# Objective
- Many strings in bevy_ecs are created but only used for debug: system
name, component name, ...
- Those strings make a significant part of the final binary and are no
use in a released game
## Solution
- Use [`strings`](https://linux.die.net/man/1/strings) to find ...
strings in a binary
- Try to find where they come from
- Many are made from `type_name::<T>()` and only used in error / debug
messages
- Add a new structure `DebugName` that holds no value if `debug` feature
is disabled
- Replace `core::any::type_name::<T>()` by `DebugName::type_name::<T>()`
## Testing
Measurements were taken without the new feature being enabled by
default, to help with commands
### File Size
I tried building the `breakout` example with `cargo run --release
--example breakout`
|`debug` enabled|`debug` disabled|
|-|-|
|81621776 B|77735728B|
|77.84MB|74.13MB|
### Compilation time
`hyperfine --min-runs 15 --prepare "cargo clean && sleep 5"
'RUSTC_WRAPPER="" cargo build --release --example breakout'
'RUSTC_WRAPPER="" cargo build --release --example breakout --features
debug'`
```
breakout' 'RUSTC_WRAPPER="" cargo build --release --example breakout --features debug'
Benchmark 1: RUSTC_WRAPPER="" cargo build --release --example breakout
Time (mean ± σ): 84.856 s ± 3.565 s [User: 1093.817 s, System: 32.547 s]
Range (min … max): 78.038 s … 89.214 s 15 runs
Benchmark 2: RUSTC_WRAPPER="" cargo build --release --example breakout --features debug
Time (mean ± σ): 92.303 s ± 2.466 s [User: 1193.443 s, System: 33.803 s]
Range (min … max): 90.619 s … 99.684 s 15 runs
Summary
RUSTC_WRAPPER="" cargo build --release --example breakout ran
1.09 ± 0.05 times faster than RUSTC_WRAPPER="" cargo build --release --example breakout --features debug
```
# Objective
Closes#19564.
The current `Event` trait looks like this:
```rust
pub trait Event: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
The `Event` trait is used by both buffered events
(`EventReader`/`EventWriter`) and observer events. If they are observer
events, they can optionally be targeted at specific `Entity`s or
`ComponentId`s, and can even be propagated to other entities.
However, there has long been a desire to split the trait semantically
for a variety of reasons, see #14843, #14272, and #16031 for discussion.
Some reasons include:
- It's very uncommon to use a single event type as both a buffered event
and targeted observer event. They are used differently and tend to have
distinct semantics.
- A common footgun is using buffered events with observers or event
readers with observer events, as there is no type-level error that
prevents this kind of misuse.
- #19440 made `Trigger::target` return an `Option<Entity>`. This
*seriously* hurts ergonomics for the general case of entity observers,
as you need to `.unwrap()` each time. If we could statically determine
whether the event is expected to have an entity target, this would be
unnecessary.
There's really two main ways that we can categorize events: push vs.
pull (i.e. "observer event" vs. "buffered event") and global vs.
targeted:
| | Push | Pull |
| ------------ | --------------- | --------------------------- |
| **Global** | Global observer | `EventReader`/`EventWriter` |
| **Targeted** | Entity observer | - |
There are many ways to approach this, each with their tradeoffs.
Ultimately, we kind of want to split events both ways:
- A type-level distinction between observer events and buffered events,
to prevent people from using the wrong kind of event in APIs
- A statically designated entity target for observer events to avoid
accidentally using untargeted events for targeted APIs
This PR achieves these goals by splitting event traits into `Event`,
`EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait
implemented by all events.
## `Event`, `EntityEvent`, and `BufferedEvent`
`Event` is now a very simple trait shared by all events.
```rust
pub trait Event: Send + Sync + 'static {
// Required for observer APIs
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
You can call `trigger` for *any* event, and use a global observer for
listening to the event.
```rust
#[derive(Event)]
struct Speak {
message: String,
}
// ...
app.add_observer(|trigger: On<Speak>| {
println!("{}", trigger.message);
});
// ...
commands.trigger(Speak {
message: "Y'all like these reworked events?".to_string(),
});
```
To allow an event to be targeted at entities and even propagated
further, you can additionally implement the `EntityEvent` trait:
```rust
pub trait EntityEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This lets you call `trigger_targets`, and to use targeted observer APIs
like `EntityCommands::observe`:
```rust
#[derive(Event, EntityEvent)]
#[entity_event(traversal = &'static ChildOf, auto_propagate)]
struct Damage {
amount: f32,
}
// ...
let enemy = commands.spawn((Enemy, Health(100.0))).id();
// Spawn some armor as a child of the enemy entity.
// When the armor takes damage, it will bubble the event up to the enemy.
let armor_piece = commands
.spawn((ArmorPiece, Health(25.0), ChildOf(enemy)))
.observe(|trigger: On<Damage>, mut query: Query<&mut Health>| {
// Note: `On::target` only exists because this is an `EntityEvent`.
let mut health = query.get(trigger.target()).unwrap();
health.0 -= trigger.amount();
});
commands.trigger_targets(Damage { amount: 10.0 }, armor_piece);
```
> [!NOTE]
> You *can* still also trigger an `EntityEvent` without targets using
`trigger`. We probably *could* make this an either-or thing, but I'm not
sure that's actually desirable.
To allow an event to be used with the buffered API, you can implement
`BufferedEvent`:
```rust
pub trait BufferedEvent: Event {}
```
The event can then be used with `EventReader`/`EventWriter`:
```rust
#[derive(Event, BufferedEvent)]
struct Message(String);
fn write_hello(mut writer: EventWriter<Message>) {
writer.write(Message("I hope these examples are alright".to_string()));
}
fn read_messages(mut reader: EventReader<Message>) {
// Process all buffered events of type `Message`.
for Message(message) in reader.read() {
println!("{message}");
}
}
```
In summary:
- Need a basic event you can trigger and observe? Derive `Event`!
- Need the event to be targeted at an entity? Derive `EntityEvent`!
- Need the event to be buffered and support the
`EventReader`/`EventWriter` API? Derive `BufferedEvent`!
## Alternatives
I'll now cover some of the alternative approaches I have considered and
briefly explored. I made this section collapsible since it ended up
being quite long :P
<details>
<summary>Expand this to see alternatives</summary>
### 1. Unified `Event` Trait
One option is not to have *three* separate traits (`Event`,
`EntityEvent`, `BufferedEvent`), and to instead just use associated
constants on `Event` to determine whether an event supports targeting
and buffering or not:
```rust
pub trait Event: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
const TARGETED: bool = false;
const BUFFERED: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
Methods can then use bounds like `where E: Event<TARGETED = true>` or
`where E: Event<BUFFERED = true>` to limit APIs to specific kinds of
events.
This would keep everything under one `Event` trait, but I don't think
it's necessarily a good idea. It makes APIs harder to read, and docs
can't easily refer to specific types of events. You can also create
weird invariants: what if you specify `TARGETED = false`, but have
`Traversal` and/or `AUTO_PROPAGATE` enabled?
### 2. `Event` and `Trigger`
Another option is to only split the traits between buffered events and
observer events, since that is the main thing people have been asking
for, and they have the largest API difference.
If we did this, I think we would need to make the terms *clearly*
separate. We can't really use `Event` and `BufferedEvent` as the names,
since it would be strange that `BufferedEvent` doesn't implement
`Event`. Something like `ObserverEvent` and `BufferedEvent` could work,
but it'd be more verbose.
For this approach, I would instead keep `Event` for the current
`EventReader`/`EventWriter` API, and call the observer event a
`Trigger`, since the "trigger" terminology is already used in the
observer context within Bevy (both as a noun and a verb). This is also
what a long [bikeshed on
Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791)
seemed to land on at the end of last year.
```rust
// For `EventReader`/`EventWriter`
pub trait Event: Send + Sync + 'static {}
// For observers
pub trait Trigger: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
const TARGETED: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
The problem is that "event" is just a really good term for something
that "happens". Observers are rapidly becoming the more prominent API,
so it'd be weird to give them the `Trigger` name and leave the good
`Event` name for the less common API.
So, even though a split like this seems neat on the surface, I think it
ultimately wouldn't really work. We want to keep the `Event` name for
observer events, and there is no good alternative for the buffered
variant. (`Message` was suggested, but saying stuff like "sends a
collision message" is weird.)
### 3. `GlobalEvent` + `TargetedEvent`
What if instead of focusing on the buffered vs. observed split, we
*only* make a distinction between global and targeted events?
```rust
// A shared event trait to allow global observers to work
pub trait Event: Send + Sync + 'static {
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
// For buffered events and non-targeted observer events
pub trait GlobalEvent: Event {}
// For targeted observer events
pub trait TargetedEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This is actually the first approach I implemented, and it has the neat
characteristic that you can only use non-targeted APIs like `trigger`
with a `GlobalEvent` and targeted APIs like `trigger_targets` with a
`TargetedEvent`. You have full control over whether the entity should or
should not have a target, as they are fully distinct at the type-level.
However, there's a few problems:
- There is no type-level indication of whether a `GlobalEvent` supports
buffered events or just non-targeted observer events
- An `Event` on its own does literally nothing, it's just a shared trait
required to make global observers accept both non-targeted and targeted
events
- If an event is both a `GlobalEvent` and `TargetedEvent`, global
observers again have ambiguity on whether an event has a target or not,
undermining some of the benefits
- The names are not ideal
### 4. `Event` and `EntityEvent`
We can fix some of the problems of Alternative 3 by accepting that
targeted events can also be used in non-targeted contexts, and simply
having the `Event` and `EntityEvent` traits:
```rust
// For buffered events and non-targeted observer events
pub trait Event: Send + Sync + 'static {
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
// For targeted observer events
pub trait EntityEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This is essentially identical to this PR, just without a dedicated
`BufferedEvent`. The remaining major "problem" is that there is still
zero type-level indication of whether an `Event` event *actually*
supports the buffered API. This leads us to the solution proposed in
this PR, using `Event`, `EntityEvent`, and `BufferedEvent`.
</details>
## Conclusion
The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR
aims to solve all the common problems with Bevy's current event model
while keeping the "weirdness" factor minimal. It splits in terms of both
the push vs. pull *and* global vs. targeted aspects, while maintaining a
shared concept for an "event".
### Why I Like This
- The term "event" remains as a single concept for all the different
kinds of events in Bevy.
- Despite all event types being "events", they use fundamentally
different APIs. Instead of assuming that you can use an event type with
any pattern (when only one is typically supported), you explicitly opt
in to each one with dedicated traits.
- Using separate traits for each type of event helps with documentation
and clearer function signatures.
- I can safely make assumptions on expected usage.
- If I see that an event is an `EntityEvent`, I can assume that I can
use `observe` on it and get targeted events.
- If I see that an event is a `BufferedEvent`, I can assume that I can
use `EventReader` to read events.
- If I see both `EntityEvent` and `BufferedEvent`, I can assume that
both APIs are supported.
In summary: This allows for a unified concept for events, while limiting
the different ways to use them with opt-in traits. No more guess-work
involved when using APIs.
### Problems?
- Because `BufferedEvent` implements `Event` (for more consistent
semantics etc.), you can still use all buffered events for non-targeted
observers. I think this is fine/good. The important part is that if you
see that an event implements `BufferedEvent`, you know that the
`EventReader`/`EventWriter` API should be supported. Whether it *also*
supports other APIs is secondary.
- I currently only support `trigger_targets` for an `EntityEvent`.
However, you can technically target components too, without targeting
any entities. I consider that such a niche and advanced use case that
it's not a huge problem to only support it for `EntityEvent`s, but we
could also split `trigger_targets` into `trigger_entities` and
`trigger_components` if we wanted to (or implement components as
entities :P).
- You can still trigger an `EntityEvent` *without* targets. I consider
this correct, since `Event` implements the non-targeted behavior, and
it'd be weird if implementing another trait *removed* behavior. However,
it does mean that global observers for entity events can technically
return `Entity::PLACEHOLDER` again (since I got rid of the
`Option<Entity>` added in #19440 for ergonomics). I think that's enough
of an edge case that it's not a huge problem, but it is worth keeping in
mind.
- ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type
currently duplicates the `Event` implementation, so you instead need to
manually implement one of them.~~ Changed to always requiring `Event` to
be derived.
## Related Work
There are plans to implement multi-event support for observers,
especially for UI contexts. [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)
API looked like this:
```rust
// Truncated for brevity
trigger: Trigger<(
OnAdd<Pressed>,
OnRemove<Pressed>,
OnAdd<InteractionDisabled>,
OnRemove<InteractionDisabled>,
OnInsert<Hovered>,
)>,
```
I believe this shouldn't be in conflict with this PR. If anything, this
PR might *help* achieve the multi-event pattern for entity observers
with fewer footguns: by statically enforcing that all of these events
are `EntityEvent`s in the context of `EntityCommands::observe`, we can
avoid misuse or weird cases where *some* events inside the trigger are
targeted while others are not.
# Objective
Currently, the observer API looks like this:
```rust
app.add_observer(|trigger: Trigger<Explode>| {
info!("Entity {} exploded!", trigger.target());
});
```
Future plans for observers also include "multi-event observers" with a
trigger that looks like this (see [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)):
```rust
trigger: Trigger<(
OnAdd<Pressed>,
OnRemove<Pressed>,
OnAdd<InteractionDisabled>,
OnRemove<InteractionDisabled>,
OnInsert<Hovered>,
)>,
```
In scenarios like this, there is a lot of repetition of `On`. These are
expected to be very high-traffic APIs especially in UI contexts, so
ergonomics and readability are critical.
By renaming `Trigger` to `On`, we can make these APIs read more cleanly
and get rid of the repetition:
```rust
app.add_observer(|trigger: On<Explode>| {
info!("Entity {} exploded!", trigger.target());
});
```
```rust
trigger: On<(
Add<Pressed>,
Remove<Pressed>,
Add<InteractionDisabled>,
Remove<InteractionDisabled>,
Insert<Hovered>,
)>,
```
Names like `On<Add<Pressed>>` emphasize the actual event listener nature
more than `Trigger<OnAdd<Pressed>>`, and look cleaner. This *also* frees
up the `Trigger` name if we want to use it for the observer event type,
splitting them out from buffered events (bikeshedding this is out of
scope for this PR though).
For prior art:
[`bevy_eventlistener`](https://github.com/aevyrie/bevy_eventlistener)
used
[`On`](https://docs.rs/bevy_eventlistener/latest/bevy_eventlistener/event_listener/struct.On.html)
for its event listener type. Though in our case, the observer is the
event listener, and `On` is just a type containing information about the
triggered event.
## Solution
Steal from `bevy_event_listener` by @aevyrie and use `On`.
- Rename `Trigger` to `On`
- Rename `OnAdd` to `Add`
- Rename `OnInsert` to `Insert`
- Rename `OnReplace` to `Replace`
- Rename `OnRemove` to `Remove`
- Rename `OnDespawn` to `Despawn`
## Discussion
### Naming Conflicts??
Using a name like `Add` might initially feel like a very bad idea, since
it risks conflict with `core::ops::Add`. However, I don't expect this to
be a big problem in practice.
- You rarely need to actually implement the `Add` trait, especially in
modules that would use the Bevy ECS.
- In the rare cases where you *do* get a conflict, it is very easy to
fix by just disambiguating, for example using `ops::Add`.
- The `Add` event is a struct while the `Add` trait is a trait (duh), so
the compiler error should be very obvious.
For the record, renaming `OnAdd` to `Add`, I got exactly *zero* errors
or conflicts within Bevy itself. But this is of course not entirely
representative of actual projects *using* Bevy.
You might then wonder, why not use `Added`? This would conflict with the
`Added` query filter, so it wouldn't work. Additionally, the current
naming convention for observer events does not use past tense.
### Documentation
This does make documentation slightly more awkward when referring to
`On` or its methods. Previous docs often referred to `Trigger::target`
or "sends a `Trigger`" (which is... a bit strange anyway), which would
now be `On::target` and "sends an observer `Event`".
You can see the diff in this PR to see some of the effects. I think it
should be fine though, we may just need to reword more documentation to
read better.
# Objective
`Entity::PLACEHOLDER` acts as a magic number that will *probably* never
really exist, but it certainly could. And, `Entity` has a niche, so the
only reason to use `PLACEHOLDER` is as an alternative to `MaybeUninit`
that trades safety risks for logic risks.
As a result, bevy has generally advised against using `PLACEHOLDER`, but
we still use if for a lot internally. This pr starts removing internal
uses of it, starting from observers.
## Solution
Change all trigger target related types from `Entity` to
`Option<Entity>`
Small migration guide to come.
## Testing
CI
## Future Work
This turned a lot of code from
```rust
trigger.target()
```
to
```rust
trigger.target().unwrap()
```
The extra panic is no worse than before; it's just earlier than
panicking after passing the placeholder to something else.
But this is kinda annoying.
I would like to add a `TriggerMode` or something to `Event` that would
restrict what kinds of targets can be used for that event. Many events
like `Removed` etc, are always triggered with a target. We can make
those have a way to assume Some, etc. But I wanted to save that for a
future pr.
# Objective
Fixes#19219
## Solution
Instead of calling `world.commands().trigger` and
`world.commands().trigger_targets` whenever each scene is spawned, save
the `instance_id` and optional parent entity to perform all such calls
at the end. This prevents the potential flush of the world command queue
that can happen if `add_child` is called from causing the crash.
## Testing
- Did you test these changes? If so, how?
- Verified that I can no longer reproduce the bug with the instructions
at #19219.
- Ran `bevy_scene` tests
- Visually verified that the following examples still run as expected
`many_foxes`, `scene` . (should I test any more?)
- Are there any parts that need more testing?
- Pending to run `cargo test` at the root to test that all examples
still build; I will update the PR when that's done
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run bevy as usual
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- N/a (tested on Linux/wayland but it shouldn't be relevant)
---
# Objective
There are two problems this aims to solve.
First, `Entity::index` is currently a `u32`. That means there are
`u32::MAX + 1` possible entities. Not only is that awkward, but it also
make `Entity` allocation more difficult. I discovered this while working
on remote entity reservation, but even on main, `Entities` doesn't
handle the `u32::MAX + 1` entity very well. It can not be batch reserved
because that iterator uses exclusive ranges, which has a maximum upper
bound of `u32::MAX - 1`. In other words, having `u32::MAX` as a valid
index can be thought of as a bug right now. We either need to make that
invalid (this PR), which makes Entity allocation cleaner and makes
remote reservation easier (because the length only needs to be u32
instead of u64, which, in atomics is a big deal), or we need to take
another pass at `Entities` to make it handle the `u32::MAX` index
properly.
Second, `TableRow`, `ArchetypeRow` and `EntityIndex` (a type alias for
u32) all have `u32` as the underlying type. That means using these as
the index type in a `SparseSet` uses 64 bits for the sparse list because
it stores `Option<IndexType>`. By using `NonMaxU32` here, we cut the
memory of that list in half. To my knowledge, `EntityIndex` is the only
thing that would really benefit from this niche. `TableRow` and
`ArchetypeRow` I think are not stored in an `Option` in bulk. But if
they ever are, this would help. Additionally this ensures
`TableRow::INVALID` and `ArchetypeRow::INVALID` never conflict with an
actual row, which in a nice bonus.
As a related note, if we do components as entities where `ComponentId`
becomes `Entity`, the the `SparseSet<ComponentId>` will see a similar
memory improvement too.
## Solution
Create a new type `EntityRow` that wraps `NonMaxU32`, similar to
`TableRow` and `ArchetypeRow`.
Change `Entity::index` to this type.
## Downsides
`NonMax` is implemented as a `NonZero` with a binary inversion. That
means accessing and storing the value takes one more instruction. I
don't think that's a big deal, but it's worth mentioning.
As a consequence, `to_bits` uses `transmute` to skip the inversion which
keeps it a nop. But that also means that ordering has now flipped. In
other words, higher indices are considered less than lower indices. I
don't think that's a problem, but it's also worth mentioning.
## Alternatives
We could keep the index as a u32 type and just document that `u32::MAX`
is invalid, modifying `Entities` to ensure it never gets handed out.
(But that's not enforced by the type system.) We could still take
advantage of the niche here in `ComponentSparseSet`. We'd just need some
unsafe manual conversions, which is probably fine, but opens up the
possibility for correctness problems later.
We could change `Entities` to fully support the `u32::MAX` index. (But
that makes `Entities` more complex and potentially slightly slower.)
## Testing
- CI
- A few tests were changed because they depend on different ordering and
`to_bits` values.
## Future Work
- It might be worth removing the niche on `Entity::generation` since
there is now a different niche.
- We could move `Entity::generation` into it's own type too for clarity.
- We should change `ComponentSparseSet` to take advantage of the new
niche. (This PR doesn't change that yet.)
- Consider removing or updating `Identifier`. This is only used for
`Entity`, so it might be worth combining since `Entity` is now more
unique.
---------
Co-authored-by: atlv <email@atlasdostal.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
The goal of `bevy_platform_support` is to provide a set of platform
agnostic APIs, alongside platform-specific functionality. This is a high
traffic crate (providing things like HashMap and Instant). Especially in
light of https://github.com/bevyengine/bevy/discussions/18799, it
deserves a friendlier / shorter name.
Given that it hasn't had a full release yet, getting this change in
before Bevy 0.16 makes sense.
## Solution
- Rename `bevy_platform_support` to `bevy_platform`.
# Objective
- Fixes#18690
- Closes [#2065](https://github.com/bevyengine/bevy-website/pull/2065)
- Alternative to #18691
The changes to the Hash made in #15801 to the
[BuildHasher](https://doc.rust-lang.org/std/hash/trait.BuildHasher.html)
resulted in serious migration problems and downgraded UX for users of
Bevy's re-exported hashmaps. Once merged, we need to go in and remove
the migration guide added as part of #15801.
## Solution
- Newtype `HashMap` and `HashSet` instead of type aliases
- Added `Deref/Mut` to allow accessing future `hashbrown` methods
without maintenance from Bevy
- Added bidirectional `From` implementations to provide escape hatch for
API incompatibility
- Added inlinable re-exports of all methods directly to Bevy's types.
This ensures `HashMap::new()` works (since the `Deref` implementation
wont cover these kinds of invocations).
## Testing
- CI
---
## Migration Guide
- If you relied on Bevy's `HashMap` and/or `HashSet` types to be
identical to `hashbrown`, consider using `From` and `Into` to convert
between the `hashbrown` and Bevy types as required.
- If you relied on `hashbrown/serde` or `hashbrown/rayon` features, you
may need to enable `bevy_platform_support/serialize` and/or
`bevy_platform_support/rayon` respectively.
---
## Notes
- Did not replicate the Rayon traits, users will need to rely on the
`Deref/Mut` or `From` implementations for those methods.
- Did not re-expose the `unsafe` methods from `hashbrown`. In most cases
users will still have access via `Deref/Mut` anyway.
- I have added `inline` to all methods as they are trivial wrappings of
existing methods.
- I chose to make `HashMap::new` and `HashSet::new` const, which is
different to `hashbrown`. We can do this because we default to a
fixed-state build-hasher. Mild ergonomic win over using
`HashMap::with_hasher(FixedHasher)`.
# Objective
In #17905 we swapped to a named field on `ChildOf` to help resolve
variable naming ambiguity of child vs parent (ex: `child_of.parent`
clearly reads as "I am accessing the parent of the child_of
relationship", whereas `child_of.0` is less clear).
Unfortunately this has the side effect of making initialization less
ideal. `ChildOf { parent }` reads just as well as `ChildOf(parent)`, but
`ChildOf { parent: root }` doesn't read nearly as well as
`ChildOf(root)`.
## Solution
Move back to `ChildOf(pub Entity)` but add a `child_of.parent()`
function and use it for all accesses. The downside here is that users
are no longer "forced" to access the parent field with `parent`
nomenclature, but I think this strikes the right balance.
Take a look at the diff. I think the results provide strong evidence for
this change. Initialization has the benefit of reading much better _and_
of taking up significantly less space, as many lines go from 3 to 1, and
we're cutting out a bunch of syntax in some cases.
Sadly I do think this should land in 0.16 as the cost of doing this
_after_ the relationships migration is high.
# Objective
Unlike for their helper typers, the import paths for
`unique_array::UniqueEntityArray`, `unique_slice::UniqueEntitySlice`,
`unique_vec::UniqueEntityVec`, `hash_set::EntityHashSet`,
`hash_map::EntityHashMap`, `index_set::EntityIndexSet`,
`index_map::EntityIndexMap` are quite redundant.
When looking at the structure of `hashbrown`, we can also see that while
both `HashSet` and `HashMap` have their own modules, the main types
themselves are re-exported to the crate level.
## Solution
Re-export the types in their shared `entity` parent module, and simplify
the imports where they're used.
# Objective
Now that #13432 has been merged, it's important we update our reflected
types to properly opt into this feature. If we do not, then this could
cause issues for users downstream who want to make use of
reflection-based cloning.
## Solution
This PR is broken into 4 commits:
1. Add `#[reflect(Clone)]` on all types marked `#[reflect(opaque)]` that
are also `Clone`. This is mandatory as these types would otherwise cause
the cloning operation to fail for any type that contains it at any
depth.
2. Update the reflection example to suggest adding `#[reflect(Clone)]`
on opaque types.
3. Add `#[reflect(clone)]` attributes on all fields marked
`#[reflect(ignore)]` that are also `Clone`. This prevents the ignored
field from causing the cloning operation to fail.
Note that some of the types that contain these fields are also `Clone`,
and thus can be marked `#[reflect(Clone)]`. This makes the
`#[reflect(clone)]` attribute redundant. However, I think it's safer to
keep it marked in the case that the `Clone` impl/derive is ever removed.
I'm open to removing them, though, if people disagree.
4. Finally, I added `#[reflect(Clone)]` on all types that are also
`Clone`. While not strictly necessary, it enables us to reduce the
generated output since we can just call `Clone::clone` directly instead
of calling `PartialReflect::reflect_clone` on each variant/field. It
also means we benefit from any optimizations or customizations made in
the `Clone` impl, including directly dereferencing `Copy` values and
increasing reference counters.
Along with that change I also took the liberty of adding any missing
registrations that I saw could be applied to the type as well, such as
`Default`, `PartialEq`, and `Hash`. There were hundreds of these to
edit, though, so it's possible I missed quite a few.
That last commit is **_massive_**. There were nearly 700 types to
update. So it's recommended to review the first three before moving onto
that last one.
Additionally, I can break the last commit off into its own PR or into
smaller PRs, but I figured this would be the easiest way of doing it
(and in a timely manner since I unfortunately don't have as much time as
I used to for code contributions).
## Testing
You can test locally with a `cargo check`:
```
cargo check --workspace --all-features
```
Fixes#17720
## Objective
Spawning RelationshipTargets from scenes currently fails to preserve
RelationshipTarget ordering (ex: `Children` has an arbitrary order).
This is because it uses the normal hook flow to set up the collection,
which means we are pushing onto the collection in _spawn order_ (which
is currently in archetype order, which will often produce mismatched
orderings).
We need to preserve the ordering in the original RelationshipTarget
collection. Ideally without expensive checking / fixups.
## Solution
One solution would be to spawn in hierarchy-order. However this gets
complicated as there can be multiple hierarchies, and it also means we
can't spawn in more cache-friendly orders (ex: the current per-archetype
spawning, or future even-smarter per-table spawning). Additionally,
same-world cloning has _slightly_ more nuanced needs (ex: recursively
clone linked relationships, while maintaining _original_ relationships
outside of the tree via normal hooks).
The preferred approach is to directly spawn the remapped
RelationshipTarget collection, as this trivially preserves the ordering.
Unfortunately we can't _just_ do that, as when we spawn the children
with their Relationships (ex: `ChildOf`), that will insert a duplicate.
We could "fixup" the collection retroactively by just removing the back
half of duplicates, but this requires another pass / more lookups /
allocating twice as much space. Additionally, it becomes complicated
because observers could insert additional children, making it harder
(aka more expensive) to determine which children are dupes and which are
not.
The path I chose is to support "opting out" of the relationship target
hook in the contexts that need that, as this allows us to just cheaply
clone the mapped collection. The relationship hook can look for this
configuration when it runs and skip its logic when that happens. A
"simple" / small-amount-of-code way to do this would be to add a "skip
relationship spawn" flag to World. Sadly, any hook / observer that runs
_as the result of an insert_ would also read this flag. We really need a
way to scope this setting to a _specific_ insert.
Therefore I opted to add a new `RelationshipInsertHookMode` enum and an
`entity.insert_with_relationship_insert_hook_mode` variant. Obviously
this is verbose and ugly. And nobody wants _more_ insert variants. But
sadly this was the best I could come up with from a performance and
capability perspective. If you have alternatives let me know!
There are three variants:
1. `RelationshipInsertHookMode::Run`: always run relationship insert
hooks (this is the default)
2. `RelationshipInsertHookMode::Skip`: do not run any relationship
insert hooks for this insert (this is used by spawner code)
3. `RelationshipInsertHookMode::RunIfNotLinked`: only run hooks for
_unlinked_ relationships (this is used in same-world recursive entity
cloning to preserve relationships outside of the deep-cloned tree)
Note that I have intentionally only added "insert with relationship hook
mode" variants to the cases we absolutely need (everything else uses the
default `Run` mode), just to keep the code size in check. I do not think
we should add more without real _very necessary_ use cases.
I also made some other minor tweaks:
1. I split out `SourceComponent` from `ComponentCloneCtx`. Reading the
source component no longer needlessly blocks mutable access to
`ComponentCloneCtx`.
2. Thanks to (1), I've removed the `RefCell` wrapper over the cloned
component queue.
3. (1) also allowed me to write to the EntityMapper while queuing up
clones, meaning we can reserve entities during the component clone and
write them to the mapper _before_ inserting the component, meaning
cloned collections can be mapped on insert.
4. I've removed the closure from `write_target_component_ptr` to
simplify the API / make it compatible with the split `SourceComponent`
approach.
5. I've renamed `EntityCloner::recursive` to
`EntityCloner::linked_cloning` to connect that feature more directly
with `RelationshipTarget::LINKED_SPAWN`
6. I've removed `EntityCloneBehavior::RelationshipTarget`. This was
always intended to be temporary, and this new behavior removes the need
for it.
---------
Co-authored-by: Viktor Gustavsson <villor94@gmail.com>
# Objective
As discussed in #14275, Bevy is currently too prone to panic, and makes
the easy / beginner-friendly way to do a large number of operations just
to panic on failure.
This is seriously frustrating in library code, but also slows down
development, as many of the `Query::single` panics can actually safely
be an early return (these panics are often due to a small ordering issue
or a change in game state.
More critically, in most "finished" products, panics are unacceptable:
any unexpected failures should be handled elsewhere. That's where the
new
With the advent of good system error handling, we can now remove this.
Note: I was instrumental in a) introducing this idea in the first place
and b) pushing to make the panicking variant the default. The
introduction of both `let else` statements in Rust and the fancy system
error handling work in 0.16 have changed my mind on the right balance
here.
## Solution
1. Make `Query::single` and `Query::single_mut` (and other random
related methods) return a `Result`.
2. Handle all of Bevy's internal usage of these APIs.
3. Deprecate `Query::get_single` and friends, since we've moved their
functionality to the nice names.
4. Add detailed advice on how to best handle these errors.
Generally I like the diff here, although `get_single().unwrap()` in
tests is a bit of a downgrade.
## Testing
I've done a global search for `.single` to track down any missed
deprecated usages.
As to whether or not all the migrations were successful, that's what CI
is for :)
## Future work
~~Rename `Query::get_single` and friends to `Query::single`!~~
~~I've opted not to do this in this PR, and smear it across two releases
in order to ease the migration. Successive deprecations are much easier
to manage than the semantics and types shifting under your feet.~~
Cart has convinced me to change my mind on this; see
https://github.com/bevyengine/bevy/pull/18082#discussion_r1974536085.
## Migration guide
`Query::single`, `Query::single_mut` and their `QueryState` equivalents
now return a `Result`. Generally, you'll want to:
1. Use Bevy 0.16's system error handling to return a `Result` using the
`?` operator.
2. Use a `let else Ok(data)` block to early return if it's an expected
failure.
3. Use `unwrap()` or `Ok` destructuring inside of tests.
The old `Query::get_single` (etc) methods which did this have been
deprecated.
Fixes#17883
# Objective + Solution
When doing normal scene root entity despawns (which are notably now
recursive), do not despawn instanced entities that are no longer in the
hierarchy.
(I would not classify this as a bug, but rather a behavior change)
## Migration Guide
If you previously relied on scene entities no longer in the hierarchy
being despawned when the scene root is despawned , use
`SceneSpawner::despawn_instance()` instead.
# Objective
- Contributes to #16877
## Solution
- Moved `hashbrown`, `foldhash`, and related types out of `bevy_utils`
and into `bevy_platform_support`
- Refactored the above to match the layout of these types in `std`.
- Updated crates as required.
## Testing
- CI
---
## Migration Guide
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::hash`:
- `FixedState`
- `DefaultHasher`
- `RandomState`
- `FixedHasher`
- `Hashed`
- `PassHash`
- `PassHasher`
- `NoOpHash`
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::collections`:
- `HashMap`
- `HashSet`
- `bevy_utils::hashbrown` has been removed. Instead, import from
`bevy_platform_support::collections` _or_ take a dependency on
`hashbrown` directly.
- `bevy_utils::Entry` has been removed. Instead, import from
`bevy_platform_support::collections::hash_map` or
`bevy_platform_support::collections::hash_set` as appropriate.
- All of the above equally apply to `bevy::utils` and
`bevy::platform_support`.
## Notes
- I left `PreHashMap`, `PreHashMapExt`, and `TypeIdMap` in `bevy_utils`
as they might be candidates for micro-crating. They can always be moved
into `bevy_platform_support` at a later date if desired.
# Objective
`bevy_ecs`'s `system` module is something of a grab bag, and *very*
large. This is particularly true for the `system_param` module, which is
more than 2k lines long!
While it could be defensible to put `Res` and `ResMut` there (lol no
they're in change_detection.rs, obviously), it doesn't make any sense to
put the `Resource` trait there. This is confusing to navigate (and
painful to work on and review).
## Solution
- Create a root level `bevy_ecs/resource.rs` module to mirror
`bevy_ecs/component.rs`
- move the `Resource` trait to that module
- move the `Resource` derive macro to that module as well (Rust really
likes when you pun on the names of the derive macro and trait and put
them in the same path)
- fix all of the imports
## Notes to reviewers
- We could probably move more stuff into here, but I wanted to keep this
PR as small as possible given the absurd level of import changes.
- This PR is ground work for my upcoming attempts to store resource data
on components (resources-as-entities). Splitting this code out will make
the work and review a bit easier, and is the sort of overdue refactor
that's good to do as part of more meaningful work.
## Testing
cargo build works!
## Migration Guide
`bevy_ecs::system::Resource` has been moved to
`bevy_ecs::resource::Resource`.
Fixes#17412
## Objective
`Parent` uses the "has a X" naming convention. There is increasing
sentiment that we should use the "is a X" naming convention for
relationships (following #17398). This leaves `Children` as-is because
there is prevailing sentiment that `Children` is clearer than `ParentOf`
in many cases (especially when treating it like a collection).
This renames `Parent` to `ChildOf`.
This is just the implementation PR. To discuss the path forward, do so
in #17412.
## Migration Guide
- The `Parent` component has been renamed to `ChildOf`.
# Objective
The existing `RelationshipSourceCollection` uses `Vec` as the only
possible backing for our relationships. While a reasonable choice,
benchmarking use cases might reveal that a different data type is better
or faster.
For example:
- Not all relationships require a stable ordering between the
relationship sources (i.e. children). In cases where we a) have many
such relations and b) don't care about the ordering between them, a hash
set is likely a better datastructure than a `Vec`.
- The number of children-like entities may be small on average, and a
`smallvec` may be faster
## Solution
- Implement `RelationshipSourceCollection` for `EntityHashSet`, our
custom entity-optimized `HashSet`.
-~~Implement `DoubleEndedIterator` for `EntityHashSet` to make things
compile.~~
- This implementation was cursed and very surprising.
- Instead, by moving the iterator type on `RelationshipSourceCollection`
from an erased RPTIT to an explicit associated type we can add a trait
bound on the offending methods!
- Implement `RelationshipSourceCollection` for `SmallVec`
## Testing
I've added a pair of new tests to make sure this pattern compiles
successfully in practice!
## Migration Guide
`EntityHashSet` and `EntityHashMap` are no longer re-exported in
`bevy_ecs::entity` directly. If you were not using `bevy_ecs` / `bevy`'s
`prelude`, you can access them through their now-public modules,
`hash_set` and `hash_map` instead.
## Notes to reviewers
The `EntityHashSet::Iter` type needs to be public for this impl to be
allowed. I initially renamed it to something that wasn't ambiguous and
re-exported it, but as @Victoronz pointed out, that was somewhat
unidiomatic.
In
1a8564898f,
I instead made the `entity_hash_set` public (and its `entity_hash_set`)
sister public, and removed the re-export. I prefer this design (give me
module docs please), but it leads to a lot of churn in this PR.
Let me know which you'd prefer, and if you'd like me to split that
change out into its own micro PR.
This adds support for one-to-many non-fragmenting relationships (with
planned paths for fragmenting and non-fragmenting many-to-many
relationships). "Non-fragmenting" means that entities with the same
relationship type, but different relationship targets, are not forced
into separate tables (which would cause "table fragmentation").
Functionally, this fills a similar niche as the current Parent/Children
system. The biggest differences are:
1. Relationships have simpler internals and significantly improved
performance and UX. Commands and specialized APIs are no longer
necessary to keep everything in sync. Just spawn entities with the
relationship components you want and everything "just works".
2. Relationships are generalized. Bevy can provide additional built in
relationships, and users can define their own.
**REQUEST TO REVIEWERS**: _please don't leave top level comments and
instead comment on specific lines of code. That way we can take
advantage of threaded discussions. Also dont leave comments simply
pointing out CI failures as I can read those just fine._
## Built on top of what we have
Relationships are implemented on top of the Bevy ECS features we already
have: components, immutability, and hooks. This makes them immediately
compatible with all of our existing (and future) APIs for querying,
spawning, removing, scenes, reflection, etc. The fewer specialized APIs
we need to build, maintain, and teach, the better.
## Why focus on one-to-many non-fragmenting first?
1. This allows us to improve Parent/Children relationships immediately,
in a way that is reasonably uncontroversial. Switching our hierarchy to
fragmenting relationships would have significant performance
implications. ~~Flecs is heavily considering a switch to non-fragmenting
relations after careful considerations of the performance tradeoffs.~~
_(Correction from @SanderMertens: Flecs is implementing non-fragmenting
storage specialized for asset hierarchies, where asset hierarchies are
many instances of small trees that have a well defined structure)_
2. Adding generalized one-to-many relationships is currently a priority
for the [Next Generation Scene / UI
effort](https://github.com/bevyengine/bevy/discussions/14437).
Specifically, we're interested in building reactions and observers on
top.
## The changes
This PR does the following:
1. Adds a generic one-to-many Relationship system
3. Ports the existing Parent/Children system to Relationships, which now
lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been
removed.
4. Adds on_despawn component hooks
5. Relationships can opt-in to "despawn descendants" behavior, meaning
that the entire relationship hierarchy is despawned when
`entity.despawn()` is called. The built in Parent/Children hierarchies
enable this behavior, and `entity.despawn_recursive()` has been removed.
6. `world.spawn` now applies commands after spawning. This ensures that
relationship bookkeeping happens immediately and removes the need to
manually flush. This is in line with the equivalent behaviors recently
added to the other APIs (ex: insert).
7. Removes the ValidParentCheckPlugin (system-driven / poll based) in
favor of a `validate_parent_has_component` hook.
## Using Relationships
The `Relationship` trait looks like this:
```rust
pub trait Relationship: Component + Sized {
type RelationshipSources: RelationshipSources<Relationship = Self>;
fn get(&self) -> Entity;
fn from(entity: Entity) -> Self;
}
```
A relationship is a component that:
1. Is a simple wrapper over a "target" Entity.
2. Has a corresponding `RelationshipSources` component, which is a
simple wrapper over a collection of entities. Every "target entity"
targeted by a "source entity" with a `Relationship` has a
`RelationshipSources` component, which contains every "source entity"
that targets it.
For example, the `Parent` component (as it currently exists in Bevy) is
the `Relationship` component and the entity containing the Parent is the
"source entity". The entity _inside_ the `Parent(Entity)` component is
the "target entity". And that target entity has a `Children` component
(which implements `RelationshipSources`).
In practice, the Parent/Children relationship looks like this:
```rust
#[derive(Relationship)]
#[relationship(relationship_sources = Children)]
pub struct Parent(pub Entity);
#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent)]
pub struct Children(Vec<Entity>);
```
The Relationship and RelationshipSources derives automatically implement
Component with the relevant configuration (namely, the hooks necessary
to keep everything in sync).
The most direct way to add relationships is to spawn entities with
relationship components:
```rust
let a = world.spawn_empty().id();
let b = world.spawn(Parent(a)).id();
assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]);
```
There are also convenience APIs for spawning more than one entity with
the same relationship:
```rust
world.spawn_empty().with_related::<Children>(|s| {
s.spawn_empty();
s.spawn_empty();
})
```
The existing `with_children` API is now a simpler wrapper over
`with_related`. This makes this change largely non-breaking for existing
spawn patterns.
```rust
world.spawn_empty().with_children(|s| {
s.spawn_empty();
s.spawn_empty();
})
```
There are also other relationship APIs, such as `add_related` and
`despawn_related`.
## Automatic recursive despawn via the new on_despawn hook
`RelationshipSources` can opt-in to "despawn descendants" behavior,
which will despawn all related entities in the relationship hierarchy:
```rust
#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent, despawn_descendants)]
pub struct Children(Vec<Entity>);
```
This means that `entity.despawn_recursive()` is no longer required.
Instead, just use `entity.despawn()` and the relevant related entities
will also be despawned.
To despawn an entity _without_ despawning its parent/child descendants,
you should remove the `Children` component first, which will also remove
the related `Parent` components:
```rust
entity
.remove::<Children>()
.despawn()
```
This builds on the on_despawn hook introduced in this PR, which is fired
when an entity is despawned (before other hooks).
## Relationships are the source of truth
`Relationship` is the _single_ source of truth component.
`RelationshipSources` is merely a reflection of what all the
`Relationship` components say. By embracing this, we are able to
significantly improve the performance of the system as a whole. We can
rely on component lifecycles to protect us against duplicates, rather
than needing to scan at runtime to ensure entities don't already exist
(which results in quadratic runtime). A single source of truth gives us
constant-time inserts. This does mean that we cannot directly spawn
populated `Children` components (or directly add or remove entities from
those components). I personally think this is a worthwhile tradeoff,
both because it makes the performance much better _and_ because it means
theres exactly one way to do things (which is a philosophy we try to
employ for Bevy APIs).
As an aside: treating both sides of the relationship as "equivalent
source of truth relations" does enable building simple and flexible
many-to-many relationships. But this introduces an _inherent_ need to
scan (or hash) to protect against duplicates.
[`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations)
has a very nice implementation of the "symmetrical many-to-many"
approach. Unfortunately I think the performance issues inherent to that
approach make it a poor choice for Bevy's default relationship system.
## Followup Work
* Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in
this PR to keep the diff reasonable, but I'm personally biased toward
this change (and using that naming pattern generally for relationships).
* [Improved spawning
ergonomics](https://github.com/bevyengine/bevy/discussions/16920)
* Consider adding relationship observers/triggers for "relationship
targets" whenever a source is added or removed. This would replace the
current "hierarchy events" system, which is unused upstream but may have
existing users downstream. I think triggers are the better fit for this
than a buffered event queue, and would prefer not to add that back.
* Fragmenting relations: My current idea hinges on the introduction of
"value components" (aka: components whose type _and_ value determines
their ComponentId, via something like Hashing / PartialEq). By labeling
a Relationship component such as `ChildOf(Entity)` as a "value
component", `ChildOf(e1)` and `ChildOf(e2)` would be considered
"different components". This makes the transition between fragmenting
and non-fragmenting a single flag, and everything else continues to work
as expected.
* Many-to-many support
* Non-fragmenting: We can expand Relationship to be a list of entities
instead of a single entity. I have largely already written the code for
this.
* Fragmenting: With the "value component" impl mentioned above, we get
many-to-many support "for free", as it would allow inserting multiple
copies of a Relationship component with different target entities.
Fixes#3742 (If this PR is merged, I think we should open more targeted
followup issues for the work above, with a fresh tracking issue free of
the large amount of less-directed historical context)
Fixes#17301Fixes#12235Fixes#15299Fixes#15308
## Migration Guide
* Replace `ChildBuilder` with `ChildSpawnerCommands`.
* Replace calls to `.set_parent(parent_id)` with
`.insert(Parent(parent_id))`.
* Replace calls to `.replace_children()` with `.remove::<Children>()`
followed by `.add_children()`. Note that you'll need to manually despawn
any children that are not carried over.
* Replace calls to `.despawn_recursive()` with `.despawn()`.
* Replace calls to `.despawn_descendants()` with
`.despawn_related::<Children>()`.
* If you have any calls to `.despawn()` which depend on the children
being preserved, you'll need to remove the `Children` component first.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Stumbled upon a `from <-> form` transposition while reviewing a PR,
thought it was interesting, and went down a bit of a rabbit hole.
## Solution
Fix em
Updating dependencies; adopted version of #15696. (Supercedes #15696.)
Long answer: hashbrown is no longer using ahash by default, meaning that
we can't use the default-hasher methods with ahasher. So, we have to use
the longer-winded versions instead. This takes the opportunity to also
switch our default hasher as well, but without actually enabling the
default-hasher feature for hashbrown, meaning that we'll be able to
change our hasher more easily at the cost of all of these method calls
being obnoxious forever.
One large change from 0.15 is that `insert_unique_unchecked` is now
`unsafe`, and for cases where unsafe code was denied at the crate level,
I replaced it with `insert`.
## Migration Guide
`bevy_utils` has updated its version of `hashbrown` to 0.15 and now
defaults to `foldhash` instead of `ahash`. This means that if you've
hard-coded your hasher to `bevy_utils::AHasher` or separately used the
`ahash` crate in your code, you may need to switch to `foldhash` to
ensure that everything works like it does in Bevy.
# Objective
- A `Trigger` has multiple associated `Entity`s - the entity observing
the event, and the entity that was targeted by the event.
- The field `entity: Entity` encodes no semantic information about what
the entity is used for, you can already tell that it's an `Entity` by
the type signature!
## Solution
- Rename `trigger.entity()` to `trigger.target()`
---
## Changelog
- `Trigger`s are associated with multiple entities. `Trigger::entity()`
has been renamed to `Trigger::target()` to reflect the semantics of the
entity being returned.
## Migration Guide
- Rename `Trigger::entity()` to `Trigger::target()`.
- Rename `ObserverTrigger::entity` to `ObserverTrigger::target`
# Objective
- Remove `derive_more`'s error derivation and replace it with
`thiserror`
## Solution
- Added `derive_more`'s `error` feature to `deny.toml` to prevent it
sneaking back in.
- Reverted to `thiserror` error derivation
## Notes
Merge conflicts were too numerous to revert the individual changes, so
this reversion was done manually. Please scrutinise carefully during
review.
# Objective
Built-in observers & events should be `Reflect` so that components that
interact with them can be serialized in scenes. This is a similar pr to
#14259.
# Objective
- Closes#15752
Calling the functions `App::observe` and `World::observe` doesn't make
sense because you're not "observing" the `App` or `World`, you're adding
an observer that listens for an event that occurs *within* the `World`.
We should rename them to better fit this.
## Solution
Renames:
- `App::observe` -> `App::add_observer`
- `World::observe` -> `World::add_observer`
- `Commands::observe` -> `Commands::add_observer`
- `EntityWorldMut::observe_entity` -> `EntityWorldMut::observe`
(Note this isn't a breaking change as the original rename was introduced
earlier this cycle.)
## Testing
Reusing current tests.
# Objective
Following the pattern established in #15593, we can reduce the API
surface of `World` by providing a single function to grab both a
singular entity reference, or multiple entity references.
## Solution
The following functions can now also take multiple entity IDs and will
return multiple entity references back:
- `World::entity`
- `World::get_entity`
- `World::entity_mut`
- `World::get_entity_mut`
- `DeferredWorld::entity_mut`
- `DeferredWorld::get_entity_mut`
If you pass in X, you receive Y:
- give a single `Entity`, receive a single `EntityRef`/`EntityWorldMut`
(matches current behavior)
- give a `[Entity; N]`/`&[Entity; N]` (array), receive an equally-sized
`[EntityRef; N]`/`[EntityMut; N]`
- give a `&[Entity]` (slice), receive a
`Vec<EntityRef>`/`Vec<EntityMut>`
- give a `&EntityHashSet`, receive a
`EntityHashMap<EntityRef>`/`EntityHashMap<EntityMut>`
Note that `EntityWorldMut` is only returned in the single-entity case,
because having multiple at the same time would lead to UB. Also,
`DeferredWorld` receives an `EntityMut` in the single-entity case
because it does not allow structural access.
## Testing
- Added doc-tests on `World::entity`, `World::entity_mut`, and
`DeferredWorld::entity_mut`
- Added tests for aliased mutability and entity existence
---
## Showcase
<details>
<summary>Click to view showcase</summary>
The APIs for fetching `EntityRef`s and `EntityMut`s from the `World`
have been unified.
```rust
// This code will be referred to by subsequent code blocks.
let world = World::new();
let e1 = world.spawn_empty().id();
let e2 = world.spawn_empty().id();
let e3 = world.spawn_empty().id();
```
Querying for a single entity remains mostly the same:
```rust
// 0.14
let eref: EntityRef = world.entity(e1);
let emut: EntityWorldMut = world.entity_mut(e1);
let eref: Option<EntityRef> = world.get_entity(e1);
let emut: Option<EntityWorldMut> = world.get_entity_mut(e1);
// 0.15
let eref: EntityRef = world.entity(e1);
let emut: EntityWorldMut = world.entity_mut(e1);
let eref: Result<EntityRef, Entity> = world.get_entity(e1);
let emut: Result<EntityWorldMut, Entity> = world.get_entity_mut(e1);
```
Querying for multiple entities with an array has changed:
```rust
// 0.14
let erefs: [EntityRef; 2] = world.many_entities([e1, e2]);
let emuts: [EntityMut; 2] = world.many_entities_mut([e1, e2]);
let erefs: Result<[EntityRef; 2], Entity> = world.get_many_entities([e1, e2]);
let emuts: Result<[EntityMut; 2], QueryEntityError> = world.get_many_entities_mut([e1, e2]);
// 0.15
let erefs: [EntityRef; 2] = world.entity([e1, e2]);
let emuts: [EntityMut; 2] = world.entity_mut([e1, e2]);
let erefs: Result<[EntityRef; 2], Entity> = world.get_entity([e1, e2]);
let emuts: Result<[EntityMut; 2], EntityFetchError> = world.get_entity_mut([e1, e2]);
```
Querying for multiple entities with a slice has changed:
```rust
let ids = vec![e1, e2, e3]);
// 0.14
let erefs: Result<Vec<EntityRef>, Entity> = world.get_many_entities_dynamic(&ids[..]);
let emuts: Result<Vec<EntityMut>, QueryEntityError> = world.get_many_entities_dynamic_mut(&ids[..]);
// 0.15
let erefs: Result<Vec<EntityRef>, Entity> = world.get_entity(&ids[..]);
let emuts: Result<Vec<EntityMut>, EntityFetchError> = world.get_entity_mut(&ids[..]);
let erefs: Vec<EntityRef> = world.entity(&ids[..]); // Newly possible!
let emuts: Vec<EntityMut> = world.entity_mut(&ids[..]); // Newly possible!
```
Querying for multiple entities with an `EntityHashSet` has changed:
```rust
let set = EntityHashSet::from_iter([e1, e2, e3]);
// 0.14
let emuts: Result<Vec<EntityMut>, QueryEntityError> = world.get_many_entities_from_set_mut(&set);
// 0.15
let emuts: Result<EntityHashMap<EntityMut>, EntityFetchError> = world.get_entity_mut(&set);
let erefs: Result<EntityHashMap<EntityRef>, EntityFetchError> = world.get_entity(&set); // Newly possible!
let emuts: EntityHashMap<EntityMut> = world.entity_mut(&set); // Newly possible!
let erefs: EntityHashMap<EntityRef> = world.entity(&set); // Newly possible!
```
</details>
## Migration Guide
- `World::get_entity` now returns `Result<_, Entity>` instead of
`Option<_>`.
- Use `world.get_entity(..).ok()` to return to the previous behavior.
- `World::get_entity_mut` and `DeferredWorld::get_entity_mut` now return
`Result<_, EntityFetchError>` instead of `Option<_>`.
- Use `world.get_entity_mut(..).ok()` to return to the previous
behavior.
- Type inference for `World::entity`, `World::entity_mut`,
`World::get_entity`, `World::get_entity_mut`,
`DeferredWorld::entity_mut`, and `DeferredWorld::get_entity_mut` has
changed, and might now require the input argument's type to be
explicitly written when inside closures.
- The following functions have been deprecated, and should be replaced
as such:
- `World::many_entities` -> `World::entity::<[Entity; N]>`
- `World::many_entities_mut` -> `World::entity_mut::<[Entity; N]>`
- `World::get_many_entities` -> `World::get_entity::<[Entity; N]>`
- `World::get_many_entities_dynamic` -> `World::get_entity::<&[Entity]>`
- `World::get_many_entities_mut` -> `World::get_entity_mut::<[Entity;
N]>`
- The equivalent return type has changed from `Result<_,
QueryEntityError>` to `Result<_, EntityFetchError>`
- `World::get_many_entities_dynamic_mut` ->
`World::get_entity_mut::<&[Entity]>1
- The equivalent return type has changed from `Result<_,
QueryEntityError>` to `Result<_, EntityFetchError>`
- `World::get_many_entities_from_set_mut` ->
`World::get_entity_mut::<&EntityHashSet>`
- The equivalent return type has changed from `Result<Vec<EntityMut>,
QueryEntityError>` to `Result<EntityHashMap<EntityMut>,
EntityFetchError>`. If necessary, you can still convert the
`EntityHashMap` into a `Vec`.
# Objective
A step in the migration to required components: scenes!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2FPJtNGVMMQhyM0zIvCJSkbA):
- Deprecate `SceneBundle` and `DynamicSceneBundle`.
- Add `SceneRoot` and `DynamicSceneRoot` components, which wrap a
`Handle<Scene>` and `Handle<DynamicScene>` respectively.
## Migration Guide
Asset handles for scenes and dynamic scenes must now be wrapped in the
`SceneRoot` and `DynamicSceneRoot` components. Raw handles as components
no longer spawn scenes.
Additionally, `SceneBundle` and `DynamicSceneBundle` have been
deprecated. Instead, use the scene components directly.
Previously:
```rust
let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf"));
commands.spawn(SceneBundle {
scene: model_scene,
transform: Transform::from_xyz(-4.0, 0.0, -3.0),
..default()
});
```
Now:
```rust
let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf"));
commands.spawn((
SceneRoot(model_scene),
Transform::from_xyz(-4.0, 0.0, -3.0),
));
```
# Objective
Fixes#15394
## Solution
Observers now validate params.
System registry has a new error variant for when system running fails
due to invalid parameters.
Run once now returns a `Result<Out, RunOnceError>` instead of `Out`.
This is more inline with system registry, which also returns a result.
I'll address warning messages in #15500.
## Testing
Added one test for each case.
---
## Migration Guide
- `RunSystemOnce::run_system_once` and
`RunSystemOnce::run_system_once_with` now return a `Result<Out>` instead
of just `Out`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Makes naming between add_child and add_children more consistent
- Fixes#15101
## Solution
renamed push_children to add_children
## Testing
- Did you test these changes? If so, how?
Ran tests + grep search for any instance of `push_child`
- Are there any parts that need more testing?
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
ran tests on WSL2
---
## Migration Guide
> This section is optional. If there are no breaking changes, you can
delete this section.
- If this PR is a breaking change (relative to the last release of
Bevy), describe how a user might need to migrate their code to support
these changes
rename any use of `push_children()` to the updated `add_children()`
# Objective
The `SceneInstanceReady` event would be more ergonomic (and potentially
efficient) if it could be delivered to listeners attached to the scene
entities becoming ready rather than into a World-global queue.
This is an evolution of @Shatur's work in #9313.
## Solution
The scene spawner is changed to trigger observers on the scene entity
when it is ready rather than enqueue an event with `EventWriter`.
This addresses the two outstanding feature requests mentioned on #2218,
that i) the events should be "scoped" in some way and ii) that the
`InstanceId` should be included in the event.
## Testing
Modified the `scene_spawner::tests::event` test to use the new
mechanism.
---
## Changelog
- Changed `SceneInstanceReady` to trigger an entity observer rather than
be written to an event queue.
- Changed `SceneInstanceReady` to carry the `InstanceId` of the scene.
## Migration Guide
If you have a system which read `SceneInstanceReady` events:
> ```fn ready_system(ready_events: EventReader<'_, '_,
SceneInstanceReady>) {```
It must be rewritten as an observer:
> ```commands.observe(|trigger: Trigger<SceneInstanceReady>| {```
Or, if you were expecting the event in relation to a specific entity or
entities, as an entity observer:
> ```commands.entity(entity).observe(|trigger:
Trigger<SceneInstanceReady>| {```
# Objective
Fixes a regression in [previously merged but then reverted
pr](https://github.com/bevyengine/bevy/pull/13714) that aligns
lower-level `Scene` API with that in `DynamicScene`. Please look at the
original pr for more details.
The problem was `spawn_sync_internal` is used in `spawn_queued_scenes`.
Since instance creation was moved up a level we need to make sure we add
a specific instance to `SceneSpawner::spawned_instances` when using
`spawn_sync_internal` (just like we do for `DynamicScene`).
Please look at the last commit when reviewing.
## Testing
`alien_cake_addict` and `deferred_rendering` examples look as expected.
## Changelog
Changed `Scene::write_to_world_with` to take `entity_map` as an argument
and no longer return an `InstanceInfo`
## Migration Guide
`Scene::write_to_world_with` no longer returns an `InstanceInfo`.
Before
```rust
scene.write_to_world_with(world, ®istry)
```
After
```rust
let mut entity_map = EntityHashMap::default();
scene.write_to_world_with(world, &mut entity_map, ®istry)
```
# Objective
- Often in games you will want to create chains of systems that modify
some event. For example, a chain of damage systems that handle a
DamageEvent and modify the underlying value before the health system
finally consumes the event. Right now this requires either:
* Using a component added to the entity
* Consuming and refiring events
Neither is ideal when really all we want to do is read the events value,
modify it, and write it back.
## Solution
- Create an EventMutator class similar to EventReader but with ResMut<T>
and iterators that return &mut so that events can be mutated.
## Testing
- I replicated all the existing tests for EventReader to make sure
behavior was the same (I believe) and added a number of tests specific
to testing that 1) events can actually be mutated, and that 2)
EventReader sees changes from EventMutator for events it hasn't already
seen.
## Migration Guide
Users currently using `ManualEventReader` should use `EventCursor`
instead. `ManualEventReader` will be removed in Bevy 0.16. Additionally,
`Events::get_reader` has been replaced by `Events::get_cursor`.
Users currently directly accessing the `Events` resource for mutation
should move to `EventMutator` if possible.
---------
Co-authored-by: poopy <gonesbird@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Emit an event regardless of scene type (`Scene` and `DynamicScene`).
- Also send the `InstanceId` along.
Follow-up to #11002.
Fixes#2218.
## Solution
- Send `SceneInstanceReady` regardless of scene type.
- Make `SceneInstanceReady::parent` `Option`al.
- Add `SceneInstanceReady::id`.
---
## Changelog
### Changed
- `SceneInstanceReady` is now sent for `Scene` as well.
`SceneInstanceReady::parent` is an `Option` and
`SceneInstanceReady::id`, an `InstanceId`, is added to identify the
corresponding `Scene`.
## Migration Guide
- `SceneInstanceReady { parent: Entity }` is now `SceneInstanceReady {
id: InstanceId, parent: Option<Entity> }`.
# Objective
The `BuildChildren` and `BuildWorldChildren` traits are mostly
identical, so I decided to try and merge them. I'm not sure of the
history, maybe they were added before GATs existed.
## Solution
- Add an associated type to `BuildChildren` which reflects the prior
differences between the `BuildChildren` and `BuildWorldChildren` traits.
- Add `ChildBuild` trait that is the bounds for
`BuildChildren::Builder`, with impls for `ChildBuilder` and
`WorldChildBuilder`.
- Remove `BuildWorldChildren` trait and replace it with an impl of
`BuildChildren` for `EntityWorldMut`.
## Testing
I ran several of the examples that use entity hierarchies, mainly UI.
---
## Changelog
n/a
## Migration Guide
n/a
# Objective
`Scene` and `DynamicScene` work with `InstanceInfo` at different levels
of abstraction
- `Scene::write_to_world_with` returns an `InstanceInfo` whereas
`DynamicScene::write_to_world_with` returns `()`. Instances are created
one level higher at the `SceneSpawner` API level.
- `DynamicScene::write_to_world_with` takes the `entity_map` as an
argument whereas the `Scene` version is less flexible and creates a new
one for you. No reason this needs to be the case.
## Solution
I propose changing `Scene::write_to_world_with` to match the API we have
for `DynamicScene`. Returning the `InstanceInfo` as we do today just
seems like a leaky abstraction - it's only used in
`spawn_sync_internal`. Being able to pass in an entity_map gives you
more flexibility with how you write entities to a world.
This also moves `InstanceInfo` out of `Scene` which is cleaner
conceptually. If someone wants to work with instances then they should
work with `SceneSpawner` - I see `write_to_world_with` as a lower-level
API to be used with exclusive world access.
## Testing
Code is just shifting things around.
## Changelog
Changed `Scene::write_to_world_with` to take `entity_map` as an argument
and no longer return an `InstanceInfo`
## Migration Guide
`Scene::write_to_world_with` no longer returns an `InstanceInfo`.
Before
```rust
scene.write_to_world_with(world, ®istry)
```
After
```rust
let mut entity_map = EntityHashMap::default();
scene.write_to_world_with(world, &mut entity_map, ®istry)
```
# Objective
- Fixes#12976
## Solution
This one is a doozy.
- Run `cargo +beta clippy --workspace --all-targets --all-features` and
fix all issues
- This includes:
- Moving inner attributes to be outer attributes, when the item in
question has both inner and outer attributes
- Use `ptr::from_ref` in more scenarios
- Extend the valid idents list used by `clippy:doc_markdown` with more
names
- Use `Clone::clone_from` when possible
- Remove redundant `ron` import
- Add backticks to **so many** identifiers and items
- I'm sorry whoever has to review this
---
## Changelog
- Added links to more identifiers in documentation.
# Objective
This is a necessary precursor to #9122 (this was split from that PR to
reduce the amount of code to review all at once).
Moving `!Send` resource ownership to `App` will make it unambiguously
`!Send`. `SubApp` must be `Send`, so it can't wrap `App`.
## Solution
Refactor `App` and `SubApp` to not have a recursive relationship. Since
`SubApp` no longer wraps `App`, once `!Send` resources are moved out of
`World` and into `App`, `SubApp` will become unambiguously `Send`.
There could be less code duplication between `App` and `SubApp`, but
that would break `App` method chaining.
## Changelog
- `SubApp` no longer wraps `App`.
- `App` fields are no longer publicly accessible.
- `App` can no longer be converted into a `SubApp`.
- Various methods now return references to a `SubApp` instead of an
`App`.
## Migration Guide
- To construct a sub-app, use `SubApp::new()`. `App` can no longer
convert into `SubApp`.
- If you implemented a trait for `App`, you may want to implement it for
`SubApp` as well.
- If you're accessing `app.world` directly, you now have to use
`app.world()` and `app.world_mut()`.
- `App::sub_app` now returns `&SubApp`.
- `App::sub_app_mut` now returns `&mut SubApp`.
- `App::get_sub_app` now returns `Option<&SubApp>.`
- `App::get_sub_app_mut` now returns `Option<&mut SubApp>.`
# Objective
- Fix#12746
- When users despawn a scene, the `InstanceId` within `spawned_scenes`
and `spawned_dynamic_scenes` is not removed, causing a potential memory
leak
## Solution
- `spawned_scenes` field was never used, and I removed it
- Add a component remove hook for `Handle<DynamicScene>`, and when the
`Handle<DynamicScene>` component is removed, delete the corresponding
`InstanceId` from `spawned_dynamic_scenes`
# Objective
- A scene usually gets created using the `SceneBundle` or
`DynamicSceneBundle`. This means that the scene's entities get added as
children of the root entity (the entity on which the `SceneBundle` gets
added)
- When the scene gets deleted using the `SceneSpawner`, the scene's
entities are deleted, but the `Children` component of the root entity
doesn't get updated. This means that the hierarchy becomes unsound, with
Children linking to non-existing components.
## Solution
- Update the `despawn_sync` logic to also update the `Children` from any
parents of the scene, if there are any
- Adds a test where a Scene gets despawned and checks for dangling
Children references on the parent. The test fails on `main` but works
here.
## Alternative implementations
- One option could be to add a `parent: Option<Entity>` on the
[InstanceInfo](df15cd7dcc/crates/bevy_scene/src/scene_spawner.rs (L27))
struct that tracks if the SceneInstance was added as a child of a root
entity
Fixes#12600
## Solution
Removed Into<AssetId<T>> for Handle<T> as proposed in Issue
conversation, fixed dependent code
## Migration guide
If you use passing Handle by value as AssetId, you should pass reference
or call .id() method on it
Before (0.13):
`assets.insert(handle, value);`
After (0.14):
`assets.insert(&handle, value);`
or
`assets.insert(handle.id(), value);`
# Objective
Fixes https://github.com/bevyengine/bevy/issues/11628
## Migration Guide
`Command` and `CommandQueue` have migrated from `bevy_ecs::system` to
`bevy_ecs::world`, so `use bevy_ecs::world::{Command, CommandQueue};`
when necessary.
# Objective
Reduce the size of `bevy_utils`
(https://github.com/bevyengine/bevy/issues/11478)
## Solution
Move `EntityHash` related types into `bevy_ecs`. This also allows us
access to `Entity`, which means we no longer need `EntityHashMap`'s
first generic argument.
---
## Changelog
- Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` into `bevy::ecs::entity::hash` .
- Removed `EntityHashMap`'s first generic argument. It is now hardcoded
to always be `Entity`.
## Migration Guide
- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`.
- Uses of `EntityHashMap` no longer have to specify the first generic
parameter. It is now hardcoded to always be `Entity`.
# Objective
Send `SceneInstanceReady` only once per scene.
## Solution
I assume that this was not intentional.
So I just changed it to only be sent once per scene.
---
## Changelog
### Fixed
- Fixed `SceneInstanceReady` being emitted for every `Entity` in a
scene.