151f365427
5 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
f7e112a3c9
|
Let query items borrow from query state to avoid needing to clone (#15396)
# Objective Improve the performance of `FilteredEntity(Ref|Mut)` and `Entity(Ref|Mut)Except`. `FilteredEntityRef` needs an `Access<ComponentId>` to determine what components it can access. There is one stored in the query state, but query items cannot borrow from the state, so it has to `clone()` the access for each row. Cloning the access involves memory allocations and can be expensive. ## Solution Let query items borrow from their query state. Add an `'s` lifetime to `WorldQuery::Item` and `WorldQuery::Fetch`, similar to the one in `SystemParam`, and provide `&'s Self::State` to the fetch so that it can borrow from the state. Unfortunately, there are a few cases where we currently return query items from temporary query states: the sorted iteration methods create a temporary state to query the sort keys, and the `EntityRef::components<Q>()` methods create a temporary state for their query. To allow these to continue to work with most `QueryData` implementations, introduce a new subtrait `ReleaseStateQueryData` that converts a `QueryItem<'w, 's>` to `QueryItem<'w, 'static>`, and is implemented for everything except `FilteredEntity(Ref|Mut)` and `Entity(Ref|Mut)Except`. `#[derive(QueryData)]` will generate `ReleaseStateQueryData` implementations that apply when all of the subqueries implement `ReleaseStateQueryData`. This PR does not actually change the implementation of `FilteredEntity(Ref|Mut)` or `Entity(Ref|Mut)Except`! That will be done as a follow-up PR so that the changes are easier to review. I have pushed the changes as chescock/bevy#5. ## Testing I ran performance traces of many_foxes, both against main and against chescock/bevy#5, both including #15282. These changes do appear to make generalized animation a bit faster: (Red is main, yellow is chescock/bevy#5)  ## Migration Guide The `WorldQuery::Item` and `WorldQuery::Fetch` associated types and the `QueryItem` and `ROQueryItem` type aliases now have an additional lifetime parameter corresponding to the `'s` lifetime in `Query`. Manual implementations of `WorldQuery` will need to update the method signatures to include the new lifetimes. Other uses of the types will need to be updated to include a lifetime parameter, although it can usually be passed as `'_`. In particular, `ROQueryItem` is used when implementing `RenderCommand`. Before: ```rust fn render<'w>( item: &P, view: ROQueryItem<'w, Self::ViewQuery>, entity: Option<ROQueryItem<'w, Self::ItemQuery>>, param: SystemParamItem<'w, '_, Self::Param>, pass: &mut TrackedRenderPass<'w>, ) -> RenderCommandResult; ``` After: ```rust fn render<'w>( item: &P, view: ROQueryItem<'w, '_, Self::ViewQuery>, entity: Option<ROQueryItem<'w, '_, Self::ItemQuery>>, param: SystemParamItem<'w, '_, Self::Param>, pass: &mut TrackedRenderPass<'w>, ) -> RenderCommandResult; ``` --- Methods on `QueryState` that take `&mut self` may now result in conflicting borrows if the query items capture the lifetime of the mutable reference. This affects `get()`, `iter()`, and others. To fix the errors, first call `QueryState::update_archetypes()`, and then replace a call `state.foo(world, param)` with `state.query_manual(world).foo_inner(param)`. Alternately, you may be able to restructure the code to call `state.query(world)` once and then make multiple calls using the `Query`. Before: ```rust let mut state: QueryState<_, _> = ...; let d1 = state.get(world, e1); let d2 = state.get(world, e2); // Error: cannot borrow `state` as mutable more than once at a time println!("{d1:?}"); println!("{d2:?}"); ``` After: ```rust let mut state: QueryState<_, _> = ...; state.update_archetypes(world); let d1 = state.get_manual(world, e1); let d2 = state.get_manual(world, e2); // OR state.update_archetypes(world); let d1 = state.query(world).get_inner(e1); let d2 = state.query(world).get_inner(e2); // OR let query = state.query(world); let d1 = query.get_inner(e1); let d1 = query.get_inner(e2); println!("{d1:?}"); println!("{d2:?}"); ``` |
||
![]() |
33b3c08515
|
Remove Shader weak_handles from bevy_anti_aliasing. (#19391)
# Objective - Related to #19024 ## Solution - Use the new `load_shader_library` macro for the shader libraries and `embedded_asset`/`load_embedded_asset` for the "shader binaries" in `bevy_anti_aliasing`. ## Testing - `anti_aliasing` example still works. P.S. I don't think this needs a migration guide. Technically users could be using the `pub` weak handles, but there's no actual good use for them, so omitting it seems fine. Alternatively, we could mix this in with the migration guide notes for #19137. |
||
![]() |
7b1c9f192e
|
Adopt consistent FooSystems naming convention for system sets (#18900)
# Objective Fixes a part of #14274. Bevy has an incredibly inconsistent naming convention for its system sets, both internally and across the ecosystem. <img alt="System sets in Bevy" src="https://github.com/user-attachments/assets/d16e2027-793f-4ba4-9cc9-e780b14a5a1b" width="450" /> *Names of public system set types in Bevy* Most Bevy types use a naming of `FooSystem` or just `Foo`, but there are also a few `FooSystems` and `FooSet` types. In ecosystem crates on the other hand, `FooSet` is perhaps the most commonly used name in general. Conventions being so wildly inconsistent can make it harder for users to pick names for their own types, to search for system sets on docs.rs, or to even discern which types *are* system sets. To reign in the inconsistency a bit and help unify the ecosystem, it would be good to establish a common recommended naming convention for system sets in Bevy itself, similar to how plugins are commonly suffixed with `Plugin` (ex: `TimePlugin`). By adopting a consistent naming convention in first-party Bevy, we can softly nudge ecosystem crates to follow suit (for types where it makes sense to do so). Choosing a naming convention is also relevant now, as the [`bevy_cli` recently adopted lints](https://github.com/TheBevyFlock/bevy_cli/pull/345) to enforce naming for plugins and system sets, and the recommended naming used for system sets is still a bit open. ## Which Name To Use? Now the contentious part: what naming convention should we actually adopt? This was discussed on the Bevy Discord at the end of last year, starting [here](<https://discord.com/channels/691052431525675048/692572690833473578/1310659954683936789>). `FooSet` and `FooSystems` were the clear favorites, with `FooSet` very narrowly winning an unofficial poll. However, it seems to me like the consensus was broadly moving towards `FooSystems` at the end and after the poll, with Cart ([source](https://discord.com/channels/691052431525675048/692572690833473578/1311140204974706708)) and later Alice ([source](https://discord.com/channels/691052431525675048/692572690833473578/1311092530732859533)) and also me being in favor of it. Let's do a quick pros and cons list! Of course these are just what I thought of, so take it with a grain of salt. `FooSet`: - Pro: Nice and short! - Pro: Used by many ecosystem crates. - Pro: The `Set` suffix comes directly from the trait name `SystemSet`. - Pro: Pairs nicely with existing APIs like `in_set` and `configure_sets`. - Con: `Set` by itself doesn't actually indicate that it's related to systems *at all*, apart from the implemented trait. A set of what? - Con: Is `FooSet` a set of `Foo`s or a system set related to `Foo`? Ex: `ContactSet`, `MeshSet`, `EnemySet`... `FooSystems`: - Pro: Very clearly indicates that the type represents a collection of systems. The actual core concept, system(s), is in the name. - Pro: Parallels nicely with `FooPlugins` for plugin groups. - Pro: Low risk of conflicts with other names or misunderstandings about what the type is. - Pro: In most cases, reads *very* nicely and clearly. Ex: `PhysicsSystems` and `AnimationSystems` as opposed to `PhysicsSet` and `AnimationSet`. - Pro: Easy to search for on docs.rs. - Con: Usually results in longer names. - Con: Not yet as widely used. Really the big problem with `FooSet` is that it doesn't actually describe what it is. It describes what *kind of thing* it is (a set of something), but not *what it is a set of*, unless you know the type or check its docs or implemented traits. `FooSystems` on the other hand is much more self-descriptive in this regard, at the cost of being a bit longer to type. Ultimately, in some ways it comes down to preference and how you think of system sets. Personally, I was originally in favor of `FooSet`, but have been increasingly on the side of `FooSystems`, especially after seeing what the new names would actually look like in Avian and now Bevy. I prefer it because it usually reads better, is much more clearly related to groups of systems than `FooSet`, and overall *feels* more correct and natural to me in the long term. For these reasons, and because Alice and Cart also seemed to share a preference for it when it was previously being discussed, I propose that we adopt a `FooSystems` naming convention where applicable. ## Solution Rename Bevy's system set types to use a consistent `FooSet` naming where applicable. - `AccessibilitySystem` → `AccessibilitySystems` - `GizmoRenderSystem` → `GizmoRenderSystems` - `PickSet` → `PickingSystems` - `RunFixedMainLoopSystem` → `RunFixedMainLoopSystems` - `TransformSystem` → `TransformSystems` - `RemoteSet` → `RemoteSystems` - `RenderSet` → `RenderSystems` - `SpriteSystem` → `SpriteSystems` - `StateTransitionSteps` → `StateTransitionSystems` - `RenderUiSystem` → `RenderUiSystems` - `UiSystem` → `UiSystems` - `Animation` → `AnimationSystems` - `AssetEvents` → `AssetEventSystems` - `TrackAssets` → `AssetTrackingSystems` - `UpdateGizmoMeshes` → `GizmoMeshSystems` - `InputSystem` → `InputSystems` - `InputFocusSet` → `InputFocusSystems` - `ExtractMaterialsSet` → `MaterialExtractionSystems` - `ExtractMeshesSet` → `MeshExtractionSystems` - `RumbleSystem` → `RumbleSystems` - `CameraUpdateSystem` → `CameraUpdateSystems` - `ExtractAssetsSet` → `AssetExtractionSystems` - `Update2dText` → `Text2dUpdateSystems` - `TimeSystem` → `TimeSystems` - `AudioPlaySet` → `AudioPlaybackSystems` - `SendEvents` → `EventSenderSystems` - `EventUpdates` → `EventUpdateSystems` A lot of the names got slightly longer, but they are also a lot more consistent, and in my opinion the majority of them read much better. For a few of the names I took the liberty of rewording things a bit; definitely open to any further naming improvements. There are still also cases where the `FooSystems` naming doesn't really make sense, and those I left alone. This primarily includes system sets like `Interned<dyn SystemSet>`, `EnterSchedules<S>`, `ExitSchedules<S>`, or `TransitionSchedules<S>`, where the type has some special purpose and semantics. ## Todo - [x] Should I keep all the old names as deprecated type aliases? I can do this, but to avoid wasting work I'd prefer to first reach consensus on whether these renames are even desired. - [x] Migration guide - [x] Release notes |
||
![]() |
9d25689f82
|
Remove Image::from_buffer name argument (only present in debug "dds" builds) (#18538)
# Objective - Fixes https://github.com/bevyengine/bevy/issues/17891 - Cherry-picked from https://github.com/bevyengine/bevy/pull/18411 ## Solution The `name` argument could either be made permanent (by removing the `#[cfg(...)]` condition) or eliminated entirely. I opted to remove it, as debugging a specific DDS texture edge case in GLTF files doesn't seem necessary, and there isn't any other foreseeable need to have it. ## Migration Guide - `Image::from_buffer()` no longer has a `name` argument that's only present in debug builds when the `"dds"` feature is enabled. If you happen to pass a name, remove it. |
||
![]() |
06bae05ba2
|
Add bevy_anti_aliasing (#18323)
# Objective - bevy_core_pipeline is getting really big and it's a big bottleneck for compilation time. A lot of parts of it can be broken up ## Solution - Add a new bevy_anti_aliasing crate that contains all the anti_aliasing implementations - I didn't move any MSAA related code to this new crate because that's a lot more invasive ## Testing - Tested the anti_aliasing example to make sure all methods still worked --- ## Showcase before:  after:  Notice that now bevy_core_pipeline is 1s shorter and bevy_anti_aliasing now compiles in parallel with bevy_pbr. ## Migration Guide When using anti aliasing features, you now need to import them from `bevy::anti_aliasing` instead of `bevy::core_pipeline` |