c0ccc87738
207 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
c0ccc87738
|
UI material border radius (#15171)
# Objective I wrote a box shadow UI material naively thinking I could use the border widths attribute to hold the border radius but it doesn't work as the border widths are automatically set in the extraction function. Need to send border radius to the shader seperately for it to be viable. ## Solution Add a `border_radius` vertex attribute to the ui material. This PR also removes the normalization of border widths for custom UI materials. The regular UI shader doesn't do this so it's a bit confusing and means you can't use the logic from `ui.wgsl` in your custom UI materials. ## Testing / Showcase Made a change to the `ui_material` example to display border radius: ```cargo run --example ui_material``` <img width="569" alt="corners" src="https://github.com/user-attachments/assets/36412736-a9ee-4042-aadd-68b9cafb17cb" /> |
||
![]() |
1c765c9ae7
|
Add support for specular tints and maps per the KHR_materials_specular glTF extension. (#14069)
This commit allows specular highlights to be tinted with a color and for the reflectance and color tint values to vary across a model via a pair of maps. The implementation follows the [`KHR_materials_specular`] glTF extension. In order to reduce the number of samplers and textures in the default `StandardMaterial` configuration, the maps are gated behind the `pbr_specular_textures` Cargo feature. Specular tinting is currently unsupported in the deferred renderer, because I didn't want to bloat the deferred G-buffers. A possible fix for this in the future would be to make the G-buffer layout more configurable, so that specular tints could be supported on an opt-in basis. As an alternative, Bevy could force meshes with specular tints to render in forward mode. Both of these solutions require some more design, so I consider them out of scope for now. Note that the map is a *specular* map, not a *reflectance* map. In Bevy and Filament terms, the reflectance values in the specular map range from [0.0, 0.5], rather than [0.0, 1.0]. This is an unfortunate [`KHR_materials_specular`] specification requirement that stems from the fact that glTF is specified in terms of a specular strength model, not the reflectance model that Filament and Bevy use. A workaround, which is noted in the `StandardMaterial` documentation, is to set the `reflectance` value to 2.0, which spreads the specular map range from [0.0, 1.0] as normal. The glTF loader has been updated to parse the [`KHR_materials_specular`] extension. Note that, unless the non-default `pbr_specular_textures` is supplied, the maps are ignored. The `specularFactor` value is applied as usual. Note that, as with the specular map, the glTF `specularFactor` is twice Bevy's `reflectance` value. This PR adds a new example, `specular_tint`, which demonstrates the specular tint and map features. Note that this example requires the [`KHR_materials_specular`] Cargo feature. [`KHR_materials_specular`]: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_specular ## Changelog ### Added * Specular highlights can now be tinted with the `specular_tint` field in `StandardMaterial`. * Specular maps are now available in `StandardMaterial`, gated behind the `pbr_specular_textures` Cargo feature. * The `KHR_materials_specular` glTF extension is now supported, allowing for customization of specular reflectance and specular maps. Note that the latter are gated behind the `pbr_specular_textures` Cargo feature. |
||
![]() |
fc831c390d
|
Implement basic clustered decal projectors. (#17315)
This commit adds support for *decal projectors* to Bevy, allowing for textures to be projected on top of geometry. Decal projectors are clusterable objects, just as punctual lights and light probes are. This means that decals are only evaluated for objects within the conservative bounds of the projector, and they don't require a second pass. These clustered decals require support for bindless textures and as such currently don't work on WebGL 2, WebGPU, macOS, or iOS. For an alternative that doesn't require bindless, see PR #16600. I believe that both contact projective decals in #16600 and clustered decals are desirable to have in Bevy. Contact projective decals offer broader hardware and driver support, while clustered decals don't require the creation of bounding geometry. A new example, `decal_projectors`, has been added, which demonstrates multiple decals on a rotating object. The decal projectors can be scaled and rotated with the mouse. There are several limitations of this initial patch that can be addressed in follow-ups: 1. There's no way to specify the Z-index of decals. That is, the order in which multiple decals are blended on top of one another is arbitrary. A follow-up could introduce some sort of Z-index field so that artists can specify that some decals should be blended on top of others. 2. Decals don't take the normal of the surface they're projected onto into account. Most decal implementations in other engines have a feature whereby the angle between the decal projector and the normal of the surface must be within some threshold for the decal to appear. Often, artists can specify a fade-off range for a smooth transition between oblique surfaces and aligned surfaces. 3. There's no distance-based fadeoff toward the end of the projector range. Many decal implementations have this. This addresses #2401. ## Showcase  |
||
![]() |
81a25bb0c7
|
Procedural atmospheric scattering (#16314)
Implement procedural atmospheric scattering from [Sebastien Hillaire's 2020 paper](https://sebh.github.io/publications/egsr2020.pdf). This approach should scale well even down to mobile hardware, and is physically accurate. ## Co-author: @mate-h He helped massively with getting this over the finish line, ensuring everything was physically correct, correcting several places where I had misunderstood or misapplied the paper, and improving the performance in several places as well. Thanks! ## Credits @aevyrie: helped find numerous bugs and improve the example to best show off this feature :) Built off of @mtsr's original branch, which handled the transmittance lut (arguably the most important part) ## Showcase:   ## For followup - Integrate with pcwalton's volumetrics code - refactor/reorganize for better integration with other effects - have atmosphere transmittance affect directional lights - add support for generating skybox/environment map --------- Co-authored-by: Emerson Coskey <56370779+EmersonCoskey@users.noreply.github.com> Co-authored-by: atlv <email@atlasdostal.com> Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com> Co-authored-by: Emerson Coskey <coskey@emerlabs.net> Co-authored-by: Máté Homolya <mate.homolya@gmail.com> |
||
![]() |
b66c3ceb0e
|
Add external assets to .gitignore (#17388)
Added an external assets section to .gitignore. This prevents contributors from accidentally adding or committing them. I believe currently the only externel asset is the meshlet bunny. |
||
![]() |
0756a19f28
|
Support texture atlases in CustomCursor::Image (#17121)
# Objective - Bevy 0.15 added support for custom cursor images in https://github.com/bevyengine/bevy/pull/14284. - However, to do animated cursors using the initial support shipped in 0.15 means you'd have to animate the `Handle<Image>`: You can't use a `TextureAtlas` like you can with sprites and UI images. - For my use case, my cursors are spritesheets. To animate them, I'd have to break them down into multiple `Image` assets, but that seems less than ideal. ## Solution - Allow users to specify a `TextureAtlas` field when creating a custom cursor image. - To create parity with Bevy's `TextureAtlas` support on `Sprite`s and `ImageNode`s, this also allows users to specify `rect`, `flip_x` and `flip_y`. In fact, for my own use case, I need to `flip_y`. ## Testing - I added unit tests for `calculate_effective_rect` and `extract_and_transform_rgba_pixels`. - I added a brand new example for custom cursor images. It has controls to toggle fields on and off. I opted to add a new example because the existing cursor example (`window_settings`) would be far too messy for showcasing these custom cursor features (I did start down that path but decided to stop and make a brand new example). - The new example uses a [Kenny cursor icon] sprite sheet. I included the licence even though it's not required (and it's CC0). - I decided to make the example just loop through all cursor icons for its animation even though it's not a _realistic_ in-game animation sequence. - I ran the PNG through https://tinypng.com. Looks like it's about 35KB. - I'm open to adjusting the example spritesheet if required, but if it's fine as is, great. [Kenny cursor icon]: https://kenney-assets.itch.io/crosshair-pack --- ## Showcase https://github.com/user-attachments/assets/8f6be8d7-d1d4-42f9-b769-ef8532367749 ## Migration Guide The `CustomCursor::Image` enum variant has some new fields. Update your code to set them. Before: ```rust CustomCursor::Image { handle: asset_server.load("branding/icon.png"), hotspot: (128, 128), } ``` After: ```rust CustomCursor::Image { handle: asset_server.load("branding/icon.png"), texture_atlas: None, flip_x: false, flip_y: false, rect: None, hotspot: (128, 128), } ``` ## References - Feature request [originally raised in Discord]. [originally raised in Discord]: https://discord.com/channels/691052431525675048/692572690833473578/1319836362219847681 |
||
![]() |
51c3bf24b7
|
custom_ui_material border fix (#17282)
# Objective The order of the border edges in `UiVertexOutput` is left, right, top, bottom but in `custom_ui_material` the selectors switch them so left is right and top is bottom. ## Solution Reverse the conditions so that the correct border values are selected. |
||
![]() |
a8f15bd95e
|
Introduce two-level bins for multidrawable meshes. (#16898)
Currently, our batchable binned items are stored in a hash table that maps bin key, which includes the batch set key, to a list of entities. Multidraw is handled by sorting the bin keys and accumulating adjacent bins that can be multidrawn together (i.e. have the same batch set key) into multidraw commands during `batch_and_prepare_binned_render_phase`. This is reasonably efficient right now, but it will complicate future work to retain indirect draw parameters from frame to frame. Consider what must happen when we have retained indirect draw parameters and the application adds a bin (i.e. a new mesh) that shares a batch set key with some pre-existing meshes. (That is, the new mesh can be multidrawn with the pre-existing meshes.) To be maximally efficient, our goal in that scenario will be to update *only* the indirect draw parameters for the batch set (i.e. multidraw command) containing the mesh that was added, while leaving the others alone. That means that we have to quickly locate all the bins that belong to the batch set being modified. In the existing code, we would have to sort the list of bin keys so that bins that can be multidrawn together become adjacent to one another in the list. Then we would have to do a binary search through the sorted list to find the location of the bin that was just added. Next, we would have to widen our search to adjacent indexes that contain the same batch set, doing expensive comparisons against the batch set key every time. Finally, we would reallocate the indirect draw parameters and update the stored pointers to the indirect draw parameters that the bins store. By contrast, it'd be dramatically simpler if we simply changed the way bins are stored to first map from batch set key (i.e. multidraw command) to the bins (i.e. meshes) within that batch set key, and then from each individual bin to the mesh instances. That way, the scenario above in which we add a new mesh will be simpler to handle. First, we will look up the batch set key corresponding to that mesh in the outer map to find an inner map corresponding to the single multidraw command that will draw that batch set. We will know how many meshes the multidraw command is going to draw by the size of that inner map. Then we simply need to reallocate the indirect draw parameters and update the pointers to those parameters within the bins as necessary. There will be no need to do any binary search or expensive batch set key comparison: only a single hash lookup and an iteration over the inner map to update the pointers. This patch implements the above technique. Because we don't have retained bins yet, this PR provides no performance benefits. However, it opens the door to maximally efficient updates when only a small number of meshes change from frame to frame. The main churn that this patch causes is that the *batch set key* (which uniquely specifies a multidraw command) and *bin key* (which uniquely specifies a mesh *within* that multidraw command) are now separate, instead of the batch set key being embedded *within* the bin key. In order to isolate potential regressions, I think that at least #16890, #16836, and #16825 should land before this PR does. ## Migration Guide * The *batch set key* is now separate from the *bin key* in `BinnedPhaseItem`. The batch set key is used to collect multidrawable meshes together. If you aren't using the multidraw feature, you can safely set the batch set key to `()`. |
||
![]() |
651b22f31f
|
Update typos (#17126)
# Objective Use the latest version of `typos` and fix the typos that it now detects # Additional Info By the way, `typos` has a "low priority typo suggestions issue" where we can throw typos we find that `typos` doesn't catch. (This link may go stale) https://github.com/crate-ci/typos/issues/1200 |
||
![]() |
21786632c3
|
Remove bevy_core (#16897)
# Objective - Fixes #16892 ## Solution - Removed `TypeRegistryPlugin` (`Name` is now automatically registered with a default `App`) - Moved `TaskPoolPlugin` to `bevy_app` - Moved `FrameCountPlugin` to `bevy_diagnostic` - Deleted now-empty `bevy_core` ## Testing - CI ## Migration Guide - `TypeRegistryPlugin` no longer exists. If you can't use a default `App` but still need `Name` registered, do so manually with `app.register_type::<Name>()`. - References to `TaskPoolPlugin` and associated types will need to import it from `bevy_app` instead of `bevy_core` - References to `FrameCountPlugin` and associated types will need to import it from `bevy_diagnostic` instead of `bevy_core` ## Notes This strategy was agreed upon by Cart and several other members in [Discord](https://discord.com/channels/691052431525675048/692572690833473578/1319137218312278077). |
||
![]() |
3cd649b805
|
Fix inaccurate comment in custom_ui_material.wgsl shader (#16846)
# Objective - Modify a comment in the shader file to describe what the shader actually does - Fixes #16830 ## Solution - Changed the comment. ## Testing - Testing is not relevant to fixing comments (as long as the comment is accurate) --------- Co-authored-by: Freya Pines <freya@MacBookAir.lan> Co-authored-by: Freya Pines <freya@Freyas-MacBook-Air.local> |
||
![]() |
bf3692a011
|
Introduce support for mixed lighting by allowing lights to opt out of contributing diffuse light to lightmapped objects. (#16761)
This PR adds support for *mixed lighting* to Bevy, whereby some parts of the scene are lightmapped, while others take part in real-time lighting. (Here *real-time lighting* means lighting at runtime via the PBR shader, as opposed to precomputed light using lightmaps.) It does so by adding a new field, `affects_lightmapped_meshes` to `IrradianceVolume` and `AmbientLight`, and a corresponding field `affects_lightmapped_mesh_diffuse` to `DirectionalLight`, `PointLight`, `SpotLight`, and `EnvironmentMapLight`. By default, this value is set to true; when set to false, the light contributes nothing to the diffuse irradiance component to meshes with lightmaps. Note that specular light is unaffected. This is because the correct way to bake specular lighting is *directional lightmaps*, which we have no support for yet. There are two general ways I expect this field to be used: 1. When diffuse indirect light is baked into lightmaps, irradiance volumes and reflection probes shouldn't contribute any diffuse light to the static geometry that has a lightmap. That's because the baking tool should have already accounted for it, and in a higher-quality fashion, as lightmaps typically offer a higher effective texture resolution than the light probe does. 2. When direct diffuse light is baked into a lightmap, punctual lights shouldn't contribute any diffuse light to static geometry with a lightmap, to avoid double-counting. It may seem odd to bake *direct* light into a lightmap, as opposed to indirect light. But there is a use case: in a scene with many lights, avoiding light leaks requires shadow mapping, which quickly becomes prohibitive when many lights are involved. Baking lightmaps allows light leaks to be eliminated on static geometry. A new example, `mixed_lighting`, has been added. It demonstrates a sofa (model from the [glTF Sample Assets]) that has been lightmapped offline using [Bakery]. It has four modes: 1. In *baked* mode, all objects are locked in place, and all the diffuse direct and indirect light has been calculated ahead of time. Note that the bottom of the sphere has a red tint from the sofa, illustrating that the baking tool captured indirect light for it. 2. In *mixed direct* mode, lightmaps capturing diffuse direct and indirect light have been pre-calculated for the static objects, but the dynamic sphere has real-time lighting. Note that, because the diffuse lighting has been entirely pre-calculated for the scenery, the dynamic sphere casts no shadow. In a real app, you would typically use real-time lighting for the most important light so that dynamic objects can shadow the scenery and relegate baked lighting to the less important lights for which shadows aren't as important. Also note that there is no red tint on the sphere, because there is no global illumination applied to it. In an actual game, you could fix this problem by supplementing the lightmapped objects with an irradiance volume. 3. In *mixed indirect* mode, all direct light is calculated in real-time, and the static objects have pre-calculated indirect lighting. This corresponds to the mode that most applications are expected to use. Because direct light on the scenery is computed dynamically, shadows are fully supported. As in mixed direct mode, there is no global illumination on the sphere; in a real application, irradiance volumes could be used to supplement the lightmaps. 4. In *real-time* mode, no lightmaps are used at all, and all punctual lights are rendered in real-time. No global illumination exists. In the example, you can click around to move the sphere, unless you're in baked mode, in which case the sphere must be locked in place to be lit correctly. ## Showcase Baked mode:  Mixed direct mode:  Mixed indirect mode (default):  Real-time mode:  ## Migration guide * The `AmbientLight` resource, the `IrradianceVolume` component, and the `EnvironmentMapLight` component now have `affects_lightmapped_meshes` fields. If you don't need to use that field (for example, if you aren't using lightmaps), you can safely set the field to true. * `DirectionalLight`, `PointLight`, and `SpotLight` now have `affects_lightmapped_mesh_diffuse` fields. If you don't need to use that field (for example, if you aren't using lightmaps), you can safely set the field to true. [glTF Sample Assets]: https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main [Bakery]: https://geom.io/bakery/wiki/index.php?title=Bakery_-_GPU_Lightmapper |
||
![]() |
35826be6f7
|
Implement bindless lightmaps. (#16653)
This commit allows Bevy to bind 16 lightmaps at a time, if the current platform supports bindless textures. Naturally, if bindless textures aren't supported, Bevy falls back to binding only a single lightmap at a time. As lightmaps are usually heavily atlased, I doubt many scenes will use more than 16 lightmap textures. This has little performance impact now, but it's desirable for us to reap the benefits of multidraw and bindless textures on scenes that use lightmaps. Otherwise, we might have to break batches in order to switch those lightmaps. Additionally, this PR slightly reduces the cost of binning because it makes the lightmap index in `Opaque3dBinKey` 32 bits instead of an `AssetId`. ## Migration Guide * The `Opaque3dBinKey::lightmap_image` field is now `Opaque3dBinKey::lightmap_slab`, which is a lightweight identifier for an entire binding array of lightmaps. |
||
![]() |
b7bcd313ca
|
Cluster light probes using conservative spherical bounds. (#13746)
This commit allows the Bevy renderer to use the clustering infrastructure for light probes (reflection probes and irradiance volumes) on platforms where at least 3 storage buffers are available. On such platforms (the vast majority), we stop performing brute-force searches of light probes for each fragment and instead only search the light probes with bounding spheres that intersect the current cluster. This should dramatically improve scalability of irradiance volumes and reflection probes. The primary platform that doesn't support 3 storage buffers is WebGL 2, and we continue using a brute-force search of light probes on that platform, as the UBO that stores per-cluster indices is too small to fit the light probe counts. Note, however, that that platform also doesn't support bindless textures (indeed, it would be very odd for a platform to support bindless textures but not SSBOs), so we only support one of each type of light probe per drawcall there in the first place. Consequently, this isn't a performance problem, as the search will only have one light probe to consider. (In fact, clustering would probably end up being a performance loss.) Known potential improvements include: 1. We currently cull based on a conservative bounding sphere test and not based on the oriented bounding box (OBB) of the light probe. This is improvable, but in the interests of simplicity, I opted to keep the bounding sphere test for now. The OBB improvement can be a follow-up. 2. This patch doesn't change the fact that each fragment only takes a single light probe into account. Typical light probe implementations detect the case in which multiple light probes cover the current fragment and perform some sort of weighted blend between them. As the light probe fetch function presently returns only a single light probe, implementing that feature would require more code restructuring, so I left it out for now. It can be added as a follow-up. 3. Light probe implementations typically have a falloff range. Although this is a wanted feature in Bevy, this particular commit also doesn't implement that feature, as it's out of scope. 4. This commit doesn't raise the maximum number of light probes past its current value of 8 for each type. This should be addressed later, but would possibly require more bindings on platforms with storage buffers, which would increase this patch's complexity. Even without raising the limit, this patch should constitute a significant performance improvement for scenes that get anywhere close to this limit. In the interest of keeping this patch small, I opted to leave raising the limit to a follow-up. ## Changelog ### Changed * Light probes (reflection probes and irradiance volumes) are now clustered on most platforms, improving performance when many light probes are present. --------- Co-authored-by: Benjamin Brienen <Benjamin.Brienen@outlook.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
5adf831b42
|
Add a bindless mode to AsBindGroup . (#16368)
This patch adds the infrastructure necessary for Bevy to support *bindless resources*, by adding a new `#[bindless]` attribute to `AsBindGroup`. Classically, only a single texture (or sampler, or buffer) can be attached to each shader binding. This means that switching materials requires breaking a batch and issuing a new drawcall, even if the mesh is otherwise identical. This adds significant overhead not only in the driver but also in `wgpu`, as switching bind groups increases the amount of validation work that `wgpu` must do. *Bindless resources* are the typical solution to this problem. Instead of switching bindings between each texture, the renderer instead supplies a large *array* of all textures in the scene up front, and the material contains an index into that array. This pattern is repeated for buffers and samplers as well. The renderer now no longer needs to switch binding descriptor sets while drawing the scene. Unfortunately, as things currently stand, this approach won't quite work for Bevy. Two aspects of `wgpu` conspire to make this ideal approach unacceptably slow: 1. In the DX12 backend, all binding arrays (bindless resources) must have a constant size declared in the shader, and all textures in an array must be bound to actual textures. Changing the size requires a recompile. 2. Changing even one texture incurs revalidation of all textures, a process that takes time that's linear in the total size of the binding array. This means that declaring a large array of textures big enough to encompass the entire scene is presently unacceptably slow. For example, if you declare 4096 textures, then `wgpu` will have to revalidate all 4096 textures if even a single one changes. This process can take multiple frames. To work around this problem, this PR groups bindless resources into small *slabs* and maintains a free list for each. The size of each slab for the bindless arrays associated with a material is specified via the `#[bindless(N)]` attribute. For instance, consider the following declaration: ```rust #[derive(AsBindGroup)] #[bindless(16)] struct MyMaterial { #[buffer(0)] color: Vec4, #[texture(1)] #[sampler(2)] diffuse: Handle<Image>, } ``` The `#[bindless(N)]` attribute specifies that, if bindless arrays are supported on the current platform, each resource becomes a binding array of N instances of that resource. So, for `MyMaterial` above, the `color` attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`, the `diffuse` texture is exposed to the shader as `binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is exposed to the shader as `binding_array<sampler, 16>`. Inside the material's vertex and fragment shaders, the applicable index is available via the `material_bind_group_slot` field of the `Mesh` structure. So, for instance, you can access the current color like so: ```wgsl // `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted // to `storage` in bindless mode. @group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>; ... @fragment fn fragment(in: VertexOutput) -> @location(0) vec4<f32> { let color = material_color[mesh[in.instance_index].material_bind_group_slot]; ... } ``` Note that portable shader code can't guarantee that the current platform supports bindless textures. Indeed, bindless mode is only available in Vulkan and DX12. The `BINDLESS` shader definition is available for your use to determine whether you're on a bindless platform or not. Thus a portable version of the shader above would look like: ```wgsl #ifdef BINDLESS @group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>; #else // BINDLESS @group(2) @binding(0) var<uniform> material_color: Color; #endif // BINDLESS ... @fragment fn fragment(in: VertexOutput) -> @location(0) vec4<f32> { #ifdef BINDLESS let color = material_color[mesh[in.instance_index].material_bind_group_slot]; #else // BINDLESS let color = material_color; #endif // BINDLESS ... } ``` Importantly, this PR *doesn't* update `StandardMaterial` to be bindless. So, for example, `scene_viewer` will currently not run any faster. I intend to update `StandardMaterial` to use bindless mode in a follow-up patch. A new example, `shaders/shader_material_bindless`, has been added to demonstrate how to use this new feature. Here's a Tracy profile of `submit_graph_commands` of this patch and an additional patch (not submitted yet) that makes `StandardMaterial` use bindless. Red is those patches; yellow is `main`. The scene was Bistro Exterior with a hack that forces all textures to opaque. You can see a 1.47x mean speedup.  ## Migration Guide * `RenderAssets::prepare_asset` now takes an `AssetId` parameter. * Bin keys now have Bevy-specific material bind group indices instead of `wgpu` material bind group IDs, as part of the bindless change. Use the new `MaterialBindGroupAllocator` to map from bind group index to bind group ID. |
||
![]() |
3fc2bd71ea
|
Cosmetic tweaks to query_gltf_primitives (#16102)
# Objective This example is really confusing to look at and tell at a glance whether it's broken or not. It's displaying a strange shape -- a cube with two vertices stretched in a couple dimensions at an odd angle, and doing its vertex position modification in a way where the intent isn't obvious. ## Solution - Change the gltf geometry so that the object is a recognizable regular shape - Change the vertex modification so that the entire cube top is being "lifted" from the cube - Adjust colors, lighting, and camera location so we can see what's going on - Also remove some irrelevant shadow and environment map setup ## Before  ## After <img width="1280" alt="image" src="https://github.com/user-attachments/assets/59cab60d-efbc-47c3-8688-e4544b462421"> |
||
![]() |
16b39c2b36
|
examples(shaders/glsl): Update GLSL Shader Example Camera View uniform (#15865)
# Objective The Custom Material GLSL shader example has an old version of the camera view uniform structure. This PR updates the example GLSL custom material shader to have the latest structure. ## Solution I was running into issues using the camera world position (it wasn't changing) and someone in discord pointed me to the source of truth. `crates/bevy_render/src/view/view.wgsl` After using this latest uniform structure in my project I'm now able to work with the camera position in my shader. ## Testing I tested this change by running the example with: ```bash cargo run --features shader_format_glsl --example shader_material_glsl ``` <img width="1392" alt="image" src="https://github.com/user-attachments/assets/39fc82ec-ff3b-4864-ad73-05f3a25db483"> --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
754194fd24
|
Fix invalid scene file for scene example (#15829)
# Objective Fixes #15828 ## Solution Ran the example to generate `load_scene_example-new.scn.ron` and replaced `load_scene_example.scn.ron` with the contents. ## Testing `cargo run --example scene` |
||
![]() |
320d53c1d2
|
Vary transforms for custom_skinned_mesh example (#15710)
# Objective Enhance the [custom skinned mesh example](https://bevyengine.org/examples/animation/custom-skinned-mesh/) to show some variety and clarify what the transform does to the mesh. ## Solution https://github.com/user-attachments/assets/c919db74-6e77-4f33-ba43-0f40a88042b3 Add variety and clarity with the following changes: - vary transform changes, - use a UV texture, - and show transform changes via gizmos. (Maybe it'd be worth turning on wireframe rendering to show what happens to the mesh. I think it'd be nice visually but might make the code a little noisy.) ## Testing I exercised it on my x86 macOS computer. It'd be good to have it validated on Windows, Linux, and WASM. --- ## Showcase - Custom skinned mesh example varies the transforms changes and uses a UV test texture. |
||
![]() |
0094bcbc07
|
Implement additive blending for animation graphs. (#15631)
*Additive blending* is an ubiquitous feature in game engines that allows animations to be concatenated instead of blended. The canonical use case is to allow a character to hold a weapon while performing arbitrary poses. For example, if you had a character that needed to be able to walk or run while attacking with a weapon, the typical workflow is to have an additive blend node that combines walking and running animation clips with an animation clip of one of the limbs performing a weapon attack animation. This commit adds support for additive blending to Bevy. It builds on top of the flexible infrastructure in #15589 and introduces a new type of node, the *add node*. Like blend nodes, add nodes combine the animations of their children according to their weights. Unlike blend nodes, however, add nodes don't normalize the weights to 1.0. The `animation_masks` example has been overhauled to demonstrate the use of additive blending in combination with masks. There are now controls to choose an animation clip for every limb of the fox individually. This patch also fixes a bug whereby masks were incorrectly accumulated with `insert()` during the graph threading phase, which could cause corruption of computed masks in some cases. Note that the `clip` field has been replaced with an `AnimationNodeType` enum, which breaks `animgraph.ron` files. The `Fox.animgraph.ron` asset has been updated to the new format. Closes #14395. ## Showcase https://github.com/user-attachments/assets/52dfe05f-fdb3-477a-9462-ec150f93df33 ## Migration Guide * The `animgraph.ron` format has changed to accommodate the new *additive blending* feature. You'll need to change `clip` fields to instances of the new `AnimationNodeType` enum. |
||
![]() |
40c26f80aa
|
Gpu readback (#15419)
# Objective Adds a new `Readback` component to request for readback of a `Handle<Image>` or `Handle<ShaderStorageBuffer>` to the CPU in a future frame. ## Solution We track the `Readback` component and allocate a target buffer to write the gpu resource into and map it back asynchronously, which then fires a trigger on the entity in the main world. This proccess is asynchronous, and generally takes a few frames. ## Showcase ```rust let mut buffer = ShaderStorageBuffer::from(vec![0u32; 16]); buffer.buffer_description.usage |= BufferUsages::COPY_SRC; let buffer = buffers.add(buffer); commands .spawn(Readback::buffer(buffer.clone())) .observe(|trigger: Trigger<ReadbackComplete>| { info!("Buffer data from previous frame {:?}", trigger.event()); }); ``` --------- Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
![]() |
78a3aae81b
|
feat(gltf): add name component to gltf mesh primitive (#13912)
# Objective - fixes https://github.com/bevyengine/bevy/issues/13473 ## Solution - When a single mesh is assigned multiple materials, it is divided into several primitive nodes, with each primitive assigned a unique material. Presently, these primitives are named using the format Mesh.index, which complicates querying. To improve this, we can assign a specific name to each primitive based on the material’s name, since each primitive corresponds to one material exclusively. ## Testing - I have included a simple example which shows how to query a material and mesh part based on the new name component. ## Changelog - adds `GltfMaterialName` component to the mesh entity of the gltf primitive node. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
2ae5a21009
|
Implement percentage-closer soft shadows (PCSS). (#13497)
[*Percentage-closer soft shadows*] are a technique from 2004 that allow shadows to become blurrier farther from the objects that cast them. It works by introducing a *blocker search* step that runs before the normal shadow map sampling. The blocker search step detects the difference between the depth of the fragment being rasterized and the depth of the nearby samples in the depth buffer. Larger depth differences result in a larger penumbra and therefore a blurrier shadow. To enable PCSS, fill in the `soft_shadow_size` value in `DirectionalLight`, `PointLight`, or `SpotLight`, as appropriate. This shadow size value represents the size of the light and should be tuned as appropriate for your scene. Higher values result in a wider penumbra (i.e. blurrier shadows). When using PCSS, temporal shadow maps (`ShadowFilteringMethod::Temporal`) are recommended. If you don't use `ShadowFilteringMethod::Temporal` and instead use `ShadowFilteringMethod::Gaussian`, Bevy will use the same technique as `Temporal`, but the result won't vary over time. This produces a rather noisy result. Doing better would likely require downsampling the shadow map, which would be complex and slower (and would require PR #13003 to land first). In addition to PCSS, this commit makes the near Z plane for the shadow map configurable on a per-light basis. Previously, it had been hardcoded to 0.1 meters. This change was necessary to make the point light shadow map in the example look reasonable, as otherwise the shadows appeared far too aliased. A new example, `pcss`, has been added. It demonstrates the percentage-closer soft shadow technique with directional lights, point lights, spot lights, non-temporal operation, and temporal operation. The assets are my original work. Both temporal and non-temporal shadows are rather noisy in the example, and, as mentioned before, this is unavoidable without downsampling the depth buffer, which we can't do yet. Note also that the shadows don't look particularly great for point lights; the example simply isn't an ideal scene for them. Nevertheless, I felt that the benefits of the ability to do a side-by-side comparison of directional and point lights outweighed the unsightliness of the point light shadows in that example, so I kept the point light feature in. Fixes #3631. [*Percentage-closer soft shadows*]: https://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf ## Changelog ### Added * Percentage-closer soft shadows (PCSS) are now supported, allowing shadows to become blurrier as they stretch away from objects. To use them, set the `soft_shadow_size` field in `DirectionalLight`, `PointLight`, or `SpotLight`, as applicable. * The near Z value for shadow maps is now customizable via the `shadow_map_near_z` field in `DirectionalLight`, `PointLight`, and `SpotLight`. ## Screenshots PCSS off:  PCSS on:  --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> |
||
![]() |
09d2292016
|
Add a border to the UI material example (#15120)
# Objective There aren't any examples of how to draw a ui material with borders. ## Solution Add border rendering to the `ui_material` example's shader. ## Showcase <img width="395" alt="bordermat" src="https://github.com/user-attachments/assets/109c59c1-f54b-4542-96f7-acff63f5057f"> --------- Co-authored-by: charlotte <charlotte.c.mcelwain@gmail.com> |
||
![]() |
8ac745ab10
|
UI texture slice texture flipping reimplementation (#15034)
# Objective Fixes #15032 ## Solution Reimplement support for the `flip_x` and `flip_y` fields. This doesn't flip the border geometry, I'm not really sure whether that is desirable or not. Also fixes a bug that was causing the side and center slices to tile incorrectly. ### Testing ``` cargo run --example ui_texture_slice_flip_and_tile ``` ## Showcase <img width="787" alt="nearest" src="https://github.com/user-attachments/assets/bc044bae-1748-42ba-92b5-0500c87264f6"> With tiling need to use nearest filtering to avoid bleeding between the slices. --------- Co-authored-by: Jan Hohenheim <jan@hohenheim.ch> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
d2624765d0
|
Implement animation masks, allowing fine control of the targets that animations affect. (#15013)
This commit adds support for *masks* to the animation graph. A mask is a set of animation targets (bones) that neither a node nor its descendants are allowed to animate. Animation targets can be assigned one or more *mask group*s, which are specific to a single graph. If a node masks out any mask group that an animation target belongs to, animation curves for that target will be ignored during evaluation. The canonical use case for masks is to support characters holding objects. Typically, character animations will contain hand animations in the case that the character's hand is empty. (For example, running animations may close a character's fingers into a fist.) However, when the character is holding an object, the animation must be altered so that the hand grips the object. Bevy currently has no convenient way to handle this. The only workaround that I can see is to have entirely separate animation clips for characters' hands and bodies and keep them in sync, which is burdensome and doesn't match artists' expectations from other engines, which all effectively have support for masks. However, with mask group support, this task is simple. We assign each hand to a mask group and parent all character animations to a node. When a character grasps an object in hand, we position the fingers as appropriate and then enable the mask group for that hand in that node. This allows the character's animations to run normally, while the object remains correctly attached to the hand. Note that even with this PR, we won't have support for running separate animations for a character's hand and the rest of the character. This is because we're missing additive blending: there's no way to combine the two masked animations together properly. I intend that to be a follow-up PR. The major engines all have support for masks, though the workflow varies from engine to engine: * Unity has support for masks [essentially as implemented here], though with layers instead of a tree. However, when using the Mecanim ("Humanoid") feature, precise control over bones is lost in favor of predefined muscle groups. * Unreal has a feature named [*layered blend per bone*]. This allows for separate blend weights for different bones, effectively achieving masks. I believe that the combination of blend nodes and masks make Bevy's animation graph as expressible as that of Unreal, once we have support for additive blending, though you may have to use more nodes than you would in Unreal. Moreover, separating out the concepts of "blend weight" and "which bones this node applies to" seems like a cleaner design than what Unreal has. * Godot's `AnimationTree` has the notion of [*blend filters*], which are essentially the same as masks as implemented in this PR. Additionally, this patch fixes a bug with weight evaluation whereby weights weren't properly propagated down to grandchildren, because the weight evaluation for a node only checked its parent's weight, not its evaluated weight. I considered submitting this as a separate PR, but given that this PR refactors that code entirely to support masks and weights under a unified "evaluated node" concept, I simply included the fix here. A new example, `animation_masks`, has been added. It demonstrates how to toggle masks on and off for specific portions of a skin. This is part of #14395, but I'm going to defer closing that issue until we have additive blending. [essentially as implemented here]: https://docs.unity3d.com/560/Documentation/Manual/class-AvatarMask.html [*layered blend per bone*]: https://dev.epicgames.com/documentation/en-us/unreal-engine/using-layered-animations-in-unreal-engine [*blend filters*]: https://docs.godotengine.org/en/stable/tutorials/animation/animation_tree.html ## Migration Guide * The serialized format of animation graphs has changed with the addition of animation masks. To upgrade animation graph RON files, add `mask` and `mask_groups` fields as appropriate. (They can be safely set to zero.) |
||
![]() |
a4640046fc
|
Adds ShaderStorageBuffer asset (#14663)
Adds a new `Handle<Storage>` asset type that can be used as a render asset, particularly for use with `AsBindGroup`. Closes: #13658 # Objective Allow users to create storage buffers in the main world without having to access the `RenderDevice`. While this resource is technically available, it's bad form to use in the main world and requires mixing rendering details with main world code. Additionally, this makes storage buffers easier to use with `AsBindGroup`, particularly in the following scenarios: - Sharing the same buffers between a compute stage and material shader. We already have examples of this for storage textures (see game of life example) and these changes allow a similar pattern to be used with storage buffers. - Preventing repeated gpu upload (see the previous easier to use `Vec` `AsBindGroup` option). - Allow initializing custom materials using `Default`. Previously, the lack of a `Default` implement for the raw `wgpu::Buffer` type made implementing a `AsBindGroup + Default` bound difficult in the presence of buffers. ## Solution Adds a new `Handle<Storage>` asset type that is prepared into a `GpuStorageBuffer` render asset. This asset can either be initialized with a `Vec<u8>` of properly aligned data or with a size hint. Users can modify the underlying `wgpu::BufferDescriptor` to provide additional usage flags. ## Migration Guide The `AsBindGroup` `storage` attribute has been modified to reference the new `Handle<Storage>` asset instead. Usages of Vec` should be converted into assets instead. --------- Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
![]() |
510fce9af3
|
Allow fog density texture to be scrolled over time with an offset (#14868)
# Objective - The goal of this PR is to make it possible to move the density texture of a `FogVolume` over time in order to create dynamic effects like fog moving in the wind. - You could theoretically move the `FogVolume` itself, but this is not ideal, because the `FogVolume` AABB would eventually leave the area. If you want an area to remain foggy while also creating the impression that the fog is moving in the wind, a scrolling density texture is a better solution. ## Solution - The PR adds a `density_texture_offset` field to the `FogVolume` component. This offset is in the UVW coordinates of the density texture, meaning that a value of `(0.5, 0.0, 0.0)` moves the 3d texture by half along the x-axis. - Values above 1.0 are wrapped, a 1.5 offset is the same as a 0.5 offset. This makes it so that the density texture wraps around on the other side, meaning that a repeating 3d noise texture can seamlessly scroll forever. It also makes it easy to move the density texture over time by simply increasing the offset every frame. ## Testing - A `scrolling_fog` example has been added to demonstrate the feature. It uses the offset to scroll a repeating 3d noise density texture to create the impression of fog moving in the wind. - The camera is looking at a pillar with the sun peaking behind it. This highlights the effect the changing density has on the volumetric lighting interactions. - Temporal anti-aliasing combined with the `jitter` option of `VolumetricFogSettings` is used to improve the quality of the effect. --- ## Showcase https://github.com/user-attachments/assets/3aa50ebd-771c-4c99-ab5d-255c0c3be1a8 |
||
![]() |
bfcb19a871
|
Add example showing how to use SpecializedMeshPipeline (#14370)
# Objective - A lot of mid-level rendering apis are hard to figure out because they don't have any examples - SpecializedMeshPipeline can be really useful in some cases when you want more flexibility than a Material without having to go to low level apis. ## Solution - Add an example showing how to make a custom `SpecializedMeshPipeline`. ## Testing - Did you test these changes? If so, how? - Are there any parts that need more testing? - How can other people (reviewers) test your changes? Is there anything specific they need to know? - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? --- ## Showcase The examples just spawns 3 triangles in a triangle pattern.  --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
20c6bcdba4
|
Allow volumetric fog to be localized to specific, optionally voxelized, regions. (#14099)
Currently, volumetric fog is global and affects the entire scene uniformly. This is inadequate for many use cases, such as local smoke effects. To address this problem, this commit introduces *fog volumes*, which are axis-aligned bounding boxes (AABBs) that specify fog parameters inside their boundaries. Such volumes can also specify a *density texture*, a 3D texture of voxels that specifies the density of the fog at each point. To create a fog volume, add a `FogVolume` component to an entity (which is included in the new `FogVolumeBundle` convenience bundle). Like light probes, a fog volume is conceptually a 1×1×1 cube centered on the origin; a transform can be used to position and resize this region. Many of the fields on the existing `VolumetricFogSettings` have migrated to the new `FogVolume` component. `VolumetricFogSettings` on a camera is still needed to enable volumetric fog. However, by itself `VolumetricFogSettings` is no longer sufficient to enable volumetric fog; a `FogVolume` must be present. Applications that wish to retain the old global fog behavior can simply surround the scene with a large fog volume. By way of implementation, this commit converts the volumetric fog shader from a full-screen shader to one applied to a mesh. The strategy is different depending on whether the camera is inside or outside the fog volume. If the camera is inside the fog volume, the mesh is simply a plane scaled to the viewport, effectively falling back to a full-screen pass. If the camera is outside the fog volume, the mesh is a cube transformed to coincide with the boundaries of the fog volume's AABB. Importantly, in the latter case, only the front faces of the cuboid are rendered. Instead of treating the boundaries of the fog as a sphere centered on the camera position, as we did prior to this patch, we raytrace the far planes of the AABB to determine the portion of each ray contained within the fog volume. We then raymarch in shadow map space as usual. If a density texture is present, we modulate the fixed density value with the trilinearly-interpolated value from that texture. Furthermore, this patch introduces optional jitter to fog volumes, intended for use with TAA. This modifies the position of the ray from frame to frame using interleaved gradient noise, in order to reduce aliasing artifacts. Many implementations of volumetric fog in games use this technique. Note that this patch makes no attempt to write a motion vector; this is because when a view ray intersects multiple voxels there's no single direction of motion. Consequently, fog volumes can have ghosting artifacts, but because fog is "ghostly" by its nature, these artifacts are less objectionable than they would be for opaque objects. A new example, `fog_volumes`, has been added. It demonstrates a single fog volume containing a voxelized representation of the Stanford bunny. The existing `volumetric_fog` example has been updated to use the new local volumetrics API. ## Changelog ### Added * Local `FogVolume`s are now supported, to localize fog to specific regions. They can optionally have 3D density voxel textures for precise control over the distribution of the fog. ### Changed * `VolumetricFogSettings` on a camera no longer enables volumetric fog; instead, it simply enables the processing of `FogVolume`s within the scene. ## Migration Guide * A `FogVolume` is now necessary in order to enable volumetric fog, in addition to `VolumetricFogSettings` on the camera. Existing uses of volumetric fog can be migrated by placing a large `FogVolume` surrounding the scene. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: François Mockers <mockersf@gmail.com> |
||
![]() |
011f71a245
|
Update ui_material example to be a slider instead (#14031)
# Objective - Some people have asked how to do image masking in UI. It's pretty easy to do using a `UiMaterial` assuming you know how to write shaders. ## Solution - Update the ui_material example to show the bevy banner slowly being revealed like a progress bar ## Notes I'm not entirely sure if we want this or not. For people that would be comfortable to use this for their own games they would probably have already figured out how to do it and for people that aren't familiar with shaders this isn't really enough to make an actual slider/progress bar. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
![]() |
44db8b7fac
|
Allow phase items not associated with meshes to be binned. (#14029)
As reported in #14004, many third-party plugins, such as Hanabi, enqueue entities that don't have meshes into render phases. However, the introduction of indirect mode added a dependency on mesh-specific data, breaking this workflow. This is because GPU preprocessing requires that the render phases manage indirect draw parameters, which don't apply to objects that aren't meshes. The existing code skips over binned entities that don't have indirect draw parameters, which causes the rendering to be skipped for such objects. To support this workflow, this commit adds a new field, `non_mesh_items`, to `BinnedRenderPhase`. This field contains a simple list of (bin key, entity) pairs. After drawing batchable and unbatchable objects, the non-mesh items are drawn one after another. Bevy itself doesn't enqueue any items into this list; it exists solely for the application and/or plugins to use. Additionally, this commit switches the asset ID in the standard bin keys to be an untyped asset ID rather than that of a mesh. This allows more flexibility, allowing bins to be keyed off any type of asset. This patch adds a new example, `custom_phase_item`, which simultaneously serves to demonstrate how to use this new feature and to act as a regression test so this doesn't break again. Fixes #14004. ## Changelog ### Added * `BinnedRenderPhase` now contains a `non_mesh_items` field for plugins to add custom items to. |
||
![]() |
4d3f43131e
|
Use a ship in Transform::align example (#13935)
# Objective The documentation for [`Transform::align`](https://docs.rs/bevy/0.14.0-rc.3/bevy/transform/components/struct.Transform.html#method.align) mentions a hypothetical ship model. Showing this concretely would be a nice improvement over using a cube. > For example, if a spaceship model has its nose pointing in the X-direction in its own local coordinates and its dorsal fin pointing in the Y-direction, then align(Dir3::X, v, Dir3::Y, w) will make the spaceship’s nose point in the direction of v, while the dorsal fin does its best to point in the direction w. ## Solution This commit makes the ship less hypothetical by using a kenney ship model in the example. The local axes for the ship needed to change to accommodate the gltf, so the hypothetical in the documentation and this example's local axes don't necessarily match. Docs use `align(Dir3::X, v, Dir3::Y, w)` and this example now uses `(Vec3::NEG_Z, *first, Vec3::X, *second)`. I manually modified the `craft_speederD` Node's `translation` to be 0,0,0 in the gltf file, which means it now differs from kenney's original model. Original ship from: https://kenney.nl/assets/space-kit ## Testing ``` cargo run --example align ```    |
||
![]() |
c50a4d8821
|
Remove unused mip_bias parameter from apply_normal_mapping (#13752)
Mip bias is no longer used here |
||
![]() |
df8ccb8735
|
Implement PBR anisotropy per KHR_materials_anisotropy . (#13450)
This commit implements support for physically-based anisotropy in Bevy's `StandardMaterial`, following the specification for the [`KHR_materials_anisotropy`] glTF extension. [*Anisotropy*] (not to be confused with [anisotropic filtering]) is a PBR feature that allows roughness to vary along the tangent and bitangent directions of a mesh. In effect, this causes the specular light to stretch out into lines instead of a round lobe. This is useful for modeling brushed metal, hair, and similar surfaces. Support for anisotropy is a common feature in major game and graphics engines; Unity, Unreal, Godot, three.js, and Blender all support it to varying degrees. Two new parameters have been added to `StandardMaterial`: `anisotropy_strength` and `anisotropy_rotation`. Anisotropy strength, which ranges from 0 to 1, represents how much the roughness differs between the tangent and the bitangent of the mesh. In effect, it controls how stretched the specular highlight is. Anisotropy rotation allows the roughness direction to differ from the tangent of the model. In addition to these two fixed parameters, an *anisotropy texture* can be supplied. Such a texture should be a 3-channel RGB texture, where the red and green values specify a direction vector using the same conventions as a normal map ([0, 1] color values map to [-1, 1] vector values), and the the blue value represents the strength. This matches the format that the [`KHR_materials_anisotropy`] specification requires. Such textures should be loaded as linear and not sRGB. Note that this texture does consume one additional texture binding in the standard material shader. The glTF loader has been updated to properly parse the `KHR_materials_anisotropy` extension. A new example, `anisotropy`, has been added. This example loads and displays the barn lamp example from the [`glTF-Sample-Assets`] repository. Note that the textures were rather large, so I shrunk them down and converted them to a mixture of JPEG and KTX2 format, in the interests of saving space in the Bevy repository. [*Anisotropy*]: https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel [anisotropic filtering]: https://en.wikipedia.org/wiki/Anisotropic_filtering [`KHR_materials_anisotropy`]: https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md [`glTF-Sample-Assets`]: https://github.com/KhronosGroup/glTF-Sample-Assets/ ## Changelog ### Added * Physically-based anisotropy is now available for materials, which enhances the look of surfaces such as brushed metal or hair. glTF scenes can use the new feature with the `KHR_materials_anisotropy` extension. ## Screenshots With anisotropy:  Without anisotropy:  |
||
![]() |
9b9d3d81cb
|
Normalise matrix naming (#13489)
# Objective - Fixes #10909 - Fixes #8492 ## Solution - Name all matrices `x_from_y`, for example `world_from_view`. ## Testing - I've tested most of the 3D examples. The `lighting` example particularly should hit a lot of the changes and appears to run fine. --- ## Changelog - Renamed matrices across the engine to follow a `y_from_x` naming, making the space conversion more obvious. ## Migration Guide - `Frustum`'s `from_view_projection`, `from_view_projection_custom_far` and `from_view_projection_no_far` were renamed to `from_clip_from_world`, `from_clip_from_world_custom_far` and `from_clip_from_world_no_far`. - `ComputedCameraValues::projection_matrix` was renamed to `clip_from_view`. - `CameraProjection::get_projection_matrix` was renamed to `get_clip_from_view` (this affects implementations on `Projection`, `PerspectiveProjection` and `OrthographicProjection`). - `ViewRangefinder3d::from_view_matrix` was renamed to `from_world_from_view`. - `PreviousViewData`'s members were renamed to `view_from_world` and `clip_from_world`. - `ExtractedView`'s `projection`, `transform` and `view_projection` were renamed to `clip_from_view`, `world_from_view` and `clip_from_world`. - `ViewUniform`'s `view_proj`, `unjittered_view_proj`, `inverse_view_proj`, `view`, `inverse_view`, `projection` and `inverse_projection` were renamed to `clip_from_world`, `unjittered_clip_from_world`, `world_from_clip`, `world_from_view`, `view_from_world`, `clip_from_view` and `view_from_clip`. - `GpuDirectionalCascade::view_projection` was renamed to `clip_from_world`. - `MeshTransforms`' `transform` and `previous_transform` were renamed to `world_from_local` and `previous_world_from_local`. - `MeshUniform`'s `transform`, `previous_transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `previous_world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh` type in WGSL mirrors this, however `transform` and `previous_transform` were named `model` and `previous_model`). - `Mesh2dTransforms::transform` was renamed to `world_from_local`. - `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh2d` type in WGSL mirrors this). - In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and `get_previous_model_matrix` were renamed to `get_world_from_local` and `get_previous_world_from_local`. - In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed to `get_world_from_local`. |
||
![]() |
d26900a9ea
|
add handling of all missing gltf extras: scene, mesh & materials (#13453)
# Objective - fixes #4823 ## Solution As outlined in the discussion in the linked issue as the best current solution, this PR adds specific GltfExtras for - scenes - meshes - materials - As it is , it is not a breaking change, I hesitated to rename the current "GltfExtras" component to "PrimitiveGltfExtras", but that would result in a breaking change and might be a bit confusing as to what "primitive" that refers to. ## Testing - I included a bare-bones example & asset (exported gltf file from Blender) with gltf extras at all the relevant levels : scene, mesh, material --- ## Changelog - adds "SceneGltfExtras" injected at the scene level if any - adds "MeshGltfExtras", injected at the mesh level if any - adds "MaterialGltfExtras", injected at the mesh level if any: ie if a mesh has a material that has gltf extras, the component will be injected there. |
||
![]() |
f398674e51
|
Implement opt-in sharp screen-space reflections for the deferred renderer, with improved raymarching code. (#13418)
This commit, a revamp of #12959, implements screen-space reflections (SSR), which approximate real-time reflections based on raymarching through the depth buffer and copying samples from the final rendered frame. This patch is a relatively minimal implementation of SSR, so as to provide a flexible base on which to customize and build in the future. However, it's based on the production-quality [raymarching code by Tomasz Stachowiak](https://gist.github.com/h3r2tic/9c8356bdaefbe80b1a22ae0aaee192db). For a general basic overview of screen-space reflections, see [1](https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-reflection.html). The raymarching shader uses the basic algorithm of tracing forward in large steps, refining that trace in smaller increments via binary search, and then using the secant method. No temporal filtering or roughness blurring, is performed at all; for this reason, SSR currently only operates on very shiny surfaces. No acceleration via the hierarchical Z-buffer is implemented (though note that https://github.com/bevyengine/bevy/pull/12899 will add the infrastructure for this). Reflections are traced at full resolution, which is often considered slow. All of these improvements and more can be follow-ups. SSR is built on top of the deferred renderer and is currently only supported in that mode. Forward screen-space reflections are possible albeit uncommon (though e.g. *Doom Eternal* uses them); however, they require tracing from the previous frame, which would add complexity. This patch leaves the door open to implementing SSR in the forward rendering path but doesn't itself have such an implementation. Screen-space reflections aren't supported in WebGL 2, because they require sampling from the depth buffer, which Naga can't do because of a bug (`sampler2DShadow` is incorrectly generated instead of `sampler2D`; this is the same reason why depth of field is disabled on that platform). To add screen-space reflections to a camera, use the `ScreenSpaceReflectionsBundle` bundle or the `ScreenSpaceReflectionsSettings` component. In addition to `ScreenSpaceReflectionsSettings`, `DepthPrepass` and `DeferredPrepass` must also be present for the reflections to show up. The `ScreenSpaceReflectionsSettings` component contains several settings that artists can tweak, and also comes with sensible defaults. A new example, `ssr`, has been added. It's loosely based on the [three.js ocean sample](https://threejs.org/examples/webgl_shaders_ocean.html), but all the assets are original. Note that the three.js demo has no screen-space reflections and instead renders a mirror world. In contrast to #12959, this demo tests not only a cube but also a more complex model (the flight helmet). ## Changelog ### Added * Screen-space reflections can be enabled for very smooth surfaces by adding the `ScreenSpaceReflections` component to a camera. Deferred rendering must be enabled for the reflections to appear.   |
||
![]() |
5a1c62faae
|
fix lava emissive strength in depth of field example (#13449)
# Objective - Since #13350 the lava is way too bright  ## Solution - Change the emissive value in the material in the glb file from 20000 to 20 ## Testing - Run the example `depth_of_field` |
||
![]() |
19bfa41768
|
Implement volumetric fog and volumetric lighting, also known as light shafts or god rays. (#13057)
This commit implements a more physically-accurate, but slower, form of fog than the `bevy_pbr::fog` module does. Notably, this *volumetric fog* allows for light beams from directional lights to shine through, creating what is known as *light shafts* or *god rays*. To add volumetric fog to a scene, add `VolumetricFogSettings` to the camera, and add `VolumetricLight` to directional lights that you wish to be volumetric. `VolumetricFogSettings` has numerous settings that allow you to define the accuracy of the simulation, as well as the look of the fog. Currently, only interaction with directional lights that have shadow maps is supported. Note that the overhead of the effect scales directly with the number of directional lights in use, so apply `VolumetricLight` sparingly for the best results. The overall algorithm, which is implemented as a postprocessing effect, is a combination of the techniques described in [Scratchapixel] and [this blog post]. It uses raymarching in screen space, transformed into shadow map space for sampling and combined with physically-based modeling of absorption and scattering. Bevy employs the widely-used [Henyey-Greenstein phase function] to model asymmetry; this essentially allows light shafts to fade into and out of existence as the user views them. Volumetric rendering is a huge subject, and I deliberately kept the scope of this commit small. Possible follow-ups include: 1. Raymarching at a lower resolution. 2. A post-processing blur (especially useful when combined with (1)). 3. Supporting point lights and spot lights. 4. Supporting lights with no shadow maps. 5. Supporting irradiance volumes and reflection probes. 6. Voxel components that reuse the volumetric fog code to create voxel shapes. 7. *Horizon: Zero Dawn*-style clouds. These are all useful, but out of scope of this patch for now, to keep things tidy and easy to review. A new example, `volumetric_fog`, has been added to demonstrate the effect. ## Changelog ### Added * A new component, `VolumetricFog`, is available, to allow for a more physically-accurate, but more resource-intensive, form of fog. * A new component, `VolumetricLight`, can be placed on directional lights to make them interact with `VolumetricFog`. Notably, this allows such lights to emit light shafts/god rays.   [Scratchapixel]: https://www.scratchapixel.com/lessons/3d-basic-rendering/volume-rendering-for-developers/intro-volume-rendering.html [this blog post]: https://www.alexandre-pestana.com/volumetric-lights/ [Henyey-Greenstein phase function]: https://www.pbr-book.org/4ed/Volume_Scattering/Phase_Functions#TheHenyeyndashGreensteinPhaseFunction |
||
![]() |
df31b808c3
|
Implement fast depth of field as a postprocessing effect. (#13009)
This commit implements the [depth of field] effect, simulating the blur of objects out of focus of the virtual lens. Either the [hexagonal bokeh] effect or a faster Gaussian blur may be used. In both cases, the implementation is a simple separable two-pass convolution. This is not the most physically-accurate real-time bokeh technique that exists; Unreal Engine has [a more accurate implementation] of "cinematic depth of field" from 2018. However, it's simple, and most engines provide something similar as a fast option, often called "mobile" depth of field. The general approach is outlined in [a blog post from 2017]. We take advantage of the fact that both Gaussian blurs and hexagonal bokeh blurs are *separable*. This means that their 2D kernels can be reduced to a small number of 1D kernels applied one after another, asymptotically reducing the amount of work that has to be done. Gaussian blurs can be accomplished by blurring horizontally and then vertically, while hexagonal bokeh blurs can be done with a vertical blur plus a diagonal blur, plus two diagonal blurs. In both cases, only two passes are needed. Bokeh requires the first pass to have a second render target and requires two subpasses in the second pass, which decreases its performance relative to the Gaussian blur. The bokeh blur is generally more aesthetically pleasing than the Gaussian blur, as it simulates the effect of a camera more accurately. The shape of the bokeh circles are determined by the number of blades of the aperture. In our case, we use a hexagon, which is usually considered specific to lower-quality cameras. (This is a downside of the fast hexagon approach compared to the higher-quality approaches.) The blur amount is generally specified by the [f-number], which we use to compute the focal length from the film size and FOV. By default, we simulate standard cinematic cameras of f/1 and [Super 35]. The developer can customize these values as desired. A new example has been added to demonstrate depth of field. It allows customization of the mode (Gaussian vs. bokeh), focal distance and f-numbers. The test scene is inspired by a [blog post on depth of field in Unity]; however, the effect is implemented in a completely different way from that blog post, and all the assets (textures, etc.) are original. Bokeh depth of field:  Gaussian depth of field:  No depth of field:  [depth of field]: https://en.wikipedia.org/wiki/Depth_of_field [hexagonal bokeh]: https://colinbarrebrisebois.com/2017/04/18/hexagonal-bokeh-blur-revisited/ [a more accurate implementation]: https://epicgames.ent.box.com/s/s86j70iamxvsuu6j35pilypficznec04 [a blog post from 2017]: https://colinbarrebrisebois.com/2017/04/18/hexagonal-bokeh-blur-revisited/ [f-number]: https://en.wikipedia.org/wiki/F-number [Super 35]: https://en.wikipedia.org/wiki/Super_35 [blog post on depth of field in Unity]: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/ ## Changelog ### Added * A depth of field postprocessing effect is now available, to simulate objects being out of focus of the camera. To use it, add `DepthOfFieldSettings` to an entity containing a `Camera3d` component. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Bram Buurlage <brambuurlage@gmail.com> |
||
![]() |
77ed72bc16
|
Implement clearcoat per the Filament and the KHR_materials_clearcoat specifications. (#13031)
Clearcoat is a separate material layer that represents a thin translucent layer of a material. Examples include (from the [Filament spec]) car paint, soda cans, and lacquered wood. This commit implements support for clearcoat following the Filament and Khronos specifications, marking the beginnings of support for multiple PBR layers in Bevy. The [`KHR_materials_clearcoat`] specification describes the clearcoat support in glTF. In Blender, applying a clearcoat to the Principled BSDF node causes the clearcoat settings to be exported via this extension. As of this commit, Bevy parses and reads the extension data when present in glTF. Note that the `gltf` crate has no support for `KHR_materials_clearcoat`; this patch therefore implements the JSON semantics manually. Clearcoat is integrated with `StandardMaterial`, but the code is behind a series of `#ifdef`s that only activate when clearcoat is present. Additionally, the `pbr_feature_layer_material_textures` Cargo feature must be active in order to enable support for clearcoat factor maps, clearcoat roughness maps, and clearcoat normal maps. This approach mirrors the same pattern used by the existing transmission feature and exists to avoid running out of texture bindings on platforms like WebGL and WebGPU. Note that constant clearcoat factors and roughness values *are* supported in the browser; only the relatively-less-common maps are disabled on those platforms. This patch refactors the lighting code in `StandardMaterial` significantly in order to better support multiple layers in a natural way. That code was due for a refactor in any case, so this is a nice improvement. A new demo, `clearcoat`, has been added. It's based on [the corresponding three.js demo], but all the assets (aside from the skybox and environment map) are my original work. [Filament spec]: https://google.github.io/filament/Filament.html#materialsystem/clearcoatmodel [`KHR_materials_clearcoat`]: https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_clearcoat/README.md [the corresponding three.js demo]: https://threejs.org/examples/webgl_materials_physical_clearcoat.html   ## Changelog ### Added * `StandardMaterial` now supports a clearcoat layer, which represents a thin translucent layer over an underlying material. * The glTF loader now supports the `KHR_materials_clearcoat` extension, representing materials with clearcoat layers. ## Migration Guide * The lighting functions in the `pbr_lighting` WGSL module now have clearcoat parameters, if `STANDARD_MATERIAL_CLEARCOAT` is defined. * The `R` reflection vector parameter has been removed from some lighting functions, as it was unused. |
||
![]() |
088960f597
|
Example with repeated texture (#13176)
# Objective Fixes #11136 . Fixes https://github.com/bevyengine/bevy/pull/11161. ## Solution - Set image sampler with repeated mode for u and v - set uv_transform of StandardMaterial to resizing params ## Testing Got this view on example run  |
||
![]() |
6027890a11
|
move wgsl color operations from bevy_pbr to bevy_render (#13209)
# Objective `bevy_pbr/utils.wgsl` shader file contains mathematical constants and color conversion functions. Both of those should be accessible without enabling `bevy_pbr` feature. For example, tonemapping can be done in non pbr scenario, and it uses color conversion functions. Fixes #13207 ## Solution * Move mathematical constants (such as PI, E) from `bevy_pbr/src/render/utils.wgsl` into `bevy_render/src/maths.wgsl` * Move color conversion functions from `bevy_pbr/src/render/utils.wgsl` into new file `bevy_render/src/color_operations.wgsl` ## Testing Ran multiple examples, checked they are working: * tonemapping * color_grading * 3d_scene * animated_material * deferred_rendering * 3d_shapes * fog * irradiance_volumes * meshlet * parallax_mapping * pbr * reflection_probes * shadow_biases * 2d_gizmos * light_gizmos --- ## Changelog * Moved mathematical constants (such as PI, E) from `bevy_pbr/src/render/utils.wgsl` into `bevy_render/src/maths.wgsl` * Moved color conversion functions from `bevy_pbr/src/render/utils.wgsl` into new file `bevy_render/src/color_operations.wgsl` ## Migration Guide In user's shader code replace usage of mathematical constants from `bevy_pbr::utils` to the usage of the same constants from `bevy_render::maths`. |
||
![]() |
d390420093
|
Implement Auto Exposure plugin (#12792)
# Objective - Add auto exposure/eye adaptation to the bevy render pipeline. - Support features that users might expect from other engines: - Metering masks - Compensation curves - Smooth exposure transitions This PR is based on an implementation I already built for a personal project before https://github.com/bevyengine/bevy/pull/8809 was submitted, so I wasn't able to adopt that PR in the proper way. I've still drawn inspiration from it, so @fintelia should be credited as well. ## Solution An auto exposure compute shader builds a 64 bin histogram of the scene's luminance, and then adjusts the exposure based on that histogram. Using a histogram allows the system to ignore outliers like shadows and specular highlights, and it allows to give more weight to certain areas based on a mask. --- ## Changelog - Added: AutoExposure plugin that allows to adjust a camera's exposure based on it's scene's luminance. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
31835ff76d
|
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). (#12916)
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). This commit introduces a new component, `VisibilityRange`, which allows developers to specify camera distances in which meshes are to be shown and hidden. Hiding meshes happens early in the rendering pipeline, so this feature can be used for level of detail optimization. Additionally, this feature is properly evaluated per-view, so different views can show different levels of detail. This feature differs from proper mesh LODs, which can be implemented later. Engines generally implement true mesh LODs later in the pipeline; they're typically more efficient than HLODs with GPU-driven rendering. However, mesh LODs are more limited than HLODs, because they require the lower levels of detail to be meshes with the same vertex layout and shader (and perhaps the same material) as the original mesh. Games often want to use objects other than meshes to replace distant models, such as *octahedral imposters* or *billboard imposters*. The reason why the feature is called *hierarchical level of detail* is that HLODs can replace multiple meshes with a single mesh when the camera is far away. This can be useful for reducing drawcall count. Note that `VisibilityRange` doesn't automatically propagate down to children; it must be placed on every mesh. Crossfading between different levels of detail is supported, using the standard 4x4 ordered dithering pattern from [1]. The shader code to compute the dithering patterns should be well-optimized. The dithering code is only active when visibility ranges are in use for the mesh in question, so that we don't lose early Z. Cascaded shadow maps show the HLOD level of the view they're associated with. Point light and spot light shadow maps, which have no CSMs, display all HLOD levels that are visible in any view. To support this efficiently and avoid doing visibility checks multiple times, we precalculate all visible HLOD levels for each entity with a `VisibilityRange` during the `check_visibility_range` system. A new example, `visibility_range`, has been added to the tree, as well as a new low-poly version of the flight helmet model to go with it. It demonstrates use of the visibility range feature to provide levels of detail. [1]: https://en.wikipedia.org/wiki/Ordered_dithering#Threshold_map [^1]: Unreal doesn't have a feature that exactly corresponds to visibility ranges, but Unreal's HLOD system serves roughly the same purpose. ## Changelog ### Added * A new `VisibilityRange` component is available to conditionally enable entity visibility at camera distances, with optional crossfade support. This can be used to implement different levels of detail (LODs). ## Screenshots High-poly model:  Low-poly model up close:  Crossfading between the two:  --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
961b24deaf
|
Implement filmic color grading. (#13121)
This commit expands Bevy's existing tonemapping feature to a complete set of filmic color grading tools, matching those of engines like Unity, Unreal, and Godot. The following features are supported: * White point adjustment. This is inspired by Unity's implementation of the feature, but simplified and optimized. *Temperature* and *tint* control the adjustments to the *x* and *y* chromaticity values of [CIE 1931]. Following Unity, the adjustments are made relative to the [D65 standard illuminant] in the [LMS color space]. * Hue rotation. This simply converts the RGB value to [HSV], alters the hue, and converts back. * Color correction. This allows the *gamma*, *gain*, and *lift* values to be adjusted according to the standard [ASC CDL combined function]. * Separate color correction for shadows, midtones, and highlights. Blender's source code was used as a reference for the implementation of this. The midtone ranges can be adjusted by the user. To avoid abrupt color changes, a small crossfade is used between the different sections of the image, again following Blender's formulas. A new example, `color_grading`, has been added, offering a GUI to change all the color grading settings. It uses the same test scene as the existing `tonemapping` example, which has been factored out into a shared glTF scene. [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space [D65 standard illuminant]: https://en.wikipedia.org/wiki/Standard_illuminant#Illuminant_series_D [LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space [HSV]: https://en.wikipedia.org/wiki/HSL_and_HSV [ASC CDL combined function]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function ## Changelog ### Added * Many new filmic color grading options have been added to the `ColorGrading` component. ## Migration Guide * `ColorGrading::gamma` and `ColorGrading::pre_saturation` are now set separately for the `shadows`, `midtones`, and `highlights` sections. You can migrate code with the `ColorGrading::all_sections` and `ColorGrading::all_sections_mut` functions, which access and/or update all sections at once. * `ColorGrading::post_saturation` and `ColorGrading::exposure` are now fields of `ColorGrading::global`. ## Screenshots   |
||
![]() |
6d6810c90d
|
Meshlet continuous LOD (#12755)
Adds a basic level of detail system to meshlets. An extremely brief summary is as follows: * In `from_mesh.rs`, once we've built the first level of clusters, we group clusters, simplify the new mega-clusters, and then split the simplified groups back into regular sized clusters. Repeat several times (ideally until you can't anymore). This forms a directed acyclic graph (DAG), where the children are the meshlets from the previous level, and the parents are the more simplified versions of their children. The leaf nodes are meshlets formed from the original mesh. * In `cull_meshlets.wgsl`, each cluster selects whether to render or not based on the LOD bounding sphere (different than the culling bounding sphere) of the current meshlet, the LOD bounding sphere of its parent (the meshlet group from simplification), and the simplification error relative to its children of both the current meshlet and its parent meshlet. This kind of breaks two pass occlusion culling, which will be fixed in a future PR by using an HZB from the previous frame to get the initial list of occluders. Many, _many_ improvements to be done in the future https://github.com/bevyengine/bevy/issues/11518, not least of which is code quality and speed. I don't even expect this to work on many types of input meshes. This is just a basic implementation/draft for collaboration. Arguable how much we want to do in this PR, I'll leave that up to maintainers. I've erred on the side of "as basic as possible". References: * Slides 27-77 (video available on youtube) https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf * https://blog.traverseresearch.nl/creating-a-directed-acyclic-graph-from-a-mesh-1329e57286e5 * https://jglrxavpok.github.io/2024/01/19/recreating-nanite-lod-generation.html, https://jglrxavpok.github.io/2024/03/12/recreating-nanite-faster-lod-generation.html, https://jglrxavpok.github.io/2024/04/02/recreating-nanite-runtime-lod-selection.html, and https://github.com/jglrxavpok/Carrot * https://github.com/gents83/INOX/tree/master/crates/plugins/binarizer/src * https://cs418.cs.illinois.edu/website/text/nanite.html   --------- Co-authored-by: Ricky Taylor <rickytaylor26@gmail.com> Co-authored-by: vero <email@atlasdostal.com> Co-authored-by: François <mockersf@gmail.com> Co-authored-by: atlas dostal <rodol@rivalrebels.com> Co-authored-by: Patrick Walton <pcwalton@mimiga.net> |
||
![]() |
de3ec47f3f
|
Fix example game of life (#12897)
# Objective - Example `compute_shader_game_of_life` is random and not following the rules of the game of life: at each steps, it randomly reads some pixel of the current step and some of the previous step instead of only from the previous step - Fixes #9353 ## Solution - Adopted from #9678 - Added a switch of the texture displayed every frame otherwise the game of life looks wrong - Added a way to display the texture bigger so that I could manually check everything was right --------- Co-authored-by: Sludge <96552222+SludgePhD@users.noreply.github.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
![]() |
08b41878d7
|
Add gpu readback example (#12877)
# Objective
- It's pretty common for users to want to read data back from the gpu
and into the main world
## Solution
- Add a simple example that shows how to read data back from the gpu and
send it to the main world using a channel.
- The example is largely based on this wgpu example but adapted to bevy
-
|