Changes:
- Track whether an output texture has been written to yet and only clear
it on the first write.
- Use `ClearColorConfig` on `CameraOutputMode` instead of a raw
`LoadOp`.
- Track whether a output texture has been seen when specializing the
upscaling pipeline and use alpha blending for extra cameras rendering to
that texture that do not specify an explicit blend mode.
Fixes#6754
## Testing
Tested against provided test case in issue:

---
## Changelog
- Allow cameras rendering to the same output texture with mixed hdr to
work correctly.
## Migration Guide
- - Change `CameraOutputMode` to use `ClearColorConfig` instead of
`LoadOp`.
# Objective
- Fixes#10909
- Fixes#8492
## Solution
- Name all matrices `x_from_y`, for example `world_from_view`.
## Testing
- I've tested most of the 3D examples. The `lighting` example
particularly should hit a lot of the changes and appears to run fine.
---
## Changelog
- Renamed matrices across the engine to follow a `y_from_x` naming,
making the space conversion more obvious.
## Migration Guide
- `Frustum`'s `from_view_projection`, `from_view_projection_custom_far`
and `from_view_projection_no_far` were renamed to
`from_clip_from_world`, `from_clip_from_world_custom_far` and
`from_clip_from_world_no_far`.
- `ComputedCameraValues::projection_matrix` was renamed to
`clip_from_view`.
- `CameraProjection::get_projection_matrix` was renamed to
`get_clip_from_view` (this affects implementations on `Projection`,
`PerspectiveProjection` and `OrthographicProjection`).
- `ViewRangefinder3d::from_view_matrix` was renamed to
`from_world_from_view`.
- `PreviousViewData`'s members were renamed to `view_from_world` and
`clip_from_world`.
- `ExtractedView`'s `projection`, `transform` and `view_projection` were
renamed to `clip_from_view`, `world_from_view` and `clip_from_world`.
- `ViewUniform`'s `view_proj`, `unjittered_view_proj`,
`inverse_view_proj`, `view`, `inverse_view`, `projection` and
`inverse_projection` were renamed to `clip_from_world`,
`unjittered_clip_from_world`, `world_from_clip`, `world_from_view`,
`view_from_world`, `clip_from_view` and `view_from_clip`.
- `GpuDirectionalCascade::view_projection` was renamed to
`clip_from_world`.
- `MeshTransforms`' `transform` and `previous_transform` were renamed to
`world_from_local` and `previous_world_from_local`.
- `MeshUniform`'s `transform`, `previous_transform`,
`inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed
to `world_from_local`, `previous_world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh` type in WGSL mirrors this, however `transform` and
`previous_transform` were named `model` and `previous_model`).
- `Mesh2dTransforms::transform` was renamed to `world_from_local`.
- `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and
`inverse_transpose_model_b` were renamed to `world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh2d` type in WGSL mirrors this).
- In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and
`get_previous_model_matrix` were renamed to `get_world_from_local` and
`get_previous_world_from_local`.
- In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed
to `get_world_from_local`.
# Objective
This is a long-standing bug that I have experienced since many versions
of Bevy ago, possibly forever. Today I finally wanted to report it, but
the fix was so easy that I just went and fixed it. :)
The problem is that 2D graphics looks blurry at odd-sized window
resolutions. This is with the **default** 2D camera configuration! The
issue will also manifest itself with any Orthographic Projection with
`ScalingMode::WindowSize` where the viewport origin is not at one of the
corners, such as the default where the origin point is at the center.
The issue happens because the Bevy orthographic projection origin point
is specified as a fraction to be multiplied by the size. For example,
the default (origin at center) is `(0.5, 0.5)`. When this value is
multiplied by the window size, it can result in fractional values for
the actual origin of the projection, thus placing the camera "between
pixels" and misaligning the entire pixel grid.
With the default value, this happens at odd-numbered window resolutions.
It is very easy to reproduce the issue by running any Bevy 2D app with a
resizable window, and slowly resizing the window pixel by pixel. As you
move the mouse to resize the window, you can see how the 2D graphics
inside the window alternate between "crisp, blurry, crisp, blurry, ...".
If you change the projection's origin to be at the corner (say, `(0.0,
0.0)`) and run the app again, the graphics always looks crisp,
regardless of window size.
Here are screenshots from **before** this PR, to illustrate the issue:
Even window size:

Odd window size:

## Solution
The solution is easy: just round the computed origin values for the
projection.
To make it work reliably for the general case, I decided to:
- Only do it for `ScalingMode::WindowSize`, as it doesn't make sense for
other scaling modes.
- Round to the nearest multiple of the pixel scale, if it is not 1.0.
This ensures the "pixels" stay aligned even if scaled.
## Testing
I ran Bevy's examples as well as my own projects to ensure things look
correct. I set different values for the pixel scale to test the rounding
behavior and played around with resizing the window to verify that
everything is consistent.
---
## Changelog
Fixed:
- Orthographic projection now rounds the origin point if computed from
screen pixels, so that 2D graphics do not appear blurry at odd window
sizes.
# Objective
Remove the limit of `RenderLayer` by using a growable mask using
`SmallVec`.
Changes adopted from @UkoeHB's initial PR here
https://github.com/bevyengine/bevy/pull/12502 that contained additional
changes related to propagating render layers.
Changes
## Solution
The main thing needed to unblock this is removing `RenderLayers` from
our shader code. This primarily affects `DirectionalLight`. We are now
computing a `skip` field on the CPU that is then used to skip the light
in the shader.
## Testing
Checked a variety of examples and did a quick benchmark on `many_cubes`.
There were some existing problems identified during the development of
the original pr (see:
https://discord.com/channels/691052431525675048/1220477928605749340/1221190112939872347).
This PR shouldn't change any existing behavior besides removing the
layer limit (sans the comment in migration about `all` layers no longer
being possible).
---
## Changelog
Removed the limit on `RenderLayers` by using a growable bitset that only
allocates when layers greater than 64 are used.
## Migration Guide
- `RenderLayers::all()` no longer exists. Entities expecting to be
visible on all layers, e.g. lights, should compute the active layers
that are in use.
---------
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
This commit implements the [depth of field] effect, simulating the blur
of objects out of focus of the virtual lens. Either the [hexagonal
bokeh] effect or a faster Gaussian blur may be used. In both cases, the
implementation is a simple separable two-pass convolution. This is not
the most physically-accurate real-time bokeh technique that exists;
Unreal Engine has [a more accurate implementation] of "cinematic depth
of field" from 2018. However, it's simple, and most engines provide
something similar as a fast option, often called "mobile" depth of
field.
The general approach is outlined in [a blog post from 2017]. We take
advantage of the fact that both Gaussian blurs and hexagonal bokeh blurs
are *separable*. This means that their 2D kernels can be reduced to a
small number of 1D kernels applied one after another, asymptotically
reducing the amount of work that has to be done. Gaussian blurs can be
accomplished by blurring horizontally and then vertically, while
hexagonal bokeh blurs can be done with a vertical blur plus a diagonal
blur, plus two diagonal blurs. In both cases, only two passes are
needed. Bokeh requires the first pass to have a second render target and
requires two subpasses in the second pass, which decreases its
performance relative to the Gaussian blur.
The bokeh blur is generally more aesthetically pleasing than the
Gaussian blur, as it simulates the effect of a camera more accurately.
The shape of the bokeh circles are determined by the number of blades of
the aperture. In our case, we use a hexagon, which is usually considered
specific to lower-quality cameras. (This is a downside of the fast
hexagon approach compared to the higher-quality approaches.) The blur
amount is generally specified by the [f-number], which we use to compute
the focal length from the film size and FOV. By default, we simulate
standard cinematic cameras of f/1 and [Super 35]. The developer can
customize these values as desired.
A new example has been added to demonstrate depth of field. It allows
customization of the mode (Gaussian vs. bokeh), focal distance and
f-numbers. The test scene is inspired by a [blog post on depth of field
in Unity]; however, the effect is implemented in a completely different
way from that blog post, and all the assets (textures, etc.) are
original.
Bokeh depth of field:

Gaussian depth of field:

No depth of field:

[depth of field]: https://en.wikipedia.org/wiki/Depth_of_field
[hexagonal bokeh]:
https://colinbarrebrisebois.com/2017/04/18/hexagonal-bokeh-blur-revisited/
[a more accurate implementation]:
https://epicgames.ent.box.com/s/s86j70iamxvsuu6j35pilypficznec04
[a blog post from 2017]:
https://colinbarrebrisebois.com/2017/04/18/hexagonal-bokeh-blur-revisited/
[f-number]: https://en.wikipedia.org/wiki/F-number
[Super 35]: https://en.wikipedia.org/wiki/Super_35
[blog post on depth of field in Unity]:
https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/
## Changelog
### Added
* A depth of field postprocessing effect is now available, to simulate
objects being out of focus of the camera. To use it, add
`DepthOfFieldSettings` to an entity containing a `Camera3d` component.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Bram Buurlage <brambuurlage@gmail.com>
# Objective
Documentation should mention the two plugins required for your custom
`CameraProjection` to work.
## Solution
Documented!
---
I tried linking to `bevy_pbr::PbrProjectionPlugin` from
`bevy_render:📷:CameraProjection` but it wasn't in scope. Is there
a trick to it?
This commit expands Bevy's existing tonemapping feature to a complete
set of filmic color grading tools, matching those of engines like Unity,
Unreal, and Godot. The following features are supported:
* White point adjustment. This is inspired by Unity's implementation of
the feature, but simplified and optimized. *Temperature* and *tint*
control the adjustments to the *x* and *y* chromaticity values of [CIE
1931]. Following Unity, the adjustments are made relative to the [D65
standard illuminant] in the [LMS color space].
* Hue rotation. This simply converts the RGB value to [HSV], alters the
hue, and converts back.
* Color correction. This allows the *gamma*, *gain*, and *lift* values
to be adjusted according to the standard [ASC CDL combined function].
* Separate color correction for shadows, midtones, and highlights.
Blender's source code was used as a reference for the implementation of
this. The midtone ranges can be adjusted by the user. To avoid abrupt
color changes, a small crossfade is used between the different sections
of the image, again following Blender's formulas.
A new example, `color_grading`, has been added, offering a GUI to change
all the color grading settings. It uses the same test scene as the
existing `tonemapping` example, which has been factored out into a
shared glTF scene.
[CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space
[D65 standard illuminant]:
https://en.wikipedia.org/wiki/Standard_illuminant#Illuminant_series_D
[LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space
[HSV]: https://en.wikipedia.org/wiki/HSL_and_HSV
[ASC CDL combined function]:
https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
## Changelog
### Added
* Many new filmic color grading options have been added to the
`ColorGrading` component.
## Migration Guide
* `ColorGrading::gamma` and `ColorGrading::pre_saturation` are now set
separately for the `shadows`, `midtones`, and `highlights` sections. You
can migrate code with the `ColorGrading::all_sections` and
`ColorGrading::all_sections_mut` functions, which access and/or update
all sections at once.
* `ColorGrading::post_saturation` and `ColorGrading::exposure` are now
fields of `ColorGrading::global`.
## Screenshots


This commit implements opt-in GPU frustum culling, built on top of the
infrastructure in https://github.com/bevyengine/bevy/pull/12773. To
enable it on a camera, add the `GpuCulling` component to it. To
additionally disable CPU frustum culling, add the `NoCpuCulling`
component. Note that adding `GpuCulling` without `NoCpuCulling`
*currently* does nothing useful. The reason why `GpuCulling` doesn't
automatically imply `NoCpuCulling` is that I intend to follow this patch
up with GPU two-phase occlusion culling, and CPU frustum culling plus
GPU occlusion culling seems like a very commonly-desired mode.
Adding the `GpuCulling` component to a view puts that view into
*indirect mode*. This mode makes all drawcalls indirect, relying on the
mesh preprocessing shader to allocate instances dynamically. In indirect
mode, the `PreprocessWorkItem` `output_index` points not to a
`MeshUniform` instance slot but instead to a set of `wgpu`
`IndirectParameters`, from which it allocates an instance slot
dynamically if frustum culling succeeds. Batch building has been updated
to allocate and track indirect parameter slots, and the AABBs are now
supplied to the GPU as `MeshCullingData`.
A small amount of code relating to the frustum culling has been borrowed
from meshlets and moved into `maths.wgsl`. Note that standard Bevy
frustum culling uses AABBs, while meshlets use bounding spheres; this
means that not as much code can be shared as one might think.
This patch doesn't provide any way to perform GPU culling on shadow
maps, to avoid making this patch bigger than it already is. That can be
a followup.
## Changelog
### Added
* Frustum culling can now optionally be done on the GPU. To enable it,
add the `GpuCulling` component to a camera.
* To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note
that `GpuCulling` doesn't automatically imply `NoCpuCulling`.
# Objective
Fix https://github.com/bevyengine/bevy/issues/11799 and improve
`CameraProjectionPlugin`
## Solution
`CameraProjectionPlugin` is now an all-in-one plugin for adding a custom
`CameraProjection`. I also added `PbrProjectionPlugin` which is like
`CameraProjectionPlugin` but for PBR.
P.S. I'd like to get this merged after
https://github.com/bevyengine/bevy/pull/11766.
---
## Changelog
- Changed `CameraProjectionPlugin` to be an all-in-one plugin for adding
a `CameraProjection`
- Removed `VisibilitySystems::{UpdateOrthographicFrusta,
UpdatePerspectiveFrusta, UpdateProjectionFrusta}`, now replaced with
`VisibilitySystems::UpdateFrusta`
- Added `PbrProjectionPlugin` for projection-specific PBR functionality.
## Migration Guide
`VisibilitySystems`'s `UpdateOrthographicFrusta`,
`UpdatePerspectiveFrusta`, and `UpdateProjectionFrusta` variants were
removed, they were replaced with `VisibilitySystems::UpdateFrusta`
# Objective
- Fixes#12976
## Solution
This one is a doozy.
- Run `cargo +beta clippy --workspace --all-targets --all-features` and
fix all issues
- This includes:
- Moving inner attributes to be outer attributes, when the item in
question has both inner and outer attributes
- Use `ptr::from_ref` in more scenarios
- Extend the valid idents list used by `clippy:doc_markdown` with more
names
- Use `Clone::clone_from` when possible
- Remove redundant `ron` import
- Add backticks to **so many** identifiers and items
- I'm sorry whoever has to review this
---
## Changelog
- Added links to more identifiers in documentation.
# Objective
- Replace `RenderMaterials` / `RenderMaterials2d` / `RenderUiMaterials`
with `RenderAssets` to enable implementing changes to one thing,
`RenderAssets`, that applies to all use cases rather than duplicating
changes everywhere for multiple things that should be one thing.
- Adopts #8149
## Solution
- Make RenderAsset generic over the destination type rather than the
source type as in #8149
- Use `RenderAssets<PreparedMaterial<M>>` etc for render materials
---
## Changelog
- Changed:
- The `RenderAsset` trait is now implemented on the destination type.
Its `SourceAsset` associated type refers to the type of the source
asset.
- `RenderMaterials`, `RenderMaterials2d`, and `RenderUiMaterials` have
been replaced by `RenderAssets<PreparedMaterial<M>>` and similar.
## Migration Guide
- `RenderAsset` is now implemented for the destination type rather that
the source asset type. The source asset type is now the `RenderAsset`
trait's `SourceAsset` associated type.
# Objective
- When viewport is set to the same size as the window on creation, when
adjusting to SizedFullscreen, the window may be smaller than the
viewport for a moment, which caused the arguments to be invalid and
panic.
- Fixes#12000.
## Solution
- The fix consists of matching the size of the viewport to the lower
size of the window ( if the x value of the window is lower, I update
only the x value of the viewport, same for the y value). Also added a
test to show that it does not panic anymore.
---
# Objective
This is a necessary precursor to #9122 (this was split from that PR to
reduce the amount of code to review all at once).
Moving `!Send` resource ownership to `App` will make it unambiguously
`!Send`. `SubApp` must be `Send`, so it can't wrap `App`.
## Solution
Refactor `App` and `SubApp` to not have a recursive relationship. Since
`SubApp` no longer wraps `App`, once `!Send` resources are moved out of
`World` and into `App`, `SubApp` will become unambiguously `Send`.
There could be less code duplication between `App` and `SubApp`, but
that would break `App` method chaining.
## Changelog
- `SubApp` no longer wraps `App`.
- `App` fields are no longer publicly accessible.
- `App` can no longer be converted into a `SubApp`.
- Various methods now return references to a `SubApp` instead of an
`App`.
## Migration Guide
- To construct a sub-app, use `SubApp::new()`. `App` can no longer
convert into `SubApp`.
- If you implemented a trait for `App`, you may want to implement it for
`SubApp` as well.
- If you're accessing `app.world` directly, you now have to use
`app.world()` and `app.world_mut()`.
- `App::sub_app` now returns `&SubApp`.
- `App::sub_app_mut` now returns `&mut SubApp`.
- `App::get_sub_app` now returns `Option<&SubApp>.`
- `App::get_sub_app_mut` now returns `Option<&mut SubApp>.`
# Objective
- Many types in bevy_render doesn't reflect Default even if it could.
## Solution
- Reflect it.
---
---------
Co-authored-by: Pablo Reinhardt <pabloreinhardt@gmail.com>
# Objective
Fix#12304. Remove unnecessary type registrations thanks to #4154.
## Solution
Conservatively remove type registrations. Keeping the top level
components, resources, and events, but dropping everything else that is
a type of a member of those types.
# Objective
Fixes#11298. Make the use of bevy_log vs bevy_utils::tracing more
consistent.
## Solution
Replace all uses of bevy_log's logging macros with the reexport from
bevy_utils. Remove bevy_log as a dependency where it's no longer needed
anymore.
Ideally we should just be using tracing directly, but given that all of
these crates are already using bevy_utils, this likely isn't that great
of a loss right now.
This is an implementation within `bevy_window::window` that fixes
#12229.
# Objective
Fixes#12229, allow users to retrieve the window's size and physical
size as Vectors without having to manually construct them using
`height()` and `width()` or `physical_height()` and `physical_width()`
## Solution
As suggested in #12229, created two public functions within `window`:
`size() -> Vec` and `physical_size() -> UVec` that return the needed
Vectors ready-to-go.
### Discussion
My first FOSS PRQ ever, so bear with me a bit. I'm new to this.
- I replaced instances of ```Vec2::new(window.width(),
window.height());``` or `UVec2::new(window.physical_width(),
window.physical_height());` within bevy examples be replaced with their
`size()`/`physical_size()` counterparts?
- Discussion within #12229 still holds: should these also be added to
WindowResolution?
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes#12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Split up from #12017, rename Bevy's direction types.
Currently, Bevy has the `Direction2d`, `Direction3d`, and `Direction3dA`
types, which provide a type-level guarantee that their contained vectors
remain normalized. They can be very useful for a lot of APIs for safety,
explicitness, and in some cases performance, as they can sometimes avoid
unnecessary normalizations.
However, many consider them to be inconvenient to use, and opt for
standard vector types like `Vec3` because of this. One reason is that
the direction type names are a bit long and can be annoying to write (of
course you can use autocomplete, but just typing `Vec3` is still nicer),
and in some intances, the extra characters can make formatting worse.
The naming is also inconsistent with Glam's shorter type names, and
results in names like `Direction3dA`, which (in my opinion) are
difficult to read and even a bit ugly.
This PR proposes renaming the types to `Dir2`, `Dir3`, and `Dir3A`.
These names are nice and easy to write, consistent with Glam, and work
well for variants like the SIMD aligned `Dir3A`. As a bonus, it can also
result in nicer formatting in a lot of cases, which can be seen from the
diff of this PR.
Some examples of what it looks like: (copied from #12017)
```rust
// Before
let ray_cast = RayCast2d::new(Vec2::ZERO, Direction2d::X, 5.0);
// After
let ray_cast = RayCast2d::new(Vec2::ZERO, Dir2::X, 5.0);
```
```rust
// Before (an example using Bevy XPBD)
let hit = spatial_query.cast_ray(
Vec3::ZERO,
Direction3d::X,
f32::MAX,
true,
SpatialQueryFilter::default(),
);
// After
let hit = spatial_query.cast_ray(
Vec3::ZERO,
Dir3::X,
f32::MAX,
true,
SpatialQueryFilter::default(),
);
```
```rust
// Before
self.circle(
Vec3::new(0.0, -2.0, 0.0),
Direction3d::Y,
5.0,
Color::TURQUOISE,
);
// After (formatting is collapsed in this case)
self.circle(Vec3::new(0.0, -2.0, 0.0), Dir3::Y, 5.0, Color::TURQUOISE);
```
## Solution
Rename `Direction2d`, `Direction3d`, and `Direction3dA` to `Dir2`,
`Dir3`, and `Dir3A`.
---
## Migration Guide
The `Direction2d` and `Direction3d` types have been renamed to `Dir2`
and `Dir3`.
## Additional Context
This has been brought up on the Discord a few times, and we had a small
[poll](https://discord.com/channels/691052431525675048/1203087353850364004/1212465038711984158)
on this. `Dir2`/`Dir3`/`Dir3A` was quite unanimously chosen as the best
option, but of course it was a very small poll and inconclusive, so
other opinions are certainly welcome too.
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
# Objective
- Make these types usable in reflection-based workflows.
## Solution
- The usual. Also reflect `Default` and `Component` behaviors so that
the types can be constructed, inserted, and removed.
# Objective
`CameraProjectionPlugin<T>`'s bounds are `T: CameraProjection`. But the
bounds for `CameraProjectionPlugin` implementing `Plugin` are `T:
CameraProjection + Component + GetTypeRegistration`. This means that if
`T` is valid for `CameraProjectionPlugin`'s bounds, but not the plugin
implementation's bounds, then `CameraProjectionPlugin` would not
implement `Plugin`. Which is weird because you'd expect a struct with
`Plugin` in the name to implement `Plugin`.
## Solution
Make `CameraProjectionPlugin<T>`'s bounds `T: CameraProjection +
Component + GetTypeRegistration`. I also rearranged some of the code.
---
## Changelog
- Changed `CameraProjectionPlugin<T>`'s bounds to `T: CameraProjection +
Component + GetTypeRegistration`
## Migration Guide
`CameraProjectionPlugin<T>`'s trait bounds now require `T` to implement
`CameraProjection`, `Component`, and `GetTypeRegistration`. This
shouldn't affect most existing code as `CameraProjectionPlugin<T>` never
implemented `Plugin` unless those bounds were met.
# Objective
Split up from #12017, add an aligned version of `Direction3d` for SIMD,
and move direction types out of `primitives`.
## Solution
Add `Direction3dA` and move direction types into a new `direction`
module.
---
## Migration Guide
The `Direction2d`, `Direction3d`, and `InvalidDirectionError` types have
been moved out of `bevy::math::primitives`.
Before:
```rust
use bevy::math::primitives::Direction3d;
```
After:
```rust
use bevy::math::Direction3d;
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Add the new `-Zcheck-cfg` checks to catch more warnings
- Fixes#12091
## Solution
- Create a new `cfg-check` to the CI that runs `cargo check -Zcheck-cfg
--workspace` using cargo nightly (and fails if there are warnings)
- Fix all warnings generated by the new check
---
## Changelog
- Remove all redundant imports
- Fix cfg wasm32 targets
- Add 3 dead code exceptions (should StandardColor be unused?)
- Convert ios_simulator to a feature (I'm not sure if this is the right
way to do it, but the check complained before)
## Migration Guide
No breaking changes
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The migration process for `bevy_color` (#12013) will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.
## Solution
To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.
However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.
As discussed in #12056, by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.
## Migration Guide
THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.
This change should not be shipped to end users: delete this section in
the final migration guide!
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
The new render graph labels do not (and cannot) implement normal
Reflect, which breaks spawning scenes with cameras (including GLTF
scenes). Likewise, the new `CameraMainTextureUsages` also does not (and
cannot) implement normal Reflect because it uses `wgpu::TextureUsages`
under the hood.
Fixes#11852
## Solution
This implements minimal "reflect value" for `CameraRenderGraph` and
`CameraMainTextureUsages` and registers the types, which satisfies our
spawn logic.
Note that this _does not_ fix scene serialization for these types, which
will require more significant changes. We will especially need to think
about how (and if) "interned labels" will fit into the scene system. For
the purposes of 0.13, I think this is the best we can do. Given that
this serialization issue is prevalent throughout Bevy atm, I'm ok with
adding a couple more to the pile. When we roll out the new scene system,
we will be forced to solve these on a case-by-case basis.
---
## Changelog
- Implement Reflect (value) for `CameraMainTextureUsages` and
`CameraRenderGraph`, and register those types.
# Objective
After adding configurable exposure, we set the default ev100 value to
`7` (indoor). This brought us out of sync with Blender's configuration
and defaults. This PR changes the default to `9.7` (bright indoor or
very overcast outdoors), as I calibrated in #11577. This feels like a
very reasonable default.
The other changes generally center around tweaking Bevy's lighting
defaults and examples to play nicely with this number, alongside a few
other tweaks and improvements.
Note that for artistic reasons I have reverted some examples, which
changed to directional lights in #11581, back to point lights.
Fixes#11577
---
## Changelog
- Changed `Exposure::ev100` from `7` to `9.7` to better match Blender
- Renamed `ExposureSettings` to `Exposure`
- `Camera3dBundle` now includes `Exposure` for discoverability
- Bumped `FULL_DAYLIGHT ` and `DIRECT_SUNLIGHT` to represent the
middle-to-top of those ranges instead of near the bottom
- Added new `AMBIENT_DAYLIGHT` constant and set that as the new
`DirectionalLight` default illuminance.
- `PointLight` and `SpotLight` now have a default `intensity` of
1,000,000 lumens. This makes them actually useful in the context of the
new "semi-outdoor" exposure and puts them in the "cinema lighting"
category instead of the "common household light" category. They are also
reasonably close to the Blender default.
- `AmbientLight` default has been bumped from `20` to `80`.
## Migration Guide
- The increased `Exposure::ev100` means that all existing 3D lighting
will need to be adjusted to match (DirectionalLights, PointLights,
SpotLights, EnvironmentMapLights, etc). Or alternatively, you can adjust
the `Exposure::ev100` on your cameras to work nicely with your current
lighting values. If you are currently relying on default intensity
values, you might need to change the intensity to achieve the same
effect. Note that in Bevy 0.12, point/spot lights had a different hard
coded ev100 value than directional lights. In Bevy 0.13, they use the
same ev100, so if you have both in your scene, the _scale_ between these
light types has changed and you will likely need to adjust one or both
of them.
# Objective
Fix https://github.com/bevyengine/bevy/issues/11577.
## Solution
Fix the examples, add a few constants to make setting light values
easier, and change the default lighting settings to be more realistic.
(Now designed for an overcast day instead of an indoor environment)
---
I did not include any example-related changes in here.
## Changelogs (not including breaking changes)
### bevy_pbr
- Added `light_consts` module (included in prelude), which contains
common lux and lumen values for lights.
- Added `AmbientLight::NONE` constant, which is an ambient light with a
brightness of 0.
- Added non-EV100 variants for `ExposureSettings`'s EV100 constants,
which allow easier construction of an `ExposureSettings` from a EV100
constant.
## Breaking changes
### bevy_pbr
The several default lighting values were changed:
- `PointLight`'s default `intensity` is now `2000.0`
- `SpotLight`'s default `intensity` is now `2000.0`
- `DirectionalLight`'s default `illuminance` is now
`light_consts::lux::OVERCAST_DAY` (`1000.`)
- `AmbientLight`'s default `brightness` is now `20.0`
Frustum computation is nontrivial amount of code private in
`update_frusta` system.
Make it public.
This is needed to decide which entities to spawn/despawn in `Update`
based on camera changes. But if `Update` also changed camera, frustum is
not yet recomputed.
Technically it is probably possible to run an iteration of
`update_frusta` system by a user in `Update` schedule after propagating
`GlobalTransform` to the cameras, but it is easier to just compute
frustum manually using API added in this PR.
Also replace two places where this code is used.
---------
Co-authored-by: vero <email@atlasdostal.com>
# Objective
The whole `Cow<'static, str>` naming for nodes and subgraphs in
`RenderGraph` is a mess.
## Solution
Replaces hardcoded and potentially overlapping strings for nodes and
subgraphs inside `RenderGraph` with bevy's labelsystem.
---
## Changelog
* Two new labels: `RenderLabel` and `RenderSubGraph`.
* Replaced all uses for hardcoded strings with those labels
* Moved `Taa` label from its own mod to all the other `Labels3d`
* `add_render_graph_edges` now needs a tuple of labels
* Moved `ScreenSpaceAmbientOcclusion` label from its own mod with the
`ShadowPass` label to `LabelsPbr`
* Removed `NodeId`
* Renamed `Edges.id()` to `Edges.label()`
* Removed `NodeLabel`
* Changed examples according to the new label system
* Introduced new `RenderLabel`s: `Labels2d`, `Labels3d`, `LabelsPbr`,
`LabelsUi`
* Introduced new `RenderSubGraph`s: `SubGraph2d`, `SubGraph3d`,
`SubGraphUi`
* Removed `Reflect` and `Default` derive from `CameraRenderGraph`
component struct
* Improved some error messages
## Migration Guide
For Nodes and SubGraphs, instead of using hardcoded strings, you now
pass labels, which can be derived with structs and enums.
```rs
// old
#[derive(Default)]
struct MyRenderNode;
impl MyRenderNode {
pub const NAME: &'static str = "my_render_node"
}
render_app
.add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
core_3d::graph::NAME,
MyRenderNode::NAME,
)
.add_render_graph_edges(
core_3d::graph::NAME,
&[
core_3d::graph::node::TONEMAPPING,
MyRenderNode::NAME,
core_3d::graph::node::END_MAIN_PASS_POST_PROCESSING,
],
);
// new
use bevy::core_pipeline::core_3d::graph::{Labels3d, SubGraph3d};
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
pub struct MyRenderLabel;
#[derive(Default)]
struct MyRenderNode;
render_app
.add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
SubGraph3d,
MyRenderLabel,
)
.add_render_graph_edges(
SubGraph3d,
(
Labels3d::Tonemapping,
MyRenderLabel,
Labels3d::EndMainPassPostProcessing,
),
);
```
### SubGraphs
#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph2d` |
#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph3d` |
#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::NAME` | `graph::SubGraphUi` |
### Nodes
#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels2d::MsaaWriteback` |
| `node::MAIN_PASS` | `Labels2d::MainPass` |
| `node::BLOOM` | `Labels2d::Bloom` |
| `node::TONEMAPPING` | `Labels2d::Tonemapping` |
| `node::FXAA` | `Labels2d::Fxaa` |
| `node::UPSCALING` | `Labels2d::Upscaling` |
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels2d::ConstrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels2d::EndMainPassPostProcessing` |
#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels3d::MsaaWriteback` |
| `node::PREPASS` | `Labels3d::Prepass` |
| `node::DEFERRED_PREPASS` | `Labels3d::DeferredPrepass` |
| `node::COPY_DEFERRED_LIGHTING_ID` | `Labels3d::CopyDeferredLightingId`
|
| `node::END_PREPASSES` | `Labels3d::EndPrepasses` |
| `node::START_MAIN_PASS` | `Labels3d::StartMainPass` |
| `node::MAIN_OPAQUE_PASS` | `Labels3d::MainOpaquePass` |
| `node::MAIN_TRANSMISSIVE_PASS` | `Labels3d::MainTransmissivePass` |
| `node::MAIN_TRANSPARENT_PASS` | `Labels3d::MainTransparentPass` |
| `node::END_MAIN_PASS` | `Labels3d::EndMainPass` |
| `node::BLOOM` | `Labels3d::Bloom` |
| `node::TONEMAPPING` | `Labels3d::Tonemapping` |
| `node::FXAA` | `Labels3d::Fxaa` |
| `node::UPSCALING` | `Labels3d::Upscaling` |
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels3d::ContrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels3d::EndMainPassPostProcessing` |
#### in `bevy_core_pipeline`
| old string-based path | new label |
|-----------------------|-----------|
| `taa::draw_3d_graph::node::TAA` | `Labels3d::Taa` |
#### in `bevy_pbr`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_3d_graph::node::SHADOW_PASS` | `LabelsPbr::ShadowPass` |
| `ssao::draw_3d_graph::node::SCREEN_SPACE_AMBIENT_OCCLUSION` |
`LabelsPbr::ScreenSpaceAmbientOcclusion` |
| `deferred::DEFFERED_LIGHTING_PASS` | `LabelsPbr::DeferredLightingPass`
|
#### in `bevy_render`
| old string-based path | new label |
|-----------------------|-----------|
| `main_graph::node::CAMERA_DRIVER` | `graph::CameraDriverLabel` |
#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::node::UI_PASS` | `graph::LabelsUi::UiPass` |
---
## Future work
* Make `NodeSlot`s also use types. Ideally, we have an enum with unit
variants where every variant resembles one slot. Then to make sure you
are using the right slot enum and make rust-analyzer play nicely with
it, we should make an associated type in the `Node` trait. With today's
system, we can introduce 3rd party slots to a node, and i wasnt sure if
this was used, so I didn't do this in this PR.
## Unresolved Questions
When looking at the `post_processing` example, we have a struct for the
label and a struct for the node, this seems like boilerplate and on
discord, @IceSentry (sowy for the ping)
[asked](https://discord.com/channels/691052431525675048/743663924229963868/1175197016947699742)
if a node could automatically introduce a label (or i completely
misunderstood that). The problem with that is, that nodes like
`EmptyNode` exist multiple times *inside the same* (sub)graph, so there
we need extern labels to distinguish between those. Hopefully we can
find a way to reduce boilerplate and still have everything unique. For
EmptyNode, we could maybe make a macro which implements an "empty node"
for a type, but for nodes which contain code and need to be present
multiple times, this could get nasty...
# Objective
- Some users want to change the default texture usage of the main camera
but they are currently hardcoded
## Solution
- Add a component that is used to configure the main texture usage field
---
## Changelog
Added `CameraMainTextureUsage`
Added `CameraMainTextureUsage` to `Camera3dBundle` and `Camera2dBundle`
## Migration Guide
Add `main_texture_usages: Default::default()` to your camera bundle.
# Notes
Inspired by: #6815
Rebased and finished version of
https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie
for adjusting all the examples, and the many other people who helped
write this PR (@superdump , @coreh , among others) :)
Fixes https://github.com/bevyengine/bevy/issues/8369
---
## Changelog
- Added a `brightness` control to `Skybox`.
- Added an `intensity` control to `EnvironmentMapLight`.
- Added `ExposureSettings` and `PhysicalCameraParameters` for
controlling exposure of 3D cameras.
- Removed the baked-in `DirectionalLight` exposure Bevy previously
hardcoded internally.
## Migration Guide
- If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness`
and `intensity` controls to adjust their strength.
- All 3D scene will now have different apparent brightnesses due to Bevy
implementing proper exposure controls. You will have to adjust the
intensity of your lights and/or your camera exposure via the new
`ExposureSettings` component to compensate.
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
Co-authored-by: Marco Buono <thecoreh@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
# Objective
Add support for presenting each UI tree on a specific window and
viewport, while making as few breaking changes as possible.
This PR is meant to resolve the following issues at once, since they're
all related.
- Fixes#5622
- Fixes#5570
- Fixes#5621
Adopted #5892 , but started over since the current codebase diverged
significantly from the original PR branch. Also, I made a decision to
propagate component to children instead of recursively iterating over
nodes in search for the root.
## Solution
Add a new optional component that can be inserted to UI root nodes and
propagate to children to specify which camera it should render onto.
This is then used to get the render target and the viewport for that UI
tree. Since this component is optional, the default behavior should be
to render onto the single camera (if only one exist) and warn of
ambiguity if multiple cameras exist. This reduces the complexity for
users with just one camera, while giving control in contexts where it
matters.
## Changelog
- Adds `TargetCamera(Entity)` component to specify which camera should a
node tree be rendered into. If only one camera exists, this component is
optional.
- Adds an example of rendering UI to a texture and using it as a
material in a 3D world.
- Fixes recalculation of physical viewport size when target scale factor
changes. This can happen when the window is moved between displays with
different DPI.
- Changes examples to demonstrate assigning UI to different viewports
and windows and make interactions in an offset viewport testable.
- Removes `UiCameraConfig`. UI visibility now can be controlled via
combination of explicit `TargetCamera` and `Visibility` on the root
nodes.
---------
Co-authored-by: davier <bricedavier@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
In my code I use a lot of images as render targets.
I'd like some convenience methods for working with this type.
## Solution
- Allow `.into()` to construct a `RenderTarget`
- Add `.as_image()`
---
## Changelog
### Added
- `RenderTarget` can be constructed via `.into()` on a `Handle<Image>`
- `RenderTarget` new method: `as_image`
---------
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
# Objective
- Custom render passes, or future passes in the engine (such as
https://github.com/bevyengine/bevy/pull/10164) need a better way to know
and indicate to the core passes whether the view color/depth/prepass
attachments have been cleared or not yet this frame, to know if they
should clear it themselves or load it.
## Solution
- For all render targets (depth textures, shadow textures, prepass
textures, main textures) use an atomic bool to track whether or not each
texture has been cleared this frame. Abstracted away in the new
ColorAttachment and DepthAttachment wrappers.
---
## Changelog
- Changed `ViewTarget::get_color_attachment()`, removed arguments.
- Changed `ViewTarget::get_unsampled_color_attachment()`, removed
arguments.
- Removed `Camera3d::clear_color`.
- Removed `Camera2d::clear_color`.
- Added `Camera::clear_color`.
- Added `ExtractedCamera::clear_color`.
- Added `ColorAttachment` and `DepthAttachment` wrappers.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- Core render passes now track when a texture is first bound as an
attachment in order to decide whether to clear or load it.
## Migration Guide
- Remove arguments to `ViewTarget::get_color_attachment()` and
`ViewTarget::get_unsampled_color_attachment()`.
- Configure clear color on `Camera` instead of on `Camera3d` and
`Camera2d`.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- `ViewDepthTexture` must now be created via the `new()` method
---------
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fix an inconsistency in the calculation of aspect ratio's.
- Fixes#10288
## Solution
- Created an intermediate `AspectRatio` struct, as suggested in the
issue. This is currently just used in any places where aspect ratio
calculations happen, to prevent doing it wrong. In my and @mamekoro 's
opinion, it would be better if this was used instead of a normal `f32`
in various places, but I didn't want to make too many changes to begin
with.
## Migration Guide
- Anywhere where you are currently expecting a f32 when getting aspect
ratios, you will now receive a `AspectRatio` struct. this still holds
the same value.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Finish the work done in #8942 .
## Solution
- Rebase the changes made in #8942 and fix the issues stopping it from
being merged earlier
---------
Co-authored-by: Thomas <1234328+thmsgntz@users.noreply.github.com>
# Objective
Keep up to date with wgpu.
## Solution
Update the wgpu version.
Currently blocked on naga_oil updating to naga 0.14 and releasing a new
version.
3d scenes (or maybe any scene with lighting?) currently don't render
anything due to
```
error: naga_oil bug, please file a report: composer failed to build a valid header: Type [2] '' is invalid
= Capability Capabilities(CUBE_ARRAY_TEXTURES) is required
```
I'm not sure what should be passed in for `wgpu::InstanceFlags`, or if we want to make the gles3minorversion configurable (might be useful for debugging?)
Currently blocked on https://github.com/bevyengine/naga_oil/pull/63, and https://github.com/gfx-rs/wgpu/issues/4569 to be fixed upstream in wgpu first.
## Known issues
Amd+windows+vulkan has issues with texture_binding_arrays (see the image [here](https://github.com/bevyengine/bevy/pull/10266#issuecomment-1819946278)), but that'll be fixed in the next wgpu/naga version, and you can just use dx12 as a workaround for now (Amd+linux mesa+vulkan texture_binding_arrays are fixed though).
---
## Changelog
Updated wgpu to 0.18, naga to 0.14.2, and naga_oil to 0.11.
- Windows desktop GL should now be less painful as it no longer requires Angle.
- You can now toggle shader validation and debug information for debug and release builds using `WgpuSettings.instance_flags` and [InstanceFlags](https://docs.rs/wgpu/0.18.0/wgpu/struct.InstanceFlags.html)
## Migration Guide
- `RenderPassDescriptor` `color_attachments` (as well as `RenderPassColorAttachment`, and `RenderPassDepthStencilAttachment`) now use `StoreOp::Store` or `StoreOp::Discard` instead of a `boolean` to declare whether or not they should be stored.
- `RenderPassDescriptor` now have `timestamp_writes` and `occlusion_query_set` fields. These can safely be set to `None`.
- `ComputePassDescriptor` now have a `timestamp_writes` field. This can be set to `None` for now.
- See the [wgpu changelog](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v0180-2023-10-25) for additional details
# Objective
A better alternative version of #10843.
Currently, Bevy has a single `Ray` struct for 3D. To allow better
interoperability with Bevy's primitive shapes (#10572) and some third
party crates (that handle e.g. spatial queries), it would be very useful
to have separate versions for 2D and 3D respectively.
## Solution
Separate `Ray` into `Ray2d` and `Ray3d`. These new structs also take
advantage of the new primitives by using `Direction2d`/`Direction3d` for
the direction:
```rust
pub struct Ray2d {
pub origin: Vec2,
pub direction: Direction2d,
}
pub struct Ray3d {
pub origin: Vec3,
pub direction: Direction3d,
}
```
and by using `Plane2d`/`Plane3d` in `intersect_plane`:
```rust
impl Ray2d {
// ...
pub fn intersect_plane(&self, plane_origin: Vec2, plane: Plane2d) -> Option<f32> {
// ...
}
}
```
---
## Changelog
### Added
- `Ray2d` and `Ray3d`
- `Ray2d::new` and `Ray3d::new` constructors
- `Plane2d::new` and `Plane3d::new` constructors
### Removed
- Removed `Ray` in favor of `Ray3d`
### Changed
- `direction` is now a `Direction2d`/`Direction3d` instead of a vector,
which provides guaranteed normalization
- `intersect_plane` now takes a `Plane2d`/`Plane3d` instead of just a
vector for the plane normal
- `Direction2d` and `Direction3d` now derive `Serialize` and
`Deserialize` to preserve ray (de)serialization
## Migration Guide
`Ray` has been renamed to `Ray3d`.
### Ray creation
Before:
```rust
Ray {
origin: Vec3::ZERO,
direction: Vec3::new(0.5, 0.6, 0.2).normalize(),
}
```
After:
```rust
// Option 1:
Ray3d {
origin: Vec3::ZERO,
direction: Direction3d::new(Vec3::new(0.5, 0.6, 0.2)).unwrap(),
}
// Option 2:
Ray3d::new(Vec3::ZERO, Vec3::new(0.5, 0.6, 0.2))
```
### Plane intersections
Before:
```rust
let result = ray.intersect_plane(Vec2::X, Vec2::Y);
```
After:
```rust
let result = ray.intersect_plane(Vec2::X, Plane2d::new(Vec2::Y));
```
# Objective
- Shorten paths by removing unnecessary prefixes
## Solution
- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
# Objective
Make sure a camera which has had its render target changed recomputes
its info.
On main, the following is possible:
- System A has an inactive camera with render target set to the default
`Image` (i.e. white 1x1 rgba texture)
Later:
- System B sets the same camera active and sets the `camera.target` to a
newly created `Image`
**Bug**: Since `camera_system` only checks `Modified` and not `Added`
events, the size of the render target is not recomputed, which means the
camera will render with 1x1 size even though the new target is an
entirely different size.
## Solution
- Ensure `camera_system` checks `Added` image assets events
## Changelog
### Fixed
- Cameras which have their render targets changed to a newly created
target with a different size than the previous target will now render
properly
---------
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
# Objective
Fixes https://github.com/bevyengine/bevy/issues/9077 (see this issue for
motivations)
## Solution
Implement 1 and 2 of the "How to fix it" section of
https://github.com/bevyengine/bevy/issues/9077
`update_directional_light_cascades` is split into
`clear_directional_light_cascades` and a generic
`build_directional_light_cascades`, to clear once and potentially insert
many times.
---
## Changelog
`DirectionalLight`'s computation is now generic over `CameraProjection`
and can work with custom camera projections.
## Migration Guide
If you have a component `MyCustomProjection` that implements
`CameraProjection`:
- You need to implement a new required associated method,
`get_frustum_corners`, returning an array of the corners of a subset of
the frustum with given `z_near` and `z_far`, in local camera space.
- You can now add the
`build_directional_light_cascades::<MyCustomProjection>` system in
`SimulationLightSystems::UpdateDirectionalLightCascades` after
`clear_directional_light_cascades` for your projection to work with
directional lights.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Work towards GPU-driven culling
(https://github.com/bevyengine/bevy/pull/10164)
## Solution
- Pass the view frustum to the shader view uniform
---
## Changelog
- View Frustums are now extracted to the render world and made available
to shaders