's not enforced by the type system.) We could still take
advantage of the niche here in `ComponentSparseSet`. We'd just need some
unsafe manual conversions, which is probably fine, but opens up the
possibility for correctness problems later.

We could change `Entities` to fully support the `u32::MAX` index. (But
that makes `Entities` more complex and potentially slightly slower.)

## Testing

- CI
- A few tests were changed because they depend on different ordering and
`to_bits` values.

## Future Work

- It might be worth removing the niche on `Entity::generation` since
there is now a different niche.
- We could move `Entity::generation` into it's own type too for clarity.
- We should change `ComponentSparseSet` to take advantage of the new
niche. (This PR doesn't change that yet.)
- Consider removing or updating `Identifier`. This is only used for
`Entity`, so it might be worth combining since `Entity` is now more
unique.

---------

Co-authored-by: atlv <email@atlasdostal.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2025-05-07 18:20:30 +00:00
Chris Russell
9e2bd8ac18
Generic SystemParam impls for Option and Result (#18766)
# Objective

Provide a generic `impl SystemParam for Option<P>` that uses system
parameter validation. This immediately gives useful impls for params
like `EventReader` and `GizmosState` that are defined in terms of `Res`.
It also allows third-party system parameters to be usable with `Option`,
which was previously impossible due to orphan rules.

Note that this is a behavior change for `Option<Single>`. It currently
fails validation if there are multiple matching entities, but with this
change it will pass validation and produce `None`.

Also provide an impl for `Result<P, SystemParamValidationError>`. This
allows systems to inspect the error if necessary, either for bubbling it
up or for checking the `skipped` flag.

Fixes #12634
Fixes #14949
Related to #18516

## Solution

Add generic `SystemParam` impls for `Option` and `Result`, and remove
the impls for specific types.

Update documentation and `fallible_params` example with the new
semantics for `Option<Single>`.
2025-05-07 18:20:08 +00:00
Joona Aalto
7b1c9f192e
Adopt consistent FooSystems naming convention for system sets (#18900)
# Objective

Fixes a part of #14274.

Bevy has an incredibly inconsistent naming convention for its system
sets, both internally and across the ecosystem.

<img alt="System sets in Bevy"
src="https://github.com/user-attachments/assets/d16e2027-793f-4ba4-9cc9-e780b14a5a1b"
width="450" />

*Names of public system set types in Bevy*

Most Bevy types use a naming of `FooSystem` or just `Foo`, but there are
also a few `FooSystems` and `FooSet` types. In ecosystem crates on the
other hand, `FooSet` is perhaps the most commonly used name in general.
Conventions being so wildly inconsistent can make it harder for users to
pick names for their own types, to search for system sets on docs.rs, or
to even discern which types *are* system sets.

To reign in the inconsistency a bit and help unify the ecosystem, it
would be good to establish a common recommended naming convention for
system sets in Bevy itself, similar to how plugins are commonly suffixed
with `Plugin` (ex: `TimePlugin`). By adopting a consistent naming
convention in first-party Bevy, we can softly nudge ecosystem crates to
follow suit (for types where it makes sense to do so).

Choosing a naming convention is also relevant now, as the [`bevy_cli`
recently adopted
lints](https://github.com/TheBevyFlock/bevy_cli/pull/345) to enforce
naming for plugins and system sets, and the recommended naming used for
system sets is still a bit open.

## Which Name To Use?

Now the contentious part: what naming convention should we actually
adopt?

This was discussed on the Bevy Discord at the end of last year, starting
[here](<https://discord.com/channels/691052431525675048/692572690833473578/1310659954683936789>).
`FooSet` and `FooSystems` were the clear favorites, with `FooSet` very
narrowly winning an unofficial poll. However, it seems to me like the
consensus was broadly moving towards `FooSystems` at the end and after
the poll, with Cart
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311140204974706708))
and later Alice
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311092530732859533))
and also me being in favor of it.

Let's do a quick pros and cons list! Of course these are just what I
thought of, so take it with a grain of salt.

`FooSet`:

- Pro: Nice and short!
- Pro: Used by many ecosystem crates.
- Pro: The `Set` suffix comes directly from the trait name `SystemSet`.
- Pro: Pairs nicely with existing APIs like `in_set` and
`configure_sets`.
- Con: `Set` by itself doesn't actually indicate that it's related to
systems *at all*, apart from the implemented trait. A set of what?
- Con: Is `FooSet` a set of `Foo`s or a system set related to `Foo`? Ex:
`ContactSet`, `MeshSet`, `EnemySet`...

`FooSystems`:

- Pro: Very clearly indicates that the type represents a collection of
systems. The actual core concept, system(s), is in the name.
- Pro: Parallels nicely with `FooPlugins` for plugin groups.
- Pro: Low risk of conflicts with other names or misunderstandings about
what the type is.
- Pro: In most cases, reads *very* nicely and clearly. Ex:
`PhysicsSystems` and `AnimationSystems` as opposed to `PhysicsSet` and
`AnimationSet`.
- Pro: Easy to search for on docs.rs.
- Con: Usually results in longer names.
- Con: Not yet as widely used.

Really the big problem with `FooSet` is that it doesn't actually
describe what it is. It describes what *kind of thing* it is (a set of
something), but not *what it is a set of*, unless you know the type or
check its docs or implemented traits. `FooSystems` on the other hand is
much more self-descriptive in this regard, at the cost of being a bit
longer to type.

Ultimately, in some ways it comes down to preference and how you think
of system sets. Personally, I was originally in favor of `FooSet`, but
have been increasingly on the side of `FooSystems`, especially after
seeing what the new names would actually look like in Avian and now
Bevy. I prefer it because it usually reads better, is much more clearly
related to groups of systems than `FooSet`, and overall *feels* more
correct and natural to me in the long term.

For these reasons, and because Alice and Cart also seemed to share a
preference for it when it was previously being discussed, I propose that
we adopt a `FooSystems` naming convention where applicable.

## Solution

Rename Bevy's system set types to use a consistent `FooSet` naming where
applicable.

- `AccessibilitySystem` → `AccessibilitySystems`
- `GizmoRenderSystem` → `GizmoRenderSystems`
- `PickSet` → `PickingSystems`
- `RunFixedMainLoopSystem` → `RunFixedMainLoopSystems`
- `TransformSystem` → `TransformSystems`
- `RemoteSet` → `RemoteSystems`
- `RenderSet` → `RenderSystems`
- `SpriteSystem` → `SpriteSystems`
- `StateTransitionSteps` → `StateTransitionSystems`
- `RenderUiSystem` → `RenderUiSystems`
- `UiSystem` → `UiSystems`
- `Animation` → `AnimationSystems`
- `AssetEvents` → `AssetEventSystems`
- `TrackAssets` → `AssetTrackingSystems`
- `UpdateGizmoMeshes` → `GizmoMeshSystems`
- `InputSystem` → `InputSystems`
- `InputFocusSet` → `InputFocusSystems`
- `ExtractMaterialsSet` → `MaterialExtractionSystems`
- `ExtractMeshesSet` → `MeshExtractionSystems`
- `RumbleSystem` → `RumbleSystems`
- `CameraUpdateSystem` → `CameraUpdateSystems`
- `ExtractAssetsSet` → `AssetExtractionSystems`
- `Update2dText` → `Text2dUpdateSystems`
- `TimeSystem` → `TimeSystems`
- `AudioPlaySet` → `AudioPlaybackSystems`
- `SendEvents` → `EventSenderSystems`
- `EventUpdates` → `EventUpdateSystems`

A lot of the names got slightly longer, but they are also a lot more
consistent, and in my opinion the majority of them read much better. For
a few of the names I took the liberty of rewording things a bit;
definitely open to any further naming improvements.

There are still also cases where the `FooSystems` naming doesn't really
make sense, and those I left alone. This primarily includes system sets
like `Interned<dyn SystemSet>`, `EnterSchedules<S>`, `ExitSchedules<S>`,
or `TransitionSchedules<S>`, where the type has some special purpose and
semantics.

## Todo

- [x] Should I keep all the old names as deprecated type aliases? I can
do this, but to avoid wasting work I'd prefer to first reach consensus
on whether these renames are even desired.
- [x] Migration guide
- [x] Release notes
2025-05-06 15:18:03 +00:00
mgi388
7a1fcb7fe7
Rename StateScoped to DespawnOnExitState and add DespawnOnEnterState (#18818)
# Objective

- Alternative to and builds on top of #16284.
- Fixes #15849.

## Solution

- Rename component `StateScoped` to `DespawnOnExitState`.
- Rename system `clear_state_scoped_entities` to
`despawn_entities_on_exit_state`.
- Add `DespawnOnEnterState` and `despawn_entities_on_enter_state` which
is the `OnEnter` equivalent.

> [!NOTE]
> Compared to #16284, the main change is that I did the rename in such a
way as to keep the terms `OnExit` and `OnEnter` together. In my own
game, I was adding `VisibleOnEnterState` and `HiddenOnExitState` and
when naming those, I kept the `OnExit` and `OnEnter` together. When I
checked #16284 it stood out to me that the naming was a bit awkward.
Putting the `State` in the middle and breaking up `OnEnter` and `OnExit`
also breaks searching for those terms.

## Open questions

1. Should we split `enable_state_scoped_entities` into two functions,
one for the `OnEnter` and one for the `OnExit`? I personally have zero
need thus far for the `OnEnter` version, so I'd be interested in not
having this enabled unless I ask for it.
2. If yes to 1., should we follow my lead in my `Visibility` state
components (see below) and name these
`app.enable_despawn_entities_on_enter_state()` and
`app.enable_despawn_entities_on_exit_state()`, which IMO says what it
does on the tin?

## Testing

Ran all changed examples.

## Side note: `VisibleOnEnterState` and `HiddenOnExitState`

For reference to anyone else and to help with the open questions, I'm
including the code I wrote for controlling entity visibility when a
state is entered/exited.

<details>
<summary>visibility.rs</summary>

```rust
use bevy_app::prelude::*;
use bevy_ecs::prelude::*;
use bevy_reflect::prelude::*;
use bevy_render::prelude::*;
use bevy_state::{prelude::*, state::StateTransitionSteps};
use tracing::*;

pub trait AppExtStates {
    fn enable_visible_entities_on_enter_state<S: States>(&mut self) -> &mut Self;

    fn enable_hidden_entities_on_exit_state<S: States>(&mut self) -> &mut Self;
}

impl AppExtStates for App {
    fn enable_visible_entities_on_enter_state<S: States>(&mut self) -> &mut Self {
        self.main_mut()
            .enable_visible_entities_on_enter_state::<S>();
        self
    }

    fn enable_hidden_entities_on_exit_state<S: States>(&mut self) -> &mut Self {
        self.main_mut().enable_hidden_entities_on_exit_state::<S>();
        self
    }
}

impl AppExtStates for SubApp {
    fn enable_visible_entities_on_enter_state<S: States>(&mut self) -> &mut Self {
        if !self
            .world()
            .contains_resource::<Events<StateTransitionEvent<S>>>()
        {
            let name = core::any::type_name::<S>();
            warn!("Visible entities on enter state are enabled for state `{}`, but the state isn't installed in the app!", name);
        }
        // We work with [`StateTransition`] in set
        // [`StateTransitionSteps::ExitSchedules`] as opposed to [`OnExit`],
        // because [`OnExit`] only runs for one specific variant of the state.
        self.add_systems(
            StateTransition,
            update_to_visible_on_enter_state::<S>.in_set(StateTransitionSteps::ExitSchedules),
        )
    }

    fn enable_hidden_entities_on_exit_state<S: States>(&mut self) -> &mut Self {
        if !self
            .world()
            .contains_resource::<Events<StateTransitionEvent<S>>>()
        {
            let name = core::any::type_name::<S>();
            warn!("Hidden entities on exit state are enabled for state `{}`, but the state isn't installed in the app!", name);
        }
        // We work with [`StateTransition`] in set
        // [`StateTransitionSteps::ExitSchedules`] as opposed to [`OnExit`],
        // because [`OnExit`] only runs for one specific variant of the state.
        self.add_systems(
            StateTransition,
            update_to_hidden_on_exit_state::<S>.in_set(StateTransitionSteps::ExitSchedules),
        )
    }
}

#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
pub struct VisibleOnEnterState<S: States>(pub S);

#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
pub struct HiddenOnExitState<S: States>(pub S);

/// Makes entities marked with [`VisibleOnEnterState<S>`] visible when the state
/// `S` is entered.
pub fn update_to_visible_on_enter_state<S: States>(
    mut transitions: EventReader<StateTransitionEvent<S>>,
    mut query: Query<(&VisibleOnEnterState<S>, &mut Visibility)>,
) {
    // We use the latest event, because state machine internals generate at most
    // 1 transition event (per type) each frame. No event means no change
    // happened and we skip iterating all entities.
    let Some(transition) = transitions.read().last() else {
        return;
    };
    if transition.entered == transition.exited {
        return;
    }
    let Some(entered) = &transition.entered else {
        return;
    };
    for (binding, mut visibility) in query.iter_mut() {
        if binding.0 == *entered {
            visibility.set_if_neq(Visibility::Visible);
        }
    }
}

/// Makes entities marked with [`HiddenOnExitState<S>`] invisible when the state
/// `S` is exited.
pub fn update_to_hidden_on_exit_state<S: States>(
    mut transitions: EventReader<StateTransitionEvent<S>>,
    mut query: Query<(&HiddenOnExitState<S>, &mut Visibility)>,
) {
    // We use the latest event, because state machine internals generate at most
    // 1 transition event (per type) each frame. No event means no change
    // happened and we skip iterating all entities.
    let Some(transition) = transitions.read().last() else {
        return;
    };
    if transition.entered == transition.exited {
        return;
    }
    let Some(exited) = &transition.exited else {
        return;
    };
    for (binding, mut visibility) in query.iter_mut() {
        if binding.0 == *exited {
            visibility.set_if_neq(Visibility::Hidden);
        }
    }
}
```

</details>

---------

Co-authored-by: Benjamin Brienen <Benjamin.Brienen@outlook.com>
Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
2025-05-06 00:37:04 +00:00
Carter Anderson
e9a0ef49f9
Rename bevy_platform_support to bevy_platform (#18813)
# Objective

The goal of `bevy_platform_support` is to provide a set of platform
agnostic APIs, alongside platform-specific functionality. This is a high
traffic crate (providing things like HashMap and Instant). Especially in
light of https://github.com/bevyengine/bevy/discussions/18799, it
deserves a friendlier / shorter name.

Given that it hasn't had a full release yet, getting this change in
before Bevy 0.16 makes sense.

## Solution

- Rename `bevy_platform_support` to `bevy_platform`.
2025-04-11 23:13:28 +00:00
Freyja-moth
714b4a43d6
Change with_related to work with a Bundle and added with_relationships method (#18699)
# Objective

Fixes #18678

## Solution

Moved the current `with_related` method to `with_relationships` and
added a new `with_related` that uses a bundle.

I'm not entirely sold on the name just yet, if anyone has any ideas let
me know.

## Testing

I wasn't able to test these changes because it crashed my computer every
time I tried (fun). But there don't seem to be any tests that use the
old `with_related` method so it should be fine, hopefully

## Showcase

```rust
commands.spawn_empty()
    .with_related::<Relationship>(Name::new("Related thingy"))
    .with_relationships(|rel| {
        rel.spawn(Name::new("Second related thingy"));
    });
```

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2025-04-09 02:34:49 +00:00
Chris Russell
b4614dadcd
Use Display instead of Debug in the default error handler (#18629)
# Objective

Improve error messages for missing resources.  

The default error handler currently prints the `Debug` representation of
the error type instead of `Display`. Most error types use
`#[derive(Debug)]`, resulting in a dump of the structure, but will have
a user-friendly message for `Display`.

Follow-up to #18593

## Solution

Change the default error handler to use `Display` instead of `Debug`.  

Change `BevyError` to include the backtrace in the `Display` format in
addition to `Debug` so that it is still included.

## Showcase

Before: 

```
Encountered an error in system `system_name`: SystemParamValidationError { skipped: false, message: "Resource does not exist", param: "bevy_ecs::change_detection::Res<app_name::ResourceType>" }

Encountered an error in system `other_system_name`: "String message with\nmultiple lines."
```

After

```
Encountered an error in system `system_name`: Parameter `Res<ResourceType>` failed validation: Resource does not exist

Encountered an error in system `other_system_name`: String message with
multiple lines.
```
2025-03-31 18:28:19 +00:00
Vic
f57c7a43c4
reexport entity set collections in entity module (#18413)
# Objective

Unlike for their helper typers, the import paths for
`unique_array::UniqueEntityArray`, `unique_slice::UniqueEntitySlice`,
`unique_vec::UniqueEntityVec`, `hash_set::EntityHashSet`,
`hash_map::EntityHashMap`, `index_set::EntityIndexSet`,
`index_map::EntityIndexMap` are quite redundant.

When looking at the structure of `hashbrown`, we can also see that while
both `HashSet` and `HashMap` have their own modules, the main types
themselves are re-exported to the crate level.

## Solution

Re-export the types in their shared `entity` parent module, and simplify
the imports where they're used.
2025-03-30 03:51:14 +00:00
Chris Russell
837991a5b5
Replace ValidationOutcome with Result (#18541)
# Objective

Make it easier to short-circuit system parameter validation.  

Simplify the API surface by combining `ValidationOutcome` with
`SystemParamValidationError`.

## Solution

Replace `ValidationOutcome` with `Result<(),
SystemParamValidationError>`. Move the docs from `ValidationOutcome` to
`SystemParamValidationError`.

Add a `skipped` field to `SystemParamValidationError` to distinguish the
`Skipped` and `Invalid` variants.

Use the `?` operator to short-circuit validation in tuples of system
params.
2025-03-26 03:36:16 +00:00
Alice Cecile
6a981aaa6f
Define system param validation on a per-system parameter basis (#18504)
# Objective

When introduced, `Single` was intended to simply be silently skipped,
allowing for graceful and efficient handling of systems during invalid
game states (such as when the player is dead).

However, this also caused missing resources to *also* be silently
skipped, leading to confusing and very hard to debug failures. In
0.15.1, this behavior was reverted to a panic, making missing resources
easier to debug, but largely making `Single` (and `Populated`)
worthless, as they would panic during expected game states.

Ultimately, the consensus is that this behavior should differ on a
per-system-param basis. However, there was no sensible way to *do* that
before this PR.

## Solution

Swap `SystemParam::validate_param` from a `bool` to:

```rust
/// The outcome of system / system param validation,
/// used by system executors to determine what to do with a system.
pub enum ValidationOutcome {
    /// All system parameters were validated successfully and the system can be run.
    Valid,
    /// At least one system parameter failed validation, and an error must be handled.
    /// By default, this will result in1 a panic. See [crate::error] for more information.
    ///
    /// This is the default behavior, and is suitable for system params that should *always* be valid,
    /// either because sensible fallback behavior exists (like [`Query`] or because
    /// failures in validation should be considered a bug in the user's logic that must be immediately addressed (like [`Res`]).
    Invalid,
    /// At least one system parameter failed validation, but the system should be skipped due to [`ValidationBehavior::Skip`].
    /// This is suitable for system params that are intended to only operate in certain application states, such as [`Single`].
    Skipped,
}
```
Then, inside of each `SystemParam` implementation, return either Valid,
Invalid or Skipped.

Currently, only `Single`, `Option<Single>` and `Populated` use the
`Skipped` behavior. Other params (like resources) retain their current
failing

## Testing

Messed around with the fallible_params example. Added a pair of tests:
one for panicking when resources are missing, and another for properly
skipping `Single` and `Populated` system params.

## To do

- [x] get https://github.com/bevyengine/bevy/pull/18454 merged
- [x] fix the todo!() in the macro-powered tuple implementation (please
help 🥺)
- [x] test
- [x] write a migration guide
- [x] update the example comments

## Migration Guide

Various system and system parameter validation methods
(`SystemParam::validate_param`, `System::validate_param` and
`System::validate_param_unsafe`) now return and accept a
`ValidationOutcome` enum, rather than a `bool`. The previous `true`
values map to `ValidationOutcome::Valid`, while `false` maps to
`ValidationOutcome::Invalid`.

However, if you wrote a custom schedule executor, you should now respect
the new `ValidationOutcome::Skipped` parameter, skipping any systems
whose validation was skipped. By contrast, `ValidationOutcome::Invalid`
systems should also be skipped, but you should call the
`default_error_handler` on them first, which by default will result in a
panic.

If you are implementing a custom `SystemParam`, you should consider
whether failing system param validation is an error or an expected
state, and choose between `Invalid` and `Skipped` accordingly. In Bevy
itself, `Single` and `Populated` now once again skip the system when
their conditions are not met. This is the 0.15.0 behavior, but stands in
contrast to the 0.15.1 behavior, where they would panic.

---------

Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
Co-authored-by: Dmytro Banin <banind@cs.washington.edu>
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
2025-03-25 04:27:20 +00:00
Alice Cecile
ce7d4e41d6
Make system param validation rely on the unified ECS error handling via the GLOBAL_ERROR_HANDLER (#18454)
# Objective

There are two related problems here:

1. Users should be able to change the fallback behavior of *all*
ECS-based errors in their application by setting the
`GLOBAL_ERROR_HANDLER`. See #18351 for earlier work in this vein.
2. The existing solution (#15500) for customizing this behavior is high
on boilerplate, not global and adds a great deal of complexity.

The consensus is that the default behavior when a parameter fails
validation should be set based on the kind of system parameter in
question: `Single` / `Populated` should silently skip the system, but
`Res` should panic. Setting this behavior at the system level is a
bandaid that makes getting to that ideal behavior more painful, and can
mask real failures (if a resource is missing but you've ignored a system
to make the Single stop panicking you're going to have a bad day).

## Solution

I've removed the existing `ParamWarnPolicy`-based configuration, and
wired up the `GLOBAL_ERROR_HANDLER`/`default_error_handler` to the
various schedule executors to properly plumb through errors .

Additionally, I've done a small cleanup pass on the corresponding
example.

## Testing

I've run the `fallible_params` example, with both the default and a
custom global error handler. The former panics (as expected), and the
latter spams the error console with warnings 🥲

## Questions for reviewers

1. Currently, failed system param validation will result in endless
console spam. Do you want me to implement a solution for warn_once-style
debouncing somehow?
2. Currently, the error reporting for failed system param validation is
very limited: all we get is that a system param failed validation and
the name of the system. Do you want me to implement improved error
reporting by bubbling up errors in this PR?
3. There is broad consensus that the default behavior for failed system
param validation should be set on a per-system param basis. Would you
like me to implement that in this PR?

My gut instinct is that we absolutely want to solve 2 and 3, but it will
be much easier to do that work (and review it) if we split the PRs
apart.

## Migration Guide

`ParamWarnPolicy` and the `WithParamWarnPolicy` have been removed
completely. Failures during system param validation are now handled via
the `GLOBAL_ERROR_HANDLER`: please see the `bevy_ecs::error` module docs
for more information.

---------

Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
2025-03-24 05:58:05 +00:00
Alice Cecile
5d0505a85e
Unify and simplify command and system error handling (#18351)
# Objective

- ECS error handling is a lovely flagship feature for Bevy 0.16, all in
the name of reducing panics and encouraging better error handling
(#14275).
- Currently though, command and system error handling are completely
disjoint and use different mechanisms.
- Additionally, there's a number of distinct ways to set the
default/fallback/global error handler that have limited value. As far as
I can tell, this will be cfg flagged to toggle between dev and
production builds in 99.9% of cases, with no real value in more granular
settings or helpers.
- Fixes #17272

## Solution

- Standardize error handling on the OnceLock global error mechanisms
ironed out in https://github.com/bevyengine/bevy/pull/17215
- As discussed there, there are serious performance concerns there,
especially for commands
- I also think this is a better fit for the use cases, as it's truly
global
- Move from `SystemErrorContext` to a more general purpose
`ErrorContext`, which can handle observers and commands more clearly
- Cut the superfluous setter methods on `App` and `SubApp`
- Rename the limited (and unhelpful) `fallible_systems` example to
`error_handling`, and add an example of command error handling

## Testing

Ran the `error_handling` example.

## Notes for reviewers

- Do you see a clear way to allow commands to retain &mut World access
in the per-command custom error handlers? IMO that's a key feature here
(allowing the ad-hoc creation of custom commands), but I'm not sure how
to get there without exploding complexity.
- I've removed the feature gate on the default_error_handler: contrary
to @cart's opinion in #17215 I think that virtually all apps will want
to use this. Can you think of a category of app that a) is extremely
performance sensitive b) is fine with shipping to production with the
panic error handler? If so, I can try to gather performance numbers
and/or reintroduce the feature flag. UPDATE: see benches at the end of
this message.
- ~~`OnceLock` is in `std`: @bushrat011899 what should we do here?~~
- Do you have ideas for more automated tests for this collection of
features?

## Benchmarks

I checked the impact of the feature flag introduced: benchmarks might
show regressions. This bears more investigation. I'm still skeptical
that there are users who are well-served by a fast always panicking
approach, but I'm going to re-add the feature flag here to avoid
stalling this out.


![image](https://github.com/user-attachments/assets/237f644a-b36d-4332-9b45-76fd5cbff4d0)

---------

Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2025-03-18 19:27:50 +00:00
Tim Overbeek
664000f848
Improve derive(Event) and simplify macro code (#18083)
# Objective

simplify some code and improve Event macro

Closes https://github.com/bevyengine/bevy/issues/14336,


# Showcase

you can now write derive Events like so
```rust
#[derive(event)]
#[event(auto_propagate, traversal = MyType)]
struct MyEvent;
```
2025-03-07 02:01:23 +00:00
Carter Anderson
cca5813472
BevyError: Bevy's new catch-all error type (#18144)
## Objective

Fixes #18092

Bevy's current error type is a simple type alias for `Box<dyn Error +
Send + Sync + 'static>`. This largely works as a catch-all error, but it
is missing a critical feature: the ability to capture a backtrace at the
point that the error occurs. The best way to do this is `anyhow`-style
error handling: a new error type that takes advantage of the fact that
the `?` `From` conversion happens "inline" to capture the backtrace at
the point of the error.

## Solution

This PR adds a new `BevyError` type (replacing our old
`std::error::Error` type alias), which uses the "from conversion
backtrace capture" approach:

```rust
fn oh_no() -> Result<(), BevyError> {
    // this fails with Rust's built in ParseIntError, which
    // is converted into the catch-all BevyError type
    let number: usize = "hi".parse()?;
    println!("parsed {number}");
    Ok(())
}
```

This also updates our exported `Result` type alias to default to
`BevyError`, meaning you can write this instead:

```rust
fn oh_no() -> Result {
    let number: usize = "hi".parse()?;
    println!("parsed {number}");
    Ok(())
}
```

When a BevyError is encountered in a system, it will use Bevy's default
system error handler (which panics by default). BevyError does custom
"backtrace filtering" by default, meaning we can cut out the _massive_
amount of "rust internals", "async executor internals", and "bevy system
scheduler internals" that show up in backtraces. It also trims out the
first generally-unnecssary `From` conversion backtrace lines that make
it harder to locate the real error location. The result is a blissfully
simple backtrace by default:


![image](https://github.com/user-attachments/assets/7a5f5c9b-ea70-4176-af3b-d231da31c967)

The full backtrace can be shown by setting the `BEVY_BACKTRACE=full`
environment variable. Non-BevyError panics still use the default Rust
backtrace behavior.

One issue that prevented the truly noise-free backtrace during panics
that you see above is that Rust's default panic handler will print the
unfiltered (and largely unhelpful real-panic-point) backtrace by
default, in _addition_ to our filtered BevyError backtrace (with the
helpful backtrace origin) that we capture and print. To resolve this, I
have extended Bevy's existing PanicHandlerPlugin to wrap the default
panic handler. If we panic from the result of a BevyError, we will skip
the default "print full backtrace" panic handler. This behavior can be
enabled and disabled using the new `error_panic_hook` cargo feature in
`bevy_app` (which is enabled by default).

One downside to _not_ using `Box<dyn Error>` directly is that we can no
longer take advantage of the built-in `Into` impl for strings to errors.
To resolve this, I have added the following:

```rust
// Before
Err("some error")?

// After
Err(BevyError::message("some error"))?
```

We can discuss adding shorthand methods or macros for this (similar to
anyhow's `anyhow!("some error")` macro), but I'd prefer to discuss that
later.

I have also added the following extension method:

```rust
// Before
some_option.ok_or("some error")?;

// After
some_option.ok_or_message("some error")?;
```

I've also moved all of our existing error infrastructure from
`bevy_ecs::result` to `bevy_ecs::error`, as I think that is the better
home for it

## Why not anyhow (or eyre)?

The biggest reason is that `anyhow` needs to be a "generically useful
error type", whereas Bevy is a much narrower scope. By using our own
error, we can be significantly more opinionated. For example, anyhow
doesn't do the extensive (and invasive) backtrace filtering that
BevyError does because it can't operate on Bevy-specific context, and
needs to be generically useful.

Bevy also has a lot of operational context (ex: system info) that could
be useful to attach to errors. If we have control over the error type,
we can add whatever context we want to in a structured way. This could
be increasingly useful as we add more visual / interactive error
handling tools and editor integrations.

Additionally, the core approach used is simple and requires almost no
code. anyhow clocks in at ~2500 lines of code, but the impl here uses
160. We are able to boil this down to exactly what we need, and by doing
so we improve our compile times and the understandability of our code.
2025-03-07 01:50:07 +00:00
Carter Anderson
a530c07bc5
Preserve spawned RelationshipTarget order and other improvements (#17858)
Fixes #17720

## Objective

Spawning RelationshipTargets from scenes currently fails to preserve
RelationshipTarget ordering (ex: `Children` has an arbitrary order).
This is because it uses the normal hook flow to set up the collection,
which means we are pushing onto the collection in _spawn order_ (which
is currently in archetype order, which will often produce mismatched
orderings).

We need to preserve the ordering in the original RelationshipTarget
collection. Ideally without expensive checking / fixups.

## Solution

One solution would be to spawn in hierarchy-order. However this gets
complicated as there can be multiple hierarchies, and it also means we
can't spawn in more cache-friendly orders (ex: the current per-archetype
spawning, or future even-smarter per-table spawning). Additionally,
same-world cloning has _slightly_ more nuanced needs (ex: recursively
clone linked relationships, while maintaining _original_ relationships
outside of the tree via normal hooks).

The preferred approach is to directly spawn the remapped
RelationshipTarget collection, as this trivially preserves the ordering.
Unfortunately we can't _just_ do that, as when we spawn the children
with their Relationships (ex: `ChildOf`), that will insert a duplicate.

We could "fixup" the collection retroactively by just removing the back
half of duplicates, but this requires another pass / more lookups /
allocating twice as much space. Additionally, it becomes complicated
because observers could insert additional children, making it harder
(aka more expensive) to determine which children are dupes and which are
not.

The path I chose is to support "opting out" of the relationship target
hook in the contexts that need that, as this allows us to just cheaply
clone the mapped collection. The relationship hook can look for this
configuration when it runs and skip its logic when that happens. A
"simple" / small-amount-of-code way to do this would be to add a "skip
relationship spawn" flag to World. Sadly, any hook / observer that runs
_as the result of an insert_ would also read this flag. We really need a
way to scope this setting to a _specific_ insert.

Therefore I opted to add a new `RelationshipInsertHookMode` enum and an
`entity.insert_with_relationship_insert_hook_mode` variant. Obviously
this is verbose and ugly. And nobody wants _more_ insert variants. But
sadly this was the best I could come up with from a performance and
capability perspective. If you have alternatives let me know!

There are three variants:

1. `RelationshipInsertHookMode::Run`: always run relationship insert
hooks (this is the default)
2. `RelationshipInsertHookMode::Skip`: do not run any relationship
insert hooks for this insert (this is used by spawner code)
3. `RelationshipInsertHookMode::RunIfNotLinked`: only run hooks for
_unlinked_ relationships (this is used in same-world recursive entity
cloning to preserve relationships outside of the deep-cloned tree)

Note that I have intentionally only added "insert with relationship hook
mode" variants to the cases we absolutely need (everything else uses the
default `Run` mode), just to keep the code size in check. I do not think
we should add more without real _very necessary_ use cases.

I also made some other minor tweaks:

1. I split out `SourceComponent` from `ComponentCloneCtx`. Reading the
source component no longer needlessly blocks mutable access to
`ComponentCloneCtx`.
2. Thanks to (1), I've removed the `RefCell` wrapper over the cloned
component queue.
3. (1) also allowed me to write to the EntityMapper while queuing up
clones, meaning we can reserve entities during the component clone and
write them to the mapper _before_ inserting the component, meaning
cloned collections can be mapped on insert.
4. I've removed the closure from `write_target_component_ptr` to
simplify the API / make it compatible with the split `SourceComponent`
approach.
5. I've renamed `EntityCloner::recursive` to
`EntityCloner::linked_cloning` to connect that feature more directly
with `RelationshipTarget::LINKED_SPAWN`
6. I've removed `EntityCloneBehavior::RelationshipTarget`. This was
always intended to be temporary, and this new behavior removes the need
for it.

---------

Co-authored-by: Viktor Gustavsson <villor94@gmail.com>
2025-03-05 22:18:57 +00:00
Zachary Harrold
ff1143ec87
Remove deprecated component_reads_and_writes (#16348)
# Objective

- Fixes #16339

## Solution

- Replaced `component_reads_and_writes` and `component_writes` with
`try_iter_component_access`.

## Testing

- Ran `dynamic` example to confirm behaviour is unchanged.
- CI

---

## Migration Guide

The following methods (some removed in previous PRs) are now replaced by
`Access::try_iter_component_access`:

* `Access::component_reads_and_writes`
* `Access::component_reads`
* `Access::component_writes`

As `try_iter_component_access` returns a `Result`, you'll now need to
handle the failing case (e.g., `unwrap()`). There is currently a single
failure mode, `UnboundedAccess`, which occurs when the `Access` is for
all `Components` _except_ certain exclusions. Since this list is
infinite, there is no meaningful way for `Access` to provide an
iterator. Instead, get a list of components (e.g., from the `Components`
structure) and iterate over that instead, filtering using
`Access::has_component_read`, `Access::has_component_write`, etc.

Additionally, you'll need to `filter_map` the accesses based on which
method you're attempting to replace:

* `Access::component_reads_and_writes` -> `Exclusive(_) | Shared(_)`
* `Access::component_reads` -> `Shared(_)`
* `Access::component_writes` -> `Exclusive(_)`

To ease migration, please consider the below extension trait which you
can include in your project:

```rust
pub trait AccessCompatibilityExt {
    /// Returns the indices of the components this has access to.
    fn component_reads_and_writes(&self) -> impl Iterator<Item = T> + '_;

    /// Returns the indices of the components this has non-exclusive access to.
    fn component_reads(&self) -> impl Iterator<Item = T> + '_;

    /// Returns the indices of the components this has exclusive access to.
    fn component_writes(&self) -> impl Iterator<Item = T> + '_;
}

impl<T: SparseSetIndex> AccessCompatibilityExt for Access<T> {
    fn component_reads_and_writes(&self) -> impl Iterator<Item = T> + '_ {
        self
            .try_iter_component_access()
            .expect("Access is unbounded. Please refactor the usage of this method to directly use try_iter_component_access")
            .filter_map(|component_access| {
                let index = component_access.index().sparse_set_index();

                match component_access {
                    ComponentAccessKind::Archetypal(_) => None,
                    ComponentAccessKind::Shared(_) => Some(index),
                    ComponentAccessKind::Exclusive(_) => Some(index),
                }
            })
    }

    fn component_reads(&self) -> impl Iterator<Item = T> + '_ {
        self
            .try_iter_component_access()
            .expect("Access is unbounded. Please refactor the usage of this method to directly use try_iter_component_access")
            .filter_map(|component_access| {
                let index = component_access.index().sparse_set_index();

                match component_access {
                    ComponentAccessKind::Archetypal(_) => None,
                    ComponentAccessKind::Shared(_) => Some(index),
                    ComponentAccessKind::Exclusive(_) => None,
                }
            })
    }

    fn component_writes(&self) -> impl Iterator<Item = T> + '_ {
        self
            .try_iter_component_access()
            .expect("Access is unbounded. Please refactor the usage of this method to directly use try_iter_component_access")
            .filter_map(|component_access| {
                let index = component_access.index().sparse_set_index();

                match component_access {
                    ComponentAccessKind::Archetypal(_) => None,
                    ComponentAccessKind::Shared(_) => None,
                    ComponentAccessKind::Exclusive(_) => Some(index),
                }
            })
    }
}
```

Please take note of the use of `expect(...)` in these methods. You
should consider using these as a starting point for a more appropriate
migration based on your specific needs.

## Notes

- This new method is fallible based on whether the `Access` is bounded
or unbounded (unbounded occurring with inverted component sets). If
bounded, will return an iterator of every item and its access level. I
believe this makes sense without exposing implementation details around
`Access`.
- The access level is defined by an `enum` `ComponentAccessKind<T>`,
either `Archetypical`, `Shared`, or `Exclusive`. As a convenience, this
`enum` has a method `index` to get the inner `T` value without a match
statement. It does add more code, but the API is clearer.
- Within `QueryBuilder` this new method simplifies several pieces of
logic without changing behaviour.
- Within `QueryState` the logic is simplified and the amount of
iteration is reduced, potentially improving performance.
- Within the `dynamic` example it has identical behaviour, with the
inversion footgun explicitly highlighted by an `unwrap`.

---------

Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
Co-authored-by: Mike <2180432+hymm@users.noreply.github.com>
2025-03-04 08:22:29 +00:00
Alice Cecile
2ad5908e58
Make Query::single (and friends) return a Result (#18082)
# Objective

As discussed in #14275, Bevy is currently too prone to panic, and makes
the easy / beginner-friendly way to do a large number of operations just
to panic on failure.

This is seriously frustrating in library code, but also slows down
development, as many of the `Query::single` panics can actually safely
be an early return (these panics are often due to a small ordering issue
or a change in game state.

More critically, in most "finished" products, panics are unacceptable:
any unexpected failures should be handled elsewhere. That's where the
new

With the advent of good system error handling, we can now remove this.

Note: I was instrumental in a) introducing this idea in the first place
and b) pushing to make the panicking variant the default. The
introduction of both `let else` statements in Rust and the fancy system
error handling work in 0.16 have changed my mind on the right balance
here.

## Solution

1. Make `Query::single` and `Query::single_mut` (and other random
related methods) return a `Result`.
2. Handle all of Bevy's internal usage of these APIs.
3. Deprecate `Query::get_single` and friends, since we've moved their
functionality to the nice names.
4. Add detailed advice on how to best handle these errors.

Generally I like the diff here, although `get_single().unwrap()` in
tests is a bit of a downgrade.

## Testing

I've done a global search for `.single` to track down any missed
deprecated usages.

As to whether or not all the migrations were successful, that's what CI
is for :)

## Future work

~~Rename `Query::get_single` and friends to `Query::single`!~~

~~I've opted not to do this in this PR, and smear it across two releases
in order to ease the migration. Successive deprecations are much easier
to manage than the semantics and types shifting under your feet.~~

Cart has convinced me to change my mind on this; see
https://github.com/bevyengine/bevy/pull/18082#discussion_r1974536085.

## Migration guide

`Query::single`, `Query::single_mut` and their `QueryState` equivalents
now return a `Result`. Generally, you'll want to:

1. Use Bevy 0.16's system error handling to return a `Result` using the
`?` operator.
2. Use a `let else Ok(data)` block to early return if it's an expected
failure.
3. Use `unwrap()` or `Ok` destructuring inside of tests.

The old `Query::get_single` (etc) methods which did this have been
deprecated.
2025-03-02 19:51:56 +00:00
Rob Parrett
36cb64b382
Bump typos to 1.30.0 (#18097)
# Objective

Update `typos` and fix newly detected typos.


[Changelog](https://github.com/crate-ci/typos/blob/master/CHANGELOG.md#1300---2025-03-01)
(just a dictionary update releases)

## Solution

Fix em

- Describe the solution used to achieve the objective above.

## Testing

CI
2025-03-02 19:02:23 +00:00
JaySpruce
058497e0bb
Change Commands::get_entity to return Result and remove panic from Commands::entity (#18043)
## Objective

Alternative to #18001.

- Now that systems can handle the `?` operator, `get_entity` returning
`Result` would be more useful than `Option`.
- With `get_entity` being more flexible, combined with entity commands
now checking the entity's existence automatically, the panic in `entity`
isn't really necessary.

## Solution

- Changed `Commands::get_entity` to return `Result<EntityCommands,
EntityDoesNotExistError>`.
- Removed panic from `Commands::entity`.
2025-02-27 21:05:16 +00:00
Zachary Harrold
5241e09671
Upgrade to Rust Edition 2024 (#17967)
# Objective

- Fixes #17960

## Solution

- Followed the [edition upgrade
guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html)

## Testing

- CI

---

## Summary of Changes

### Documentation Indentation

When using lists in documentation, proper indentation is now linted for.
This means subsequent lines within the same list item must start at the
same indentation level as the item.

```rust
/* Valid */
/// - Item 1
///   Run-on sentence.
/// - Item 2
struct Foo;

/* Invalid */
/// - Item 1
///     Run-on sentence.
/// - Item 2
struct Foo;
```

### Implicit `!` to `()` Conversion

`!` (the never return type, returned by `panic!`, etc.) no longer
implicitly converts to `()`. This is particularly painful for systems
with `todo!` or `panic!` statements, as they will no longer be functions
returning `()` (or `Result<()>`), making them invalid systems for
functions like `add_systems`. The ideal fix would be to accept functions
returning `!` (or rather, _not_ returning), but this is blocked on the
[stabilisation of the `!` type
itself](https://doc.rust-lang.org/std/primitive.never.html), which is
not done.

The "simple" fix would be to add an explicit `-> ()` to system
signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`).
However, this is _also_ banned, as there is an existing lint which (IMO,
incorrectly) marks this as an unnecessary annotation.

So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ...
}` closuers into variables and give the variable an explicit type (e.g.,
`fn()`).

```rust
// Valid
let system: fn() = || todo!("Not implemented yet!");
app.add_systems(..., system);

// Invalid
app.add_systems(..., || todo!("Not implemented yet!"));
```

### Temporary Variable Lifetimes

The order in which temporary variables are dropped has changed. The
simple fix here is _usually_ to just assign temporaries to a named
variable before use.

### `gen` is a keyword

We can no longer use the name `gen` as it is reserved for a future
generator syntax. This involved replacing uses of the name `gen` with
`r#gen` (the raw-identifier syntax).

### Formatting has changed

Use statements have had the order of imports changed, causing a
substantial +/-3,000 diff when applied. For now, I have opted-out of
this change by amending `rustfmt.toml`

```toml
style_edition = "2021"
```

This preserves the original formatting for now, reducing the size of
this PR. It would be a simple followup to update this to 2024 and run
`cargo fmt`.

### New `use<>` Opt-Out Syntax

Lifetimes are now implicitly included in RPIT types. There was a handful
of instances where it needed to be added to satisfy the borrow checker,
but there may be more cases where it _should_ be added to avoid
breakages in user code.

### `MyUnitStruct { .. }` is an invalid pattern

Previously, you could match against unit structs (and unit enum
variants) with a `{ .. }` destructuring. This is no longer valid.

### Pretty much every use of `ref` and `mut` are gone

Pattern binding has changed to the point where these terms are largely
unused now. They still serve a purpose, but it is far more niche now.

### `iter::repeat(...).take(...)` is bad

New lint recommends using the more explicit `iter::repeat_n(..., ...)`
instead.

## Migration Guide

The lifetimes of functions using return-position impl-trait (RPIT) are
likely _more_ conservative than they had been previously. If you
encounter lifetime issues with such a function, please create an issue
to investigate the addition of `+ use<...>`.

## Notes

- Check the individual commits for a clearer breakdown for what
_actually_ changed.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2025-02-24 03:54:47 +00:00
AlephCubed
5f86668bbb
Renamed EventWriter::send methods to write. (#17977)
Fixes #17856.

## Migration Guide
- `EventWriter::send` has been renamed to `EventWriter::write`.
- `EventWriter::send_batch` has been renamed to
`EventWriter::write_batch`.
- `EventWriter::send_default` has been renamed to
`EventWriter::write_default`.

---------

Co-authored-by: François Mockers <mockersf@gmail.com>
2025-02-23 21:18:52 +00:00
François Mockers
cff17364b1
Deterministic fallible_systems example (#17813)
# Objective

- `fallible_systems` example is not deterministic

## Solution

- Make it deterministic
- Also fix required feature declaration
2025-02-11 23:54:20 +00:00
Jean Mertz
7d8504f30e
feat(ecs): implement fallible observer systems (#17731)
This commit builds on top of the work done in #16589 and #17051, by
adding support for fallible observer systems.

As with the previous work, the actual results of the observer system are
suppressed for now, but the intention is to provide a way to handle
errors in a global way.

Until then, you can use a `PipeSystem` to manually handle results.

---------

Signed-off-by: Jean Mertz <git@jeanmertz.com>
2025-02-11 22:15:43 +00:00
Jean Mertz
fd67ca7eb0
feat(ecs): configurable error handling for fallible systems (#17753)
You can now configure error handlers for fallible systems. These can be
configured on several levels:

- Globally via `App::set_systems_error_handler`
- Per-schedule via `Schedule::set_error_handler`
- Per-system via a piped system (this is existing functionality)

The default handler of panicking on error keeps the same behavior as
before this commit.

The "fallible_systems" example demonstrates the new functionality.

This builds on top of #17731, #16589, #17051.

---------

Signed-off-by: Jean Mertz <git@jeanmertz.com>
2025-02-11 18:36:08 +00:00
Alice Cecile
33e83330eb
Add entity disabling example (#17710)
# Objective

The entity disabling / default query filter work added in #17514 and
#13120 is neat, but we don't teach users how it works!

We should fix that before 0.16.

## Solution

Write a simple example to teach the basics of entity disabling!

## Testing

`cargo run --example entity_disabling`

## Showcase


![image](https://github.com/user-attachments/assets/9edcc5e1-2bdf-40c5-89b7-5b61c817977a)

---------

Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2025-02-09 19:16:48 +00:00
Carter Anderson
3c8fae2390
Improved Entity Mapping and Cloning (#17687)
Fixes #17535

Bevy's approach to handling "entity mapping" during spawning and cloning
needs some work. The addition of
[Relations](https://github.com/bevyengine/bevy/pull/17398) both
[introduced a new "duplicate entities" bug when spawning scenes in the
scene system](#17535) and made the weaknesses of the current mapping
system exceedingly clear:

1. Entity mapping requires _a ton_ of boilerplate (implement or derive
VisitEntities and VisitEntitesMut, then register / reflect MapEntities).
Knowing the incantation is challenging and if you forget to do it in
part or in whole, spawning subtly breaks.
2. Entity mapping a spawned component in scenes incurs unnecessary
overhead: look up ReflectMapEntities, create a _brand new temporary
instance_ of the component using FromReflect, map the entities in that
instance, and then apply that on top of the actual component using
reflection. We can do much better.

Additionally, while our new [Entity cloning
system](https://github.com/bevyengine/bevy/pull/16132) is already pretty
great, it has some areas we can make better:

* It doesn't expose semantic info about the clone (ex: ignore or "clone
empty"), meaning we can't key off of that in places where it would be
useful, such as scene spawning. Rather than duplicating this info across
contexts, I think it makes more sense to add that info to the clone
system, especially given that we'd like to use cloning code in some of
our spawning scenarios.
* EntityCloner is currently built in a way that prioritizes a single
entity clone
* EntityCloner's recursive cloning is built to be done "inside out" in a
parallel context (queue commands that each have a clone of
EntityCloner). By making EntityCloner the orchestrator of the clone we
can remove internal arcs, improve the clarity of the code, make
EntityCloner mutable again, and simplify the builder code.
* EntityCloner does not currently take into account entity mapping. This
is necessary to do true "bullet proof" cloning, would allow us to unify
the per-component scene spawning and cloning UX, and ultimately would
allow us to use EntityCloner in place of raw reflection for scenes like
`Scene(World)` (which would give us a nice performance boost: fewer
archetype moves, less reflection overhead).

## Solution

### Improved Entity Mapping

First, components now have first-class "entity visiting and mapping"
behavior:

```rust
#[derive(Component, Reflect)]
#[reflect(Component)]
struct Inventory {
    size: usize,
    #[entities]
    items: Vec<Entity>,
}
```

Any field with the `#[entities]` annotation will be viewable and
mappable when cloning and spawning scenes.

Compare that to what was required before!

```rust
#[derive(Component, Reflect, VisitEntities, VisitEntitiesMut)]
#[reflect(Component, MapEntities)]
struct Inventory {
    #[visit_entities(ignore)]
    size: usize,
    items: Vec<Entity>,
}
```

Additionally, for relationships `#[entities]` is implied, meaning this
"just works" in scenes and cloning:

```rust
#[derive(Component, Reflect)]
#[relationship(relationship_target = Children)]
#[reflect(Component)]
struct ChildOf(pub Entity);
```

Note that Component _does not_ implement `VisitEntities` directly.
Instead, it has `Component::visit_entities` and
`Component::visit_entities_mut` methods. This is for a few reasons:

1. We cannot implement `VisitEntities for C: Component` because that
would conflict with our impl of VisitEntities for anything that
implements `IntoIterator<Item=Entity>`. Preserving that impl is more
important from a UX perspective.
2. We should not implement `Component: VisitEntities` VisitEntities in
the Component derive, as that would increase the burden of manual
Component trait implementors.
3. Making VisitEntitiesMut directly callable for components would make
it easy to invalidate invariants defined by a component author. By
putting it in the `Component` impl, we can make it harder to call
naturally / unavailable to autocomplete using `fn
visit_entities_mut(this: &mut Self, ...)`.

`ReflectComponent::apply_or_insert` is now
`ReflectComponent::apply_or_insert_mapped`. By moving mapping inside
this impl, we remove the need to go through the reflection system to do
entity mapping, meaning we no longer need to create a clone of the
target component, map the entities in that component, and patch those
values on top. This will make spawning mapped entities _much_ faster
(The default `Component::visit_entities_mut` impl is an inlined empty
function, so it will incur no overhead for unmapped entities).

### The Bug Fix

To solve #17535, spawning code now skips entities with the new
`ComponentCloneBehavior::Ignore` and
`ComponentCloneBehavior::RelationshipTarget` variants (note
RelationshipTarget is a temporary "workaround" variant that allows
scenes to skip these components. This is a temporary workaround that can
be removed as these cases should _really_ be using EntityCloner logic,
which should be done in a followup PR. When that is done,
`ComponentCloneBehavior::RelationshipTarget` can be merged into the
normal `ComponentCloneBehavior::Custom`).

### Improved Cloning

* `Option<ComponentCloneHandler>` has been replaced by
`ComponentCloneBehavior`, which encodes additional intent and context
(ex: `Default`, `Ignore`, `Custom`, `RelationshipTarget` (this last one
is temporary)).
* Global per-world entity cloning configuration has been removed. This
felt overly complicated, increased our API surface, and felt too
generic. Each clone context can have different requirements (ex: what a
user wants in a specific system, what a scene spawner wants, etc). I'd
prefer to see how far context-specific EntityCloners get us first.
* EntityCloner's internals have been reworked to remove Arcs and make it
mutable.
* EntityCloner is now directly stored on EntityClonerBuilder,
simplifying the code somewhat
* EntityCloner's "bundle scratch" pattern has been moved into the new
BundleScratch type, improving its usability and making it usable in
other contexts (such as future cross-world cloning code). Currently this
is still private, but with some higher level safe APIs it could be used
externally for making dynamic bundles
* EntityCloner's recursive cloning behavior has been "externalized". It
is now responsible for orchestrating recursive clones, meaning it no
longer needs to be sharable/clone-able across threads / read-only.
* EntityCloner now does entity mapping during clones, like scenes do.
This gives behavior parity and also makes it more generically useful.
* `RelatonshipTarget::RECURSIVE_SPAWN` is now
`RelationshipTarget::LINKED_SPAWN`, and this field is used when cloning
relationship targets to determine if cloning should happen recursively.
The new `LINKED_SPAWN` term was picked to make it more generically
applicable across spawning and cloning scenarios.

## Next Steps

* I think we should adapt EntityCloner to support cross world cloning. I
think this PR helps set the stage for that by making the internals
slightly more generalized. We could have a CrossWorldEntityCloner that
reuses a lot of this infrastructure.
* Once we support cross world cloning, we should use EntityCloner to
spawn `Scene(World)` scenes. This would yield significant performance
benefits (no archetype moves, less reflection overhead).

---------

Co-authored-by: eugineerd <70062110+eugineerd@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-02-06 22:13:41 +00:00
Zachary Harrold
d0c0bad7b4
Split Component::register_component_hooks into individual methods (#17685)
# Objective

- Fixes #17411

## Solution

- Deprecated `Component::register_component_hooks`
- Added individual methods for each hook which return `None` if the hook
is unused.

## Testing

- CI

---

## Migration Guide

`Component::register_component_hooks` is now deprecated and will be
removed in a future release. When implementing `Component` manually,
also implement the respective hook methods on `Component`.

```rust
// Before
impl Component for Foo {
    // snip
    fn register_component_hooks(hooks: &mut ComponentHooks) {
            hooks.on_add(foo_on_add);
    }
}

// After
impl Component for Foo {
    // snip
    fn on_add() -> Option<ComponentHook> {
            Some(foo_on_add)
    }
}
```

## Notes

I've chosen to deprecate `Component::register_component_hooks` rather
than outright remove it to ease the migration guide. While it is in a
state of deprecation, it must be used by
`Components::register_component_internal` to ensure users who haven't
migrated to the new hook definition scheme aren't left behind. For users
of the new scheme, a default implementation of
`Component::register_component_hooks` is provided which forwards the new
individual hook implementations.

Personally, I think this is a cleaner API to work with, and would allow
the documentation for hooks to exist on the respective `Component`
methods (e.g., documentation for `OnAdd` can exist on
`Component::on_add`). Ideally, `Component::on_add` would be the hook
itself rather than a getter for the hook, but it is the only way to
early-out for a no-op hook, which is important for performance.

## Migration Guide

`Component::register_component_hooks` has been deprecated. If you are
manually implementing the `Component` trait and registering hooks there,
use the individual methods such as `on_add` instead for increased
clarity.
2025-02-05 19:33:05 +00:00
jiang heng
dfac3b9bfd
Fix window close in example cause panic (#17533)
# Objective

Fixes #17532 

## Solution

- check window valide
2025-01-28 05:37:23 +00:00
Zachary Harrold
9bc0ae33c3
Move hashbrown and foldhash out of bevy_utils (#17460)
# Objective

- Contributes to #16877

## Solution

- Moved `hashbrown`, `foldhash`, and related types out of `bevy_utils`
and into `bevy_platform_support`
- Refactored the above to match the layout of these types in `std`.
- Updated crates as required.

## Testing

- CI

---

## Migration Guide

- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::hash`:
  - `FixedState`
  - `DefaultHasher`
  - `RandomState`
  - `FixedHasher`
  - `Hashed`
  - `PassHash`
  - `PassHasher`
  - `NoOpHash`
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::collections`:
  - `HashMap`
  - `HashSet`
- `bevy_utils::hashbrown` has been removed. Instead, import from
`bevy_platform_support::collections` _or_ take a dependency on
`hashbrown` directly.
- `bevy_utils::Entry` has been removed. Instead, import from
`bevy_platform_support::collections::hash_map` or
`bevy_platform_support::collections::hash_set` as appropriate.
- All of the above equally apply to `bevy::utils` and
`bevy::platform_support`.

## Notes

- I left `PreHashMap`, `PreHashMapExt`, and `TypeIdMap` in `bevy_utils`
as they might be candidates for micro-crating. They can always be moved
into `bevy_platform_support` at a later date if desired.
2025-01-23 16:46:08 +00:00
Zachary Harrold
41e79ae826
Refactored ComponentHook Parameters into HookContext (#17503)
# Objective

- Make the function signature for `ComponentHook` less verbose

## Solution

- Refactored `Entity`, `ComponentId`, and `Option<&Location>` into a new
`HookContext` struct.

## Testing

- CI

---

## Migration Guide

Update the function signatures for your component hooks to only take 2
arguments, `world` and `context`. Note that because `HookContext` is
plain data with all members public, you can use de-structuring to
simplify migration.

```rust
// Before
fn my_hook(
    mut world: DeferredWorld,
    entity: Entity,
    component_id: ComponentId,
) { ... }

// After
fn my_hook(
    mut world: DeferredWorld,
    HookContext { entity, component_id, caller }: HookContext,
) { ... }
``` 

Likewise, if you were discarding certain parameters, you can use `..` in
the de-structuring:

```rust
// Before
fn my_hook(
    mut world: DeferredWorld,
    entity: Entity,
    _: ComponentId,
) { ... }

// After
fn my_hook(
    mut world: DeferredWorld,
    HookContext { entity, .. }: HookContext,
) { ... }
```
2025-01-23 02:45:24 +00:00
SpecificProtagonist
f32a6fb205
Track callsite for observers & hooks (#15607)
# Objective

Fixes #14708

Also fixes some commands not updating tracked location.


## Solution

`ObserverTrigger` has a new `caller` field with the
`track_change_detection` feature;
hooks take an additional caller parameter (which is `Some(…)` or `None`
depending on the feature).

## Testing

See the new tests in `src/observer/mod.rs`

---

## Showcase

Observers now know from where they were triggered (if
`track_change_detection` is enabled):
```rust
world.observe(move |trigger: Trigger<OnAdd, Foo>| {
    println!("Added Foo from {}", trigger.caller());
});
```

## Migration

- hooks now take an additional `Option<&'static Location>` argument

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-22 20:02:39 +00:00
Alice Cecile
b34833f00c
Add an example teaching users about custom relationships (#17443)
# Objective

After #17398, Bevy now has relations! We don't teach users how to make /
work with these in the examples yet though, but we definitely should.

## Solution

- Add a simple abstract example that goes over defining, spawning,
traversing and removing a custom relations.
- ~~Add `Relationship` and `RelationshipTarget` to the prelude: the
trait methods are really helpful here.~~
- this causes subtle ambiguities with method names and weird compiler
errors. Not doing it here!
- Clean up related documentation that I referenced when writing this
example.

## Testing

`cargo run --example relationships`

## Notes to reviewers

1. Yes, I know that the cycle detection code could be more efficient. I
decided to reduce the caching to avoid distracting from the broader
point of "here's how you traverse relationships".
2. Instead of using an `App`, I've decide to use
`World::run_system_once` + system functions defined inside of `main` to
do something closer to literate programming.

---------

Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
2025-01-20 23:17:38 +00:00
Carter Anderson
ba5e71f53d
Parent -> ChildOf (#17427)
Fixes #17412

## Objective

`Parent` uses the "has a X" naming convention. There is increasing
sentiment that we should use the "is a X" naming convention for
relationships (following #17398). This leaves `Children` as-is because
there is prevailing sentiment that `Children` is clearer than `ParentOf`
in many cases (especially when treating it like a collection).

This renames `Parent` to `ChildOf`.

This is just the implementation PR. To discuss the path forward, do so
in #17412.

## Migration Guide

- The `Parent` component has been renamed to `ChildOf`.
2025-01-20 22:13:29 +00:00
Carter Anderson
21f1e3045c
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with
planned paths for fragmenting and non-fragmenting many-to-many
relationships). "Non-fragmenting" means that entities with the same
relationship type, but different relationship targets, are not forced
into separate tables (which would cause "table fragmentation").

Functionally, this fills a similar niche as the current Parent/Children
system. The biggest differences are:

1. Relationships have simpler internals and significantly improved
performance and UX. Commands and specialized APIs are no longer
necessary to keep everything in sync. Just spawn entities with the
relationship components you want and everything "just works".
2. Relationships are generalized. Bevy can provide additional built in
relationships, and users can define their own.

**REQUEST TO REVIEWERS**: _please don't leave top level comments and
instead comment on specific lines of code. That way we can take
advantage of threaded discussions. Also dont leave comments simply
pointing out CI failures as I can read those just fine._

## Built on top of what we have

Relationships are implemented on top of the Bevy ECS features we already
have: components, immutability, and hooks. This makes them immediately
compatible with all of our existing (and future) APIs for querying,
spawning, removing, scenes, reflection, etc. The fewer specialized APIs
we need to build, maintain, and teach, the better.

## Why focus on one-to-many non-fragmenting first?

1. This allows us to improve Parent/Children relationships immediately,
in a way that is reasonably uncontroversial. Switching our hierarchy to
fragmenting relationships would have significant performance
implications. ~~Flecs is heavily considering a switch to non-fragmenting
relations after careful considerations of the performance tradeoffs.~~
_(Correction from @SanderMertens: Flecs is implementing non-fragmenting
storage specialized for asset hierarchies, where asset hierarchies are
many instances of small trees that have a well defined structure)_
2. Adding generalized one-to-many relationships is currently a priority
for the [Next Generation Scene / UI
effort](https://github.com/bevyengine/bevy/discussions/14437).
Specifically, we're interested in building reactions and observers on
top.

## The changes

This PR does the following:

1. Adds a generic one-to-many Relationship system
3. Ports the existing Parent/Children system to Relationships, which now
lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been
removed.
4. Adds on_despawn component hooks
5. Relationships can opt-in to "despawn descendants" behavior, meaning
that the entire relationship hierarchy is despawned when
`entity.despawn()` is called. The built in Parent/Children hierarchies
enable this behavior, and `entity.despawn_recursive()` has been removed.
6. `world.spawn` now applies commands after spawning. This ensures that
relationship bookkeeping happens immediately and removes the need to
manually flush. This is in line with the equivalent behaviors recently
added to the other APIs (ex: insert).
7. Removes the ValidParentCheckPlugin (system-driven / poll based) in
favor of a `validate_parent_has_component` hook.

## Using Relationships

The `Relationship` trait looks like this:

```rust
pub trait Relationship: Component + Sized {
    type RelationshipSources: RelationshipSources<Relationship = Self>;
    fn get(&self) -> Entity;
    fn from(entity: Entity) -> Self;
}
```

A relationship is a component that:

1. Is a simple wrapper over a "target" Entity.
2. Has a corresponding `RelationshipSources` component, which is a
simple wrapper over a collection of entities. Every "target entity"
targeted by a "source entity" with a `Relationship` has a
`RelationshipSources` component, which contains every "source entity"
that targets it.

For example, the `Parent` component (as it currently exists in Bevy) is
the `Relationship` component and the entity containing the Parent is the
"source entity". The entity _inside_ the `Parent(Entity)` component is
the "target entity". And that target entity has a `Children` component
(which implements `RelationshipSources`).

In practice, the Parent/Children relationship looks like this:

```rust
#[derive(Relationship)]
#[relationship(relationship_sources = Children)]
pub struct Parent(pub Entity);

#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent)]
pub struct Children(Vec<Entity>);
```

The Relationship and RelationshipSources derives automatically implement
Component with the relevant configuration (namely, the hooks necessary
to keep everything in sync).

The most direct way to add relationships is to spawn entities with
relationship components:

```rust
let a = world.spawn_empty().id();
let b = world.spawn(Parent(a)).id();

assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]);
```

There are also convenience APIs for spawning more than one entity with
the same relationship:

```rust
world.spawn_empty().with_related::<Children>(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

The existing `with_children` API is now a simpler wrapper over
`with_related`. This makes this change largely non-breaking for existing
spawn patterns.

```rust
world.spawn_empty().with_children(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

There are also other relationship APIs, such as `add_related` and
`despawn_related`.

## Automatic recursive despawn via the new on_despawn hook

`RelationshipSources` can opt-in to "despawn descendants" behavior,
which will despawn all related entities in the relationship hierarchy:

```rust
#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent, despawn_descendants)]
pub struct Children(Vec<Entity>);
```

This means that `entity.despawn_recursive()` is no longer required.
Instead, just use `entity.despawn()` and the relevant related entities
will also be despawned.

To despawn an entity _without_ despawning its parent/child descendants,
you should remove the `Children` component first, which will also remove
the related `Parent` components:

```rust
entity
    .remove::<Children>()
    .despawn()
```

This builds on the on_despawn hook introduced in this PR, which is fired
when an entity is despawned (before other hooks).

## Relationships are the source of truth

`Relationship` is the _single_ source of truth component.
`RelationshipSources` is merely a reflection of what all the
`Relationship` components say. By embracing this, we are able to
significantly improve the performance of the system as a whole. We can
rely on component lifecycles to protect us against duplicates, rather
than needing to scan at runtime to ensure entities don't already exist
(which results in quadratic runtime). A single source of truth gives us
constant-time inserts. This does mean that we cannot directly spawn
populated `Children` components (or directly add or remove entities from
those components). I personally think this is a worthwhile tradeoff,
both because it makes the performance much better _and_ because it means
theres exactly one way to do things (which is a philosophy we try to
employ for Bevy APIs).

As an aside: treating both sides of the relationship as "equivalent
source of truth relations" does enable building simple and flexible
many-to-many relationships. But this introduces an _inherent_ need to
scan (or hash) to protect against duplicates.
[`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations)
has a very nice implementation of the "symmetrical many-to-many"
approach. Unfortunately I think the performance issues inherent to that
approach make it a poor choice for Bevy's default relationship system.

## Followup Work

* Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in
this PR to keep the diff reasonable, but I'm personally biased toward
this change (and using that naming pattern generally for relationships).
* [Improved spawning
ergonomics](https://github.com/bevyengine/bevy/discussions/16920)
* Consider adding relationship observers/triggers for "relationship
targets" whenever a source is added or removed. This would replace the
current "hierarchy events" system, which is unused upstream but may have
existing users downstream. I think triggers are the better fit for this
than a buffered event queue, and would prefer not to add that back.
* Fragmenting relations: My current idea hinges on the introduction of
"value components" (aka: components whose type _and_ value determines
their ComponentId, via something like Hashing / PartialEq). By labeling
a Relationship component such as `ChildOf(Entity)` as a "value
component", `ChildOf(e1)` and `ChildOf(e2)` would be considered
"different components". This makes the transition between fragmenting
and non-fragmenting a single flag, and everything else continues to work
as expected.
* Many-to-many support
* Non-fragmenting: We can expand Relationship to be a list of entities
instead of a single entity. I have largely already written the code for
this.
* Fragmenting: With the "value component" impl mentioned above, we get
many-to-many support "for free", as it would allow inserting multiple
copies of a Relationship component with different target entities.

Fixes #3742 (If this PR is merged, I think we should open more targeted
followup issues for the work above, with a fresh tracking issue free of
the large amount of less-directed historical context)
Fixes #17301
Fixes #12235 
Fixes #15299
Fixes #15308 

## Migration Guide

* Replace `ChildBuilder` with `ChildSpawnerCommands`.
* Replace calls to `.set_parent(parent_id)` with
`.insert(Parent(parent_id))`.
* Replace calls to `.replace_children()` with `.remove::<Children>()`
followed by `.add_children()`. Note that you'll need to manually despawn
any children that are not carried over.
* Replace calls to `.despawn_recursive()` with `.despawn()`.
* Replace calls to `.despawn_descendants()` with
`.despawn_related::<Children>()`.
* If you have any calls to `.despawn()` which depend on the children
being preserved, you'll need to remove the `Children` component first.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-18 22:20:30 +00:00
MichiRecRoom
26bb0b40d2
Move #![warn(clippy::allow_attributes, clippy::allow_attributes_without_reason)] to the workspace Cargo.toml (#17374)
# Objective
Fixes https://github.com/bevyengine/bevy/issues/17111

## Solution
Move `#![warn(clippy::allow_attributes,
clippy::allow_attributes_without_reason)]` to the workspace `Cargo.toml`

## Testing
Lots of CI testing, and local testing too.

---------

Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
2025-01-15 01:14:58 +00:00