d5d799cbb6
19 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
9a3baa7dc0 |
Update AnimatableProperty documentation, reduce crate dependencies (#18543)
## Objective - Remove the second to last `bevy_animation` dependency on `bevy_render`. - Update some older documentation to reflect later changes to the crate. ## Narrative I'm trying to make `bevy_animation` independent of `bevy_render`. The documentation for `bevy_animation::AnimatableProperty` is one of the last few dependencies. It uses `bevy_render::Projection` to demonstrate animating an arbitrary value, but I thought that could be easily swapped for something else. I then realised that the rest of the documentation was a bit out of date. Originally `AnimatableProperty` was the only way to animate a property and so the documentation was quite detailed. But over time the crate has gained more documentation and other ways to hook up properties, leaving parts of the docs stale or covered elsewhere. So I've slimmed down the `AnimatableProperty` docs and added a link to the main alternative (`animated_field`). I've probably swung too far towards brevity, so I can build them back up if preferred. Also the example is kinda contrived and doesn't show the range of `AnimatableProperty`, like being able to choose different components. And finally the memes might be a bit stale? ## Showcase  ## Testing ``` cargo doc -p bevy_animation --no-deps --all-features cargo test -p bevy_animation --doc --all-features ``` |
||
![]() |
7e45e8635c |
Reduce dependencies on bevy_render by preferring bevy_mesh imports (#18437)
Reduce dependencies on `bevy_render` by preferring `bevy_mesh` imports over `bevy_render` re-exports. ```diff - use bevy_render::mesh::Mesh; + use bevy_mesh::Mesh; ``` This is intended to help with #18423 (render crate restructure). Affects `bevy_gltf`, `bevy_animation` and `bevy_picking`. As part of #18423, I'm assuming there'll be a push to make crates less dependent on the big render crates. This PR seemed like a small and safe step along that path - it only changes imports and makes the `bevy_mesh` crate dependency explicit in `Cargo.toml`. Any remaining dependencies on `bevy_render` are true dependencies. ``` cargo run --example testbed_3d cargo run --example mesh_picking ``` |
||
![]() |
9bc0ae33c3
|
Move hashbrown and foldhash out of bevy_utils (#17460)
# Objective - Contributes to #16877 ## Solution - Moved `hashbrown`, `foldhash`, and related types out of `bevy_utils` and into `bevy_platform_support` - Refactored the above to match the layout of these types in `std`. - Updated crates as required. ## Testing - CI --- ## Migration Guide - The following items were moved out of `bevy_utils` and into `bevy_platform_support::hash`: - `FixedState` - `DefaultHasher` - `RandomState` - `FixedHasher` - `Hashed` - `PassHash` - `PassHasher` - `NoOpHash` - The following items were moved out of `bevy_utils` and into `bevy_platform_support::collections`: - `HashMap` - `HashSet` - `bevy_utils::hashbrown` has been removed. Instead, import from `bevy_platform_support::collections` _or_ take a dependency on `hashbrown` directly. - `bevy_utils::Entry` has been removed. Instead, import from `bevy_platform_support::collections::hash_map` or `bevy_platform_support::collections::hash_set` as appropriate. - All of the above equally apply to `bevy::utils` and `bevy::platform_support`. ## Notes - I left `PreHashMap`, `PreHashMapExt`, and `TypeIdMap` in `bevy_utils` as they might be candidates for micro-crating. They can always be moved into `bevy_platform_support` at a later date if desired. |
||
![]() |
5f0674f6c3
|
Allow tuple structs in animated_field! macro (#17234)
# Objective Allow tuple structs in the animated_field macro. - for example `animated_field!(MyTupleStruct::0)`. Fixes #16736 - This issue was partially fixed in #16747, where support for tuple structs was added to `AnimatedField::new_unchecked`. ## Solution Change the designator for `$field` in the macro from `ident` to `tt`. ## Testing Expanded the doc test on `animated_field!` to include an example with a tuple struct. |
||
![]() |
bed9ddf3ce
|
Refactor and simplify custom projections (#17063)
# Objective - Fixes https://github.com/bevyengine/bevy/issues/16556 - Closes https://github.com/bevyengine/bevy/issues/11807 ## Solution - Simplify custom projections by using a single source of truth - `Projection`, removing all existing generic systems and types. - Existing perspective and orthographic structs are no longer components - I could dissolve these to simplify further, but keeping them around was the fast way to implement this. - Instead of generics, introduce a third variant, with a trait object. - Do an object safety dance with an intermediate trait to allow cloning boxed camera projections. This is a normal rust polymorphism papercut. You can do this with a crate but a manual impl is short and sweet. ## Testing - Added a custom projection example --- ## Showcase - Custom projections and projection handling has been simplified. - Projection systems are no longer generic, with the potential for many different projection components on the same camera. - Instead `Projection` is now the single source of truth for camera projections, and is the only projection component. - Custom projections are still supported, and can be constructed with `Projection::custom()`. ## Migration Guide - `PerspectiveProjection` and `OrthographicProjection` are no longer components. Use `Projection` instead. - Custom projections should no longer be inserted as a component. Instead, simply set the custom projection as a value of `Projection` with `Projection::custom()`. |
||
![]() |
d4b07a5114
|
Move Name out of bevy_core (#16894)
# Objective - Contributes to #16892 ## Solution - Moved `Name` and `NameOrEntity` into `bevy_ecs::name`, and added them to the prelude. ## Testing - CI ## Migration Guide If you were importing `Name` or `NameOrEntity` from `bevy_core`, instead import from `bevy_ecs::name`. --------- Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com> |
||
![]() |
2994e53d82
|
Support tuple structs in AnimatedField (#16747)
# Objective Partially fixes #16736. ## Solution `AnimatedField::new_unchecked` now supports tuple struct fields. `animated_field!` is unchanged. ## Testing Added a test to make sure common and simple uses of `AnimatedField::new_unchecked` with tuple structs don't panic. --------- Co-authored-by: yonzebu <yonzebu@gmail.com> |
||
![]() |
a35811d088
|
Add Immutable Component Support (#16372)
# Objective - Fixes #16208 ## Solution - Added an associated type to `Component`, `Mutability`, which flags whether a component is mutable, or immutable. If `Mutability= Mutable`, the component is mutable. If `Mutability= Immutable`, the component is immutable. - Updated `derive_component` to default to mutable unless an `#[component(immutable)]` attribute is added. - Updated `ReflectComponent` to check if a component is mutable and, if not, panic when attempting to mutate. ## Testing - CI - `immutable_components` example. --- ## Showcase Users can now mark a component as `#[component(immutable)]` to prevent safe mutation of a component while it is attached to an entity: ```rust #[derive(Component)] #[component(immutable)] struct Foo { // ... } ``` This prevents creating an exclusive reference to the component while it is attached to an entity. This is particularly powerful when combined with component hooks, as you can now fully track a component's value, ensuring whatever invariants you desire are upheld. Before this would be done my making a component private, and manually creating a `QueryData` implementation which only permitted read access. <details> <summary>Using immutable components as an index</summary> ```rust /// This is an example of a component like [`Name`](bevy::prelude::Name), but immutable. #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Component)] #[component( immutable, on_insert = on_insert_name, on_replace = on_replace_name, )] pub struct Name(pub &'static str); /// This index allows for O(1) lookups of an [`Entity`] by its [`Name`]. #[derive(Resource, Default)] struct NameIndex { name_to_entity: HashMap<Name, Entity>, } impl NameIndex { fn get_entity(&self, name: &'static str) -> Option<Entity> { self.name_to_entity.get(&Name(name)).copied() } } fn on_insert_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) { let Some(&name) = world.entity(entity).get::<Name>() else { unreachable!() }; let Some(mut index) = world.get_resource_mut::<NameIndex>() else { return; }; index.name_to_entity.insert(name, entity); } fn on_replace_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) { let Some(&name) = world.entity(entity).get::<Name>() else { unreachable!() }; let Some(mut index) = world.get_resource_mut::<NameIndex>() else { return; }; index.name_to_entity.remove(&name); } // Setup our name index world.init_resource::<NameIndex>(); // Spawn some entities! let alyssa = world.spawn(Name("Alyssa")).id(); let javier = world.spawn(Name("Javier")).id(); // Check our index let index = world.resource::<NameIndex>(); assert_eq!(index.get_entity("Alyssa"), Some(alyssa)); assert_eq!(index.get_entity("Javier"), Some(javier)); // Changing the name of an entity is also fully capture by our index world.entity_mut(javier).insert(Name("Steven")); // Javier changed their name to Steven let steven = javier; // Check our index let index = world.resource::<NameIndex>(); assert_eq!(index.get_entity("Javier"), None); assert_eq!(index.get_entity("Steven"), Some(steven)); ``` </details> Additionally, users can use `Component<Mutability = ...>` in trait bounds to enforce that a component _is_ mutable or _is_ immutable. When using `Component` as a trait bound without specifying `Mutability`, any component is applicable. However, methods which only work on mutable or immutable components are unavailable, since the compiler must be pessimistic about the type. ## Migration Guide - When implementing `Component` manually, you must now provide a type for `Mutability`. The type `Mutable` provides equivalent behaviour to earlier versions of `Component`: ```rust impl Component for Foo { type Mutability = Mutable; // ... } ``` - When working with generic components, you may need to specify that your generic parameter implements `Component<Mutability = Mutable>` rather than `Component` if you require mutable access to said component. - The entity entry API has had to have some changes made to minimise friction when working with immutable components. Methods which previously returned a `Mut<T>` will now typically return an `OccupiedEntry<T>` instead, requiring you to add an `into_mut()` to get the `Mut<T>` item again. ## Draft Release Notes Components can now be made immutable while stored within the ECS. Components are the fundamental unit of data within an ECS, and Bevy provides a number of ways to work with them that align with Rust's rules around ownership and borrowing. One part of this is hooks, which allow for defining custom behavior at key points in a component's lifecycle, such as addition and removal. However, there is currently no way to respond to _mutation_ of a component using hooks. The reasons for this are quite technical, but to summarize, their addition poses a significant challenge to Bevy's core promises around performance. Without mutation hooks, it's relatively trivial to modify a component in such a way that breaks invariants it intends to uphold. For example, you can use `core::mem::swap` to swap the components of two entities, bypassing the insertion and removal hooks. This means the only way to react to this modification is via change detection in a system, which then begs the question of what happens _between_ that alteration and the next run of that system? Alternatively, you could make your component private to prevent mutation, but now you need to provide commands and a custom `QueryData` implementation to allow users to interact with your component at all. Immutable components solve this problem by preventing the creation of an exclusive reference to the component entirely. Without an exclusive reference, the only way to modify an immutable component is via removal or replacement, which is fully captured by component hooks. To make a component immutable, simply add `#[component(immutable)]`: ```rust #[derive(Component)] #[component(immutable)] struct Foo { // ... } ``` When implementing `Component` manually, there is an associated type `Mutability` which controls this behavior: ```rust impl Component for Foo { type Mutability = Mutable; // ... } ``` Note that this means when working with generic components, you may need to specify that a component is mutable to gain access to certain methods: ```rust // Before fn bar<C: Component>() { // ... } // After fn bar<C: Component<Mutability = Mutable>>() { // ... } ``` With this new tool, creating index components, or caching data on an entity should be more user friendly, allowing libraries to provide APIs relying on components and hooks to uphold their invariants. ## Notes - ~~I've done my best to implement this feature, but I'm not happy with how reflection has turned out. If any reflection SMEs know a way to improve this situation I'd greatly appreciate it.~~ There is an outstanding issue around the fallibility of mutable methods on `ReflectComponent`, but the DX is largely unchanged from `main` now. - I've attempted to prevent all safe mutable access to a component that does not implement `Component<Mutability = Mutable>`, but there may still be some methods I have missed. Please indicate so and I will address them, as they are bugs. - Unsafe is an escape hatch I am _not_ attempting to prevent. Whatever you do with unsafe is between you and your compiler. - I am marking this PR as ready, but I suspect it will undergo fairly major revisions based on SME feedback. - I've marked this PR as _Uncontroversial_ based on the feature, not the implementation. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: Nuutti Kotivuori <naked@iki.fi> |
||
![]() |
af10aa38aa
|
AnimatedField and Rework Evaluators (#16484)
# Objective Animating component fields requires too much boilerplate at the moment: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = TextFont; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.font_size) } } animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0] .into_iter() .zip([24.0, 80.0, 24.0, 80.0, 24.0, 80.0, 24.0]), ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("should be able to build translation curve because we pass in valid samples"), ); ``` ## Solution This adds `AnimatedField` and an `animated_field!` macro, enabling the following: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableCurve::new( animated_field!(TextFont::font_size), AnimatableKeyframeCurve::new( [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0] .into_iter() .zip([24.0, 80.0, 24.0, 80.0, 24.0, 80.0, 24.0]), ) .expect( "should be able to build translation curve because we pass in valid samples", ), ), ); ``` This required reworking the internals a bit, namely stripping out a lot of the `Reflect` usage, as that implementation was fundamentally incompatible with the `AnimatedField` pattern. `Reflect` was being used in this context just to downcast traits. But we can get downcasting behavior without the `Reflect` requirement by implementing `Downcast` for `AnimationCurveEvaluator`. This also reworks "evaluator identity" to support either a (Component / Field) pair, or a TypeId. This allows properties to reuse evaluators, even if they have different accessor methods. The "contract" here is that for a given (Component / Field) pair, the accessor will return the same value. Fields are identified by their Reflect-ed field index. The (TypeId, usize) is prehashed and cached to optimize for lookup speed. This removes the built-in hard-coded TranslationCurve / RotationCurve / ScaleCurve in favor of AnimatableField. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
7477928f13
|
Use normal constructors for EasingCurve, FunctionCurve, ConstantCurve (#16367)
# Objective We currently use special "floating" constructors for `EasingCurve`, `FunctionCurve`, and `ConstantCurve` (ex: `easing_curve`). This erases the type being created (and in general "what is happening" structurally), for very minimal ergonomics improvements. With rare exceptions, we prefer normal `X::new()` constructors over floating `x()` constructors in Bevy. I don't think this use case merits special casing here. ## Solution Add `EasingCurve::new()`, use normal constructors everywhere, and remove the floating constructors. I think this should land in 0.15 in the interest of not breaking people later. |
||
![]() |
9beb1d96e7
|
Incorporate all node weights in additive blending (#16279)
# Objective In the existing implementation, additive blending effectively treats the node with least index specially by basically forcing its weight to be `1.0` regardless of what its computed weight would be (based on the weights in the `AnimationGraph` and `AnimationPlayer`). Arguably this makes some amount of sense, because the "base" animation is often one which was not authored to be used additively, meaning that its sampled values are interpreted absolutely rather than as deltas. However, this also leads to strange behavior with respect to animation masks: if the "base" animation is masked out on some target, then the next node is treated as the "base" animation, despite the fact that it would normally be interpreted additively, and the weight of that animation is thrown away as a result. This is all kind of weird and revolves around special treatment (if the behavior is even really intentional in the first place). From a mathematical standpoint, there is nothing special about how the "base" animation must be treated other than having a weight of 1.0 under an `Add` node, which is something that the user can do without relying on some bizarre corner-case behavior of the animation system — this is the only present situation under which weights are discarded. This PR changes this behavior so that the weight of every node is incorporated. In other words, for an animation graph that looks like this: ```text ┌───────────────┐ │Base clip ┼──┐ │ 0.5 │ │ └───────────────┘ │ ┌───────────────┐ │ ┌───────────────┐ ┌────┐ │Additive clip 1┼──┼─►┤Additive blend ┼────►│Root│ │ 0.1 │ │ │ 1.0 │ └────┘ └───────────────┘ │ └───────────────┘ ┌───────────────┐ │ │Additive clip 2┼──┘ │ 0.2 │ └───────────────┘ ``` Previously, the result would have been ```text base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2 ``` whereas now it would be ```text 0.5 * base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2 ``` and in the scenario where `base_clip` is masked out: ```text additive_clip_1 + 0.2 * additive_clip_2 ``` vs. ```text 0.1 * additive_clip_1 + 0.2 * additive_clip_2 ``` ## Solution For background, the way that the additive blending procedure works is something like this: - During graph traversal, the node values and weights of the children are pushed onto the evaluator `stack`. The traversal order guarantees that the item with least node index will be on top. - Once we reach the `Add` node itself, we start popping off the `stack` and into the evaluator's `blend_register`, which is an accumulator holding up to one weight-value pair: - If the `blend_register` is empty, it is filled using data from the top of the `stack`. - Otherwise, the `blend_register` is combined with data popped from the `stack` and updated. In the example above, the additive blending steps would look like this (with the pre-existing implementation): 1. The `blend_register` is empty, so we pop `(base_clip, 0.5)` from the top of the `stack` and put it in. Now the value of the `blend_register` is `(base_clip, 0.5)`. 2. The `blend_register` is non-empty: we pop `(additive_clip_1, 0.1)` from the top of the `stack` and combine it additively with the value in the `blend_register`, forming `(base_clip + 0.1 * additive_clip_1, 0.6)` in the `blend_register` (the carried weight value goes unused). 3. The `blend_register` is non-empty: we pop `(additive_clip_2, 0.2)` from the top of the `stack` and combine it additively with the value in the `blend_register`, forming `(base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2, 0.8)` in the `blend_register`. The solution in this PR changes step 1: the `base_clip` is multiplied by its weight as it is added to the `blend_register` in the first place, yielding `0.5 * base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2` as the final result. ### Note for reviewers It might be tempting to look at the code, which contains a segment that looks like this: ```rust if additive { current_value = A::blend( [ BlendInput { weight: 1.0, // <-- value: current_value, additive: true, }, BlendInput { weight: weight_to_blend, value: value_to_blend, additive: true, }, ] .into_iter(), ); } ``` and conclude that the explicit value of `1.0` is responsible for overwriting the weight of the base animation. This is incorrect. Rather, this additive blend has to be written this way because it is multiplying the *existing value in the blend register* by 1 (i.e. not doing anything) before adding the next value to it. Changing this to another quantity (e.g. the existing weight) would cause the value in the blend register to be spuriously multiplied down. ## Testing Tested on `animation_masks` example. Checked `morph_weights` example as well. ## Migration Guide I will write a migration guide later if this change is not included in 0.15. |
||
![]() |
a06802a66e
|
Make AnimatableCurve::curve public (#15831)
# Objective The other `Curve -> AnimationCurve` wrappers allow public access to the inner curve, so this one should as well. ## Solution Made the field public. Instances will still need to be constructed using the (more ergonomic) `from_curve` method, which infers the phantom type for the user. |
||
![]() |
42e0771633
|
Fix additive blending of quaternions (#15662)
# Objective Fixes #13832 ## Solution Additively blend quaternions like this: ```rust rotation = Quat::slerp(Quat::IDENTITY, incoming_rotation, weight) * rotation; ``` ## Testing Ran `animation_masks`, which behaves the same as before. (In the context of an animation being blended only onto the base pose, there is no difference.) We should create some examples that actually exercise more of the capabilities of the `AnimationGraph` so that issues like this can become more visible in general. (On the other hand, I'm quite certain this was wrong before.) ## Migration Guide This PR changes the implementation of `Quat: Animatable`, which was not used internally by Bevy prior to this release version. If you relied on the old behavior of additive quaternion blending in manual applications, that code will have to be updated, as the old behavior was incorrect. |
||
![]() |
0094bcbc07
|
Implement additive blending for animation graphs. (#15631)
*Additive blending* is an ubiquitous feature in game engines that allows animations to be concatenated instead of blended. The canonical use case is to allow a character to hold a weapon while performing arbitrary poses. For example, if you had a character that needed to be able to walk or run while attacking with a weapon, the typical workflow is to have an additive blend node that combines walking and running animation clips with an animation clip of one of the limbs performing a weapon attack animation. This commit adds support for additive blending to Bevy. It builds on top of the flexible infrastructure in #15589 and introduces a new type of node, the *add node*. Like blend nodes, add nodes combine the animations of their children according to their weights. Unlike blend nodes, however, add nodes don't normalize the weights to 1.0. The `animation_masks` example has been overhauled to demonstrate the use of additive blending in combination with masks. There are now controls to choose an animation clip for every limb of the fox individually. This patch also fixes a bug whereby masks were incorrectly accumulated with `insert()` during the graph threading phase, which could cause corruption of computed masks in some cases. Note that the `clip` field has been replaced with an `AnimationNodeType` enum, which breaks `animgraph.ron` files. The `Fox.animgraph.ron` asset has been updated to the new format. Closes #14395. ## Showcase https://github.com/user-attachments/assets/52dfe05f-fdb3-477a-9462-ec150f93df33 ## Migration Guide * The `animgraph.ron` format has changed to accommodate the new *additive blending* feature. You'll need to change `clip` fields to instances of the new `AnimationNodeType` enum. |
||
![]() |
2530f262f5
|
Remove bevy_animation dependency on bevy_text (#15642)
# Objective - Fixes #15640 ## Solution - Do it ## Testing - ran many_foxes |
||
![]() |
528ca4f95e
|
Eliminate redundant clamping from sample-interpolated curves (#15620)
# Objective Currently, sample-interpolated curves (such as those used by the glTF loader for animations) do unnecessary extra work when `sample_clamped` is called, since their implementations of `sample_unchecked` are already clamped. Eliminating this redundant sampling is a small, easy performance win which doesn't compromise on the animation system's internal usage of `sample_clamped`, which guarantees that it never samples curves out-of-bounds. ## Solution For sample-interpolated curves, define `sample_clamped` in the way `sample_unchecked` is currently defined, and then redirect `sample_unchecked` to `sample_clamped`. This is arguably a more idiomatic way of using the `cores` as well, which is nice. ## Testing Ran `many_foxes` to make sure I didn't break anything. |
||
![]() |
ca8dd06146
|
Impose a more sensible ordering for animation graph evaluation. (#15589)
This is an updated version of #15530. Review comments were addressed. This commit changes the animation graph evaluation to be operate in a more sensible order and updates the semantics of blend nodes to conform to [the animation composition RFC]. Prior to this patch, a node graph like this: ``` ┌─────┐ │ │ │ 1 │ │ │ └──┬──┘ │ ┌───────┴───────┐ │ │ ▼ ▼ ┌─────┐ ┌─────┐ │ │ │ │ │ 2 │ │ 3 │ │ │ │ │ └──┬──┘ └──┬──┘ │ │ ┌───┴───┐ ┌───┴───┐ │ │ │ │ ▼ ▼ ▼ ▼ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ │ 4 │ │ 6 │ │ 5 │ │ 7 │ │ │ │ │ │ │ │ │ └─────┘ └─────┘ └─────┘ └─────┘ ``` Would be evaluated as (((4 ⊕ 5) ⊕ 6) ⊕ 7), with the blend (lerp/slerp) operation notated as ⊕. As quaternion multiplication isn't commutative, this is very counterintuitive and will especially lead to trouble with the forthcoming additive blending feature (#15198). This patch fixes the issue by changing the evaluation order to postorder, with children of a node evaluated in ascending order by node index. To do so, this patch revamps `AnimationCurve` to be based on an *evaluation stack* and a *blend register*. During target evaluation, the graph evaluator traverses the graph in postorder. When encountering a clip node, the evaluator pushes the possibly-interpolated value onto the evaluation stack. When encountering a blend node, the evaluator pops values off the stack into the blend register, accumulating weights as appropriate. When the graph is completely evaluated, the top element on the stack is *committed* to the property of the component. A new system, the *graph threading* system, is added in order to cache the sorted postorder traversal to avoid the overhead of sorting children at animation evaluation time. Mask evaluation has been moved to this system so that the graph only has to be traversed at most once per frame. Unlike the `ActiveAnimation` list, the *threaded graph* is cached from frame to frame and only has to be regenerated when the animation graph asset changes. This patch currently regresses the `animate_target` performance in `many_foxes` by around 50%, resulting in an FPS loss of about 2-3 FPS. I'd argue that this is an acceptable price to pay for a much more intuitive system. In the future, we can mitigate the regression with a fast path that avoids consulting the graph if only one animation is playing. However, in the interest of keeping this patch simple, I didn't do so here. [the animation composition RFC]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md # Objective - Describe the objective or issue this PR addresses. - If you're fixing a specific issue, say "Fixes #X". ## Solution - Describe the solution used to achieve the objective above. ## Testing - Did you test these changes? If so, how? - Are there any parts that need more testing? - How can other people (reviewers) test your changes? Is there anything specific they need to know? - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? --- ## Showcase > This section is optional. If this PR does not include a visual change or does not add a new feature, you can delete this section. - Help others understand the result of this PR by showcasing your awesome work! - If this PR adds a new feature or public API, consider adding a brief pseudo-code snippet of it in action - If this PR includes a visual change, consider adding a screenshot, GIF, or video - If you want, you could even include a before/after comparison! - If the Migration Guide adequately covers the changes, you can delete this section While a showcase should aim to be brief and digestible, you can use a toggleable section to save space on longer showcases: <details> <summary>Click to view showcase</summary> ```rust println!("My super cool code."); ``` </details> ## Migration Guide > This section is optional. If there are no breaking changes, you can delete this section. - If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes - Simply adding new functionality is not a breaking change. - Fixing behavior that was definitely a bug, rather than a questionable design choice is not a breaking change. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
587a508ef9
|
Remove TransformCurve (#15598)
# Objective It is somewhat unlikely we will actually be able to support `TransformCurve` (introduced in #15434) after the `AnimationGraph` evaluation order changes in the immediate future. This is because correctly blending overlapping animation properties is nontrivial, and `Transform` overlaps with all of its own fields. We could still potentially create something like this in the future, but it's likely to require significant design and implementation work. By way of contrast, the single-property wrappers `TranslationCurve`, `ScaleCurve`, and `RotationCurve` should work perfectly fine, since they are non-overlapping. In this version release, creating `TransformCurve` in userspace is also quite easy if desired (see the deletions from this PR). ## Solution Delete `TransformCurve`. ## Migration Guide There is no released version that contains this, but we should make sure that `TransformCurve` is excluded from the release notes for #15434 if we merge this pull request. |
||
![]() |
429987ebf8
|
Curve-based animation (#15434)
# Objective This PR extends and reworks the material from #15282 by allowing arbitrary curves to be used by the animation system to animate arbitrary properties. The goals of this work are to: - Allow far greater flexibility in how animations are allowed to be defined in order to be used with `bevy_animation`. - Delegate responsibility over keyframe interpolation to `bevy_math` and the `Curve` libraries and reduce reliance on keyframes in animation definitions generally. - Move away from allowing the glTF spec to completely define animations on a mechanical level. ## Solution ### Overview At a high level, curves have been incorporated into the animation system using the `AnimationCurve` trait (closely related to what was `Keyframes`). From the top down: 1. In `animate_targets`, animations are driven by `VariableCurve`, which is now a thin wrapper around a `Box<dyn AnimationCurve>`. 2. `AnimationCurve` is something built out of a `Curve`, and it tells the animation system how to use the curve's output to actually mutate component properties. The trait looks like this: ```rust /// A low-level trait that provides control over how curves are actually applied to entities /// by the animation system. /// /// Typically, this will not need to be implemented manually, since it is automatically /// implemented by [`AnimatableCurve`] and other curves used by the animation system /// (e.g. those that animate parts of transforms or morph weights). However, this can be /// implemented manually when `AnimatableCurve` is not sufficiently expressive. /// /// In many respects, this behaves like a type-erased form of [`Curve`], where the output /// type of the curve is remembered only in the components that are mutated in the /// implementation of [`apply`]. /// /// [`apply`]: AnimationCurve::apply pub trait AnimationCurve: Reflect + Debug + Send + Sync { /// Returns a boxed clone of this value. fn clone_value(&self) -> Box<dyn AnimationCurve>; /// The range of times for which this animation is defined. fn domain(&self) -> Interval; /// Write the value of sampling this curve at time `t` into `transform` or `entity`, /// as appropriate, interpolating between the existing value and the sampled value /// using the given `weight`. fn apply<'a>( &self, t: f32, transform: Option<Mut<'a, Transform>>, entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>, weight: f32, ) -> Result<(), AnimationEvaluationError>; } ``` 3. The conversion process from a `Curve` to an `AnimationCurve` involves using wrappers which communicate the intent to animate a particular property. For example, here is `TranslationCurve`, which wraps a `Curve<Vec3>` and uses it to animate `Transform::translation`: ```rust /// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates /// the translation component of a transform. pub struct TranslationCurve<C>(pub C); ``` ### Animatable Properties The `AnimatableProperty` trait survives in the transition, and it can be used to allow curves to animate arbitrary component properties. The updated documentation for `AnimatableProperty` explains this process: <details> <summary>Expand AnimatableProperty example</summary An `AnimatableProperty` is a value on a component that Bevy can animate. You can implement this trait on a unit struct in order to support animating custom components other than transforms and morph weights. Use that type in conjunction with `AnimatableCurve` (and perhaps `AnimatableKeyframeCurve` to define the animation itself). For example, in order to animate font size of a text section from 24 pt. to 80 pt., you might use: ```rust #[derive(Reflect)] struct FontSizeProperty; impl AnimatableProperty for FontSizeProperty { type Component = Text; type Property = f32; fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> { Some(&mut component.sections.get_mut(0)?.style.font_size) } } ``` You can then create an `AnimationClip` to animate this property like so: ```rust let mut animation_clip = AnimationClip::default(); animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new( [ (0.0, 24.0), (1.0, 80.0), ] ) .map(AnimatableCurve::<FontSizeProperty, _>::from_curve) .expect("Failed to create font size curve") ); ``` Here, the use of `AnimatableKeyframeCurve` creates a curve out of the given keyframe time-value pairs, using the `Animatable` implementation of `f32` to interpolate between them. The invocation of `AnimatableCurve::from_curve` with `FontSizeProperty` indicates that the `f32` output from that curve is to be used to animate the font size of a `Text` component (as configured above). </details> ### glTF Loading glTF animations are now loaded into `Curve` types of various kinds, depending on what is being animated and what interpolation mode is being used. Those types get wrapped into and converted into `Box<dyn AnimationCurve>` and shoved inside of a `VariableCurve` just like everybody else. ### Morph Weights There is an `IterableCurve` abstraction which allows sampling these from a contiguous buffer without allocating. Its only reason for existing is that Rust disallows you from naming function types, otherwise we would just use `Curve` with an iterator output type. (The iterator involves `Map`, and the name of the function type would have to be able to be named, but it is not.) A `WeightsCurve` adaptor turns an `IterableCurve` into an `AnimationCurve`, so it behaves like everything else in that regard. ## Testing Tested by running existing animation examples. Interpolation logic has had additional tests added within the `Curve` API to replace the tests in `bevy_animation`. Some kinds of out-of-bounds errors have become impossible. Performance testing on `many_foxes` (`animate_targets`) suggests that performance is very similar to the existing implementation. Here are a couple trace histograms across different runs (yellow is this branch, red is main). <img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM" src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc"> <img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM" src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e"> --- ## Migration Guide Most user code that does not directly deal with `AnimationClip` and `VariableCurve` will not need to be changed. On the other hand, `VariableCurve` has been completely overhauled. If you were previously defining animation curves in code using keyframes, you will need to migrate that code to use curve constructors instead. For example, a rotation animation defined using keyframes and added to an animation clip like this: ```rust animation_clip.add_curve_to_target( animation_target_id, VariableCurve { keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0], keyframes: Keyframes::Rotation(vec![ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ]), interpolation: Interpolation::Linear, }, ); ``` would now be added like this: ```rust animation_clip.add_curve_to_target( animation_target_id, AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([ Quat::IDENTITY, Quat::from_axis_angle(Vec3::Y, PI / 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.), Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.), Quat::IDENTITY, ])) .map(RotationCurve) .expect("Failed to build rotation curve"), ); ``` Note that the interface of `AnimationClip::add_curve_to_target` has also changed (as this example shows, if subtly), and now takes its curve input as an `impl AnimationCurve`. If you need to add a `VariableCurve` directly, a new method `add_variable_curve_to_target` accommodates that (and serves as a one-to-one migration in this regard). ### For reviewers The diff is pretty big, and the structure of some of the changes might not be super-obvious: - `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is based heavily on `Keyframes`, with the adaptors also largely following suite. - The Curve API adaptor structs were moved from `bevy_math::curve::mod` into their own module `adaptors`. There are no functional changes to how these adaptors work; this is just to make room for the specialized reflection implementations since `mod.rs` was getting kind of cramped. - The new module `gltf_curves` holds the additional curve constructions that are needed by the glTF loader. Note that the loader uses a mix of these and off-the-shelf `bevy_math` curve stuff. - `animatable.rs` no longer holds logic related to keyframe interpolation, which is now delegated to the existing abstractions in `bevy_math::curve::cores`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com> |