e9daac4f11
184 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
4e7801388c
|
Rename UiPickingBackend to UiPickingBackendPlugin (#15462)
solves #15450 |
||
![]() |
efda7f3f9c
|
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ``` |
||
![]() |
9386bd0114
|
feature gate picking backends (#15369)
# Objective Fixes #15306 ## Solution - Add feature gate on the module and the place where each one is used - Declare the features and make them default ## Testing - CI |
||
![]() |
fd329c0426
|
Allow to expect (adopted) (#15301)
# Objective > Rust 1.81 released the #[expect(...)] attribute, which works like #[allow(...)] but throws a warning if the lint isn't raised. This is preferred to #[allow(...)] because it tells us when it can be removed. - Adopts the parts of #15118 that are complete, and updates the branch so it can be merged. - There were a few conflicts, let me know if I misjudged any of 'em. Alice's [recommendation](https://github.com/bevyengine/bevy/issues/15059#issuecomment-2349263900) seems well-taken, let's do this crate by crate now that @BD103 has done the lion's share of this! (Relates to, but doesn't yet completely finish #15059.) Crates this _doesn't_ cover: - bevy_input - bevy_gilrs - bevy_window - bevy_winit - bevy_state - bevy_render - bevy_picking - bevy_core_pipeline - bevy_sprite - bevy_text - bevy_pbr - bevy_ui - bevy_gltf - bevy_gizmos - bevy_dev_tools - bevy_internal - bevy_dylib --------- Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com> Co-authored-by: Ben Frankel <ben.frankel7@gmail.com> Co-authored-by: Antony <antony.m.3012@gmail.com> |
||
![]() |
cb6ab16c97
|
Reflect derived traits on all components and resources: bevy_ui (#15231)
Solves https://github.com/bevyengine/bevy/issues/15187 for bevy_ui |
||
![]() |
6ec6a55645
|
Unify crate-level preludes (#15080)
# Objective
- Crate-level prelude modules, such as `bevy_ecs::prelude`, are plagued
with inconsistency! Let's fix it!
## Solution
Format all preludes based on the following rules:
1. All preludes should have brief documentation in the format of:
> The _name_ prelude.
>
> This includes the most common types in this crate, re-exported for
your convenience.
2. All documentation should be outer, not inner. (`///` instead of
`//!`.)
3. No prelude modules should be annotated with `#[doc(hidden)]`. (Items
within them may, though I'm not sure why this was done.)
## Testing
- I manually searched for the term `mod prelude` and updated all
occurrences by hand. 🫠
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
|
||
![]() |
4ac2a63556
|
Remove all existing system order ambiguities in DefaultPlugins (#15031)
# Objective As discussed in https://github.com/bevyengine/bevy/issues/7386, system order ambiguities within `DefaultPlugins` are a source of bugs in the engine and badly pollute diagnostic output for users. We should eliminate them! This PR is an alternative to #15027: with all external ambiguities silenced, this should be much less prone to merge conflicts and the test output should be much easier for authors to understand. Note that system order ambiguities are still permitted in the `RenderApp`: these need a bit of thought in terms of how to test them, and will be fairly involved to fix. While these aren't *good*, they'll generally only cause graphical bugs, not logic ones. ## Solution All remaining system order ambiguities have been resolved. Review this PR commit-by-commit to see how each of these problems were fixed. ## Testing `cargo run --example ambiguity_detection` passes with no panics or logging! |
||
![]() |
01a3b0e830
|
UI texture atlas slice shader (#14990)
# Objective Fixes https://github.com/bevyengine/bevy/issues/14183 ## Solution Reimplement the UI texture atlas slicer using a shader. The problems with #14183 could be fixed more simply by hacking around with the coordinates and scaling but that way is very fragile and might get broken again the next time we make changes to the layout calculations. A shader based solution is more robust, it's impossible for gaps to appear between the image slices with these changes as we're only drawing a single quad. I've not tried any benchmarks yet but it should much more efficient as well, in the worst cases even hundreds or thousands of times faster. Maybe could have used the UiMaterialPipeline. I wrote the shader first and used fat vertices and then realised it wouldn't work that way with a UiMaterial. If it's rewritten it so it puts all the slice geometry in uniform buffer, then it might work? Adding the uniform buffer would probably make the shader more complicated though, so don't know if it's even worth it. Instancing is another alternative. ## Testing The examples are working and it seems to match the old API correctly but I've not used the texture atlas slicing API for anything before, I reviewed the PR but that was back in January. Needs a review by someone who knows the rendering pipeline and wgsl really well because I don't really have any idea what I'm doing. |
||
![]() |
be100b8760
|
Resolve UI outlines using the correct target's viewport size (#14947)
# Objective `resolve_outlines_system` wasn't updated when multi-window support was added and it always uses the size of the primary window when resolving viewport coords, regardless of the layout's camera target. Fixes #14945 ## Solution It's awkward to get the viewport size of the target for an individual node without walking the tree or adding extra fields to `Node`, so I removed `resolve_outlines_system` and instead the outline values are updated in `ui_layout_system`. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
5243fe6956
|
Remove manual apply_deferred in bevy_ui (#14768)
# Objective This `apply_deferred` doesn't seem to have any effect, pointlessly restricts parallelism and is responsible for a large number of system order ambiguities. Spotted as part of #7386. ## Solution Remove it. This is the *only* manual apply_deferred in the code base currently. ## Testing I've checked various UI examples and `split_screen`, and couldn't discern any difference. This looks like a remnant of a `(a, apply_deferred, b).chain()` pattern where `b` got removed, leaving us with a weird vestige. |
||
![]() |
6adf31babf
|
hooking up observers and clicking for ui node (#14695)
Makes the newly merged picking usable for UI elements. currently it both triggers the events, as well as sends them as throught commands.trigger_targets. We should probably figure out if this is needed for them all. # Objective Hooks up obserers and picking for a very simple example ## Solution upstreamed the UI picking backend from bevy_mod_picking ## Testing tested with the new example picking/simple_picking.rs --- --------- Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com> |
||
![]() |
9b254aab1e
|
Explicitly order CameraUpdateSystem before UiSystem::Prepare (#14609)
# Objective Fixes https://github.com/bevyengine/bevy/issues/14277. May also fix https://github.com/bevyengine/bevy/issues/14255, needs verification. ## Solution Explicitly order `CameraUpdateSystem` before `UiSystem::Prepare`, so that when the window resizes, `camera_system` will update the `Camera`'s viewport size before `ui_layout_system` also reacts to the window resize and tries to read the new `Camera` viewport size to set UI node sizes accordingly. ## Testing I tested that explicitly ordering `CameraUpdateSystem` _after_ triggers the buggy behavior, and explicitly ordering it _before_ does not trigger the buggy behavior or crash the app (which also demonstrates that the system sets are ambiguous). --- ## Migration Guide `CameraUpdateSystem` is now explicitly ordered before `UiSystem::Prepare` instead of being ambiguous with it. |
||
![]() |
c3320627ac
|
Clean up UiSystem system sets (#14228)
# Objective - All UI systems should be in system sets that are easy to order around in user code. ## Solution - Add `UiSystem::Prepare` and `UiSystem::PostLayout` system sets to capture floater systems. - Adjust how UI systems are scheduled to align with the new sets. This is *mostly* a pure refactor without any behavior/scheduling changes. See migration guide. ## Testing - Not tested, correctness by inspection. --- ## Migration Guide `UiSystem` system set adjustments. - The `UiSystem::Outline` system set is now strictly ordered after `UiSystem::Layout`, rather than overlapping it. |
||
![]() |
f68bc01544
|
Run CheckVisibility after all the other visibility system sets have… (#12962)
# Objective Make visibility system ordering explicit. Fixes #12953. ## Solution Specify `CheckVisibility` happens after all other `VisibilitySystems` sets have happened. --------- Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com> |
||
![]() |
5caf085dac
|
Divide the single VisibleEntities list into separate lists for 2D meshes, 3D meshes, lights, and UI elements, for performance. (#12582)
This commit splits `VisibleEntities::entities` into four separate lists: one for lights, one for 2D meshes, one for 3D meshes, and one for UI elements. This allows `queue_material_meshes` and similar methods to avoid examining entities that are obviously irrelevant. In particular, this separation helps scenes with many skinned meshes, as the individual bones are considered visible entities but have no rendered appearance. Internally, `VisibleEntities::entities` is a `HashMap` from the `TypeId` representing a `QueryFilter` to the appropriate `Entity` list. I had to do this because `VisibleEntities` is located within an upstream crate from the crates that provide lights (`bevy_pbr`) and 2D meshes (`bevy_sprite`). As an added benefit, this setup allows apps to provide their own types of renderable components, by simply adding a specialized `check_visibility` to the schedule. This provides a 16.23% end-to-end speedup on `many_foxes` with 10,000 foxes (24.06 ms/frame to 20.70 ms/frame). ## Migration guide * `check_visibility` and `VisibleEntities` now store the four types of renderable entities--2D meshes, 3D meshes, lights, and UI elements--separately. If your custom rendering code examines `VisibleEntities`, it will now need to specify which type of entity it's interested in using the `WithMesh2d`, `WithMesh`, `WithLight`, and `WithNode` types respectively. If your app introduces a new type of renderable entity, you'll need to add an explicit call to `check_visibility` to the schedule to accommodate your new component or components. ## Analysis `many_foxes`, 10,000 foxes: `main`:  `many_foxes`, 10,000 foxes, this branch:  `queue_material_meshes` (yellow = this branch, red = `main`):  `queue_shadows` (yellow = this branch, red = `main`):  |
||
![]() |
cf092d45f9
|
[bevy_ui/layout] Extract UiSurface to its own file (#12801)
This is 1 of 5 iterative PR's that affect bevy_ui/layout --- # Objective - Extract `UiSurface` into its own file to make diffs in future PR's easier to digest ## Solution - Moved `UiSurface` to its own file |
||
![]() |
01649f13e2
|
Refactor App and SubApp internals for better separation (#9202)
# Objective This is a necessary precursor to #9122 (this was split from that PR to reduce the amount of code to review all at once). Moving `!Send` resource ownership to `App` will make it unambiguously `!Send`. `SubApp` must be `Send`, so it can't wrap `App`. ## Solution Refactor `App` and `SubApp` to not have a recursive relationship. Since `SubApp` no longer wraps `App`, once `!Send` resources are moved out of `World` and into `App`, `SubApp` will become unambiguously `Send`. There could be less code duplication between `App` and `SubApp`, but that would break `App` method chaining. ## Changelog - `SubApp` no longer wraps `App`. - `App` fields are no longer publicly accessible. - `App` can no longer be converted into a `SubApp`. - Various methods now return references to a `SubApp` instead of an `App`. ## Migration Guide - To construct a sub-app, use `SubApp::new()`. `App` can no longer convert into `SubApp`. - If you implemented a trait for `App`, you may want to implement it for `SubApp` as well. - If you're accessing `app.world` directly, you now have to use `app.world()` and `app.world_mut()`. - `App::sub_app` now returns `&SubApp`. - `App::sub_app_mut` now returns `&mut SubApp`. - `App::get_sub_app` now returns `Option<&SubApp>.` - `App::get_sub_app_mut` now returns `Option<&mut SubApp>.` |
||
![]() |
f096ad4155
|
Set the logo and favicon for all of Bevy's published crates (#12696)
# Objective Currently the built docs only shows the logo and favicon for the top level `bevy` crate. This makes views like https://docs.rs/bevy_ecs/latest/bevy_ecs/ look potentially unrelated to the project at first glance. ## Solution Reproduce the docs attributes for every crate that Bevy publishes. Ideally this would be done with some workspace level Cargo.toml control, but AFAICT, such support does not exist. |
||
![]() |
72c51cdab9
|
Make feature(doc_auto_cfg) work (#12642)
# Objective - In #12366 `![cfg_attr(docsrs, feature(doc_auto_cfg))] `was added. But to apply it it needs `--cfg=docsrs` in rustdoc-args. ## Solution - Apply `--cfg=docsrs` to all crates and CI. I also added `[package.metadata.docs.rs]` to all crates to avoid adding code behind a feature and forget adding the metadata. Before:  After:  |
||
![]() |
e7a31d000e
|
Add border radius to UI nodes (adopted) (#12500)
# Objective Implements border radius for UI nodes. Adopted from #8973, but excludes shadows. ## Solution - Add a component `BorderRadius` which contains a radius value for each corner of the UI node. - Use a fragment shader to generate the rounded corners using a signed distance function. <img width="50%" src="https://github.com/bevyengine/bevy/assets/26204416/16b2ba95-e274-4ce7-adb2-34cc41a776a5"></img> ## Changelog - `BorderRadius`: New component that holds the border radius values. - `NodeBundle` & `ButtonBundle`: Added a `border_radius: BorderRadius` field. - `extract_uinode_borders`: Stripped down, most of the work is done in the shader now. Borders are no longer assembled from multiple rects, instead the shader uses a signed distance function to draw the border. - `UiVertex`: Added size, border and radius fields. - `UiPipeline`: Added three vertex attributes to the vertex buffer layout, to accept the UI node's size, border thickness and border radius. - Examples: Added rounded corners to the UI element in the `button` example, and a `rounded_borders` example. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com> |
||
![]() |
fe7069e4cc
|
Compute texture slices after layout (#12533)
# Objective Whenever a nodes size gets changed, its texture slices get updated a frame later. This results in visual glitches when animating the size of a node with a texture slice. See this video: [Screencast from 17-03-24 14:53:13.webm](https://github.com/bevyengine/bevy/assets/46689298/64e711f7-a1ec-41e3-b119-dc8d7e1a7669) ## Solution Compute texture slices after the layout system has finished. |
||
![]() |
52e3f2007b
|
Add "all-features = true" to docs.rs metadata for most crates (#12366)
# Objective Fix missing `TextBundle` (and many others) which are present in the main crate as default features but optional in the sub-crate. See: - https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html - https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html ~~There are probably other instances in other crates that I could track down, but maybe "all-features = true" should be used by default in all sub-crates? Not sure.~~ (There were many.) I only noticed this because rust-analyzer's "open docs" features takes me to the sub-crate, not the main one. ## Solution Add "all-features = true" to docs.rs metadata for crates that use features. ## Changelog ### Changed - Unified features documented on docs.rs between main crate and sub-crates |
||
![]() |
9e5db9abc7
|
Clean up type registrations (#12314)
# Objective Fix #12304. Remove unnecessary type registrations thanks to #4154. ## Solution Conservatively remove type registrations. Keeping the top level components, resources, and events, but dropping everything else that is a type of a member of those types. |
||
![]() |
ab16f5ed6a
|
UI Texture 9 slice (#11600)
> Follow up to #10588 > Closes #11749 (Supersedes #11756) Enable Texture slicing for the following UI nodes: - `ImageBundle` - `ButtonBundle` <img width="739" alt="Screenshot 2024-01-29 at 13 57 43" src="https://github.com/bevyengine/bevy/assets/26703856/37675681-74eb-4689-ab42-024310cf3134"> I also added a collection of `fantazy-ui-borders` from [Kenney's](www.kenney.nl) assets, with the appropriate license (CC). If it's a problem I can use the same textures as the `sprite_slice` example # Work done Added the `ImageScaleMode` component to the targetted bundles, most of the logic is directly reused from `bevy_sprite`. The only additional internal component is the UI specific `ComputedSlices`, which does the same thing as its spritee equivalent but adapted to UI code. Again the slicing is not compatible with `TextureAtlas`, it's something I need to tackle more deeply in the future # Fixes * [x] I noticed that `TextureSlicer::compute_slices` could infinitely loop if the border was larger that the image half extents, now an error is triggered and the texture will fallback to being stretched * [x] I noticed that when using small textures with very small *tiling* options we could generate hundred of thousands of slices. Now I set a minimum size of 1 pixel per slice, which is already ridiculously small, and a warning will be sent at runtime when slice count goes above 1000 * [x] Sprite slicing with `flip_x` or `flip_y` would give incorrect results, correct flipping is now supported to both sprites and ui image nodes thanks to @odecay observation # GPU Alternative I create a separate branch attempting to implementing 9 slicing and tiling directly through the `ui.wgsl` fragment shader. It works but requires sending more data to the GPU: - slice border - tiling factors And more importantly, the actual quad *scale* which is hard to put in the shader with the current code, so that would be for a later iteration |
||
![]() |
e169b2b217
|
Missing registrations (#11736)
# Objective During my exploratory work on the remote editor, I found a couple of types that were either not registered, or that were missing `ReflectDefault`. ## Solution - Added registration and `ReflectDefault` where applicable - (Drive by fix) Moved `Option<f32>` registration to `bevy_core` instead of `bevy_ui`, along with similar types. --- ## Changelog - Fixed: Registered `FogSettings`, `FogFalloff`, `ParallaxMappingMethod`, `OpaqueRendererMethod` structs for reflection - Fixed: Registered `ReflectDefault` trait for `ColorGrading` and `CascadeShadowConfig` structs |
||
![]() |
694c06f3d0
|
Inverse missing_docs logic (#11676)
# Objective Currently the `missing_docs` lint is allowed-by-default and enabled at crate level when their documentations is complete (see #3492). This PR proposes to inverse this logic by making `missing_docs` warn-by-default and mark crates with imcomplete docs allowed. ## Solution Makes `missing_docs` warn at workspace level and allowed at crate level when the docs is imcomplete. |
||
![]() |
069a8776f5
|
Feature-gate all references to bevy_text in bevy_ui (#11391)
# Objective - `bevy_ui` fails to compile without `bevy_text` being enabled. - Fixes #11363. ## Solution - Add `#[cfg(feature = "bevy_text")]` to all items that require it. I think this change is honestly a bit ugly, but I can't see any other way around it. I considered making `bevy_text` required, but we agreed [on Discord](https://discord.com/channels/691052431525675048/743663673393938453/1196868117486379148) that there were some use cases for `bevy_ui` without `bevy_text`. If you have any ideas that decreases the amount of `#[cfg(...)]`s and `#[allow(...)]`s, that would be greatly appreciated. This was tested by running the following commands: ```shell $ cargo clippy -p bevy_ui $ cargo clippy -p bevy_ui -F bevy_text $ cargo run -p ci ``` --- ## Changelog - Fixed `bevy_ui` not compiling without `bevy_text`. |
||
![]() |
135c7240f1
|
Texture Atlas rework (#5103)
# Objective > Old MR: #5072 > ~~Associated UI MR: #5070~~ > Adresses #1618 Unify sprite management ## Solution - Remove the `Handle<Image>` field in `TextureAtlas` which is the main cause for all the boilerplate - Remove the redundant `TextureAtlasSprite` component - Renamed `TextureAtlas` asset to `TextureAtlasLayout` ([suggestion](https://github.com/bevyengine/bevy/pull/5103#discussion_r917281844)) - Add a `TextureAtlas` component, containing the atlas layout handle and the section index The difference between this solution and #5072 is that instead of the `enum` approach is that we can more easily manipulate texture sheets without any breaking changes for classic `SpriteBundle`s (@mockersf [comment](https://github.com/bevyengine/bevy/pull/5072#issuecomment-1165836139)) Also, this approach is more *data oriented* extracting the `Handle<Image>` and avoiding complex texture atlas manipulations to retrieve the texture in both applicative and engine code. With this method, the only difference between a `SpriteBundle` and a `SpriteSheetBundle` is an **additional** component storing the atlas handle and the index. ~~This solution can be applied to `bevy_ui` as well (see #5070).~~ EDIT: I also applied this solution to Bevy UI ## Changelog - (**BREAKING**) Removed `TextureAtlasSprite` - (**BREAKING**) Renamed `TextureAtlas` to `TextureAtlasLayout` - (**BREAKING**) `SpriteSheetBundle`: - Uses a `Sprite` instead of a `TextureAtlasSprite` component - Has a `texture` field containing a `Handle<Image>` like the `SpriteBundle` - Has a new `TextureAtlas` component instead of a `Handle<TextureAtlasLayout>` - (**BREAKING**) `DynamicTextureAtlasBuilder::add_texture` takes an additional `&Handle<Image>` parameter - (**BREAKING**) `TextureAtlasLayout::from_grid` no longer takes a `Handle<Image>` parameter - (**BREAKING**) `TextureAtlasBuilder::finish` now returns a `Result<(TextureAtlasLayout, Handle<Image>), _>` - `bevy_text`: - `GlyphAtlasInfo` stores the texture `Handle<Image>` - `FontAtlas` stores the texture `Handle<Image>` - `bevy_ui`: - (**BREAKING**) Removed `UiAtlasImage` , the atlas bundle is now identical to the `ImageBundle` with an additional `TextureAtlas` ## Migration Guide * Sprites ```diff fn my_system( mut images: ResMut<Assets<Image>>, - mut atlases: ResMut<Assets<TextureAtlas>>, + mut atlases: ResMut<Assets<TextureAtlasLayout>>, asset_server: Res<AssetServer> ) { let texture_handle: asset_server.load("my_texture.png"); - let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None); + let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None); let layout_handle = atlases.add(layout); commands.spawn(SpriteSheetBundle { - sprite: TextureAtlasSprite::new(0), - texture_atlas: atlas_handle, + atlas: TextureAtlas { + layout: layout_handle, + index: 0 + }, + texture: texture_handle, ..Default::default() }); } ``` * UI ```diff fn my_system( mut images: ResMut<Assets<Image>>, - mut atlases: ResMut<Assets<TextureAtlas>>, + mut atlases: ResMut<Assets<TextureAtlasLayout>>, asset_server: Res<AssetServer> ) { let texture_handle: asset_server.load("my_texture.png"); - let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None); + let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None); let layout_handle = atlases.add(layout); commands.spawn(AtlasImageBundle { - texture_atlas_image: UiTextureAtlasImage { - index: 0, - flip_x: false, - flip_y: false, - }, - texture_atlas: atlas_handle, + atlas: TextureAtlas { + layout: layout_handle, + index: 0 + }, + image: UiImage { + texture: texture_handle, + flip_x: false, + flip_y: false, + }, ..Default::default() }); } ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: François <mockersf@gmail.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
![]() |
eb9db21113
|
Camera-driven UI (#10559)
# Objective Add support for presenting each UI tree on a specific window and viewport, while making as few breaking changes as possible. This PR is meant to resolve the following issues at once, since they're all related. - Fixes #5622 - Fixes #5570 - Fixes #5621 Adopted #5892 , but started over since the current codebase diverged significantly from the original PR branch. Also, I made a decision to propagate component to children instead of recursively iterating over nodes in search for the root. ## Solution Add a new optional component that can be inserted to UI root nodes and propagate to children to specify which camera it should render onto. This is then used to get the render target and the viewport for that UI tree. Since this component is optional, the default behavior should be to render onto the single camera (if only one exist) and warn of ambiguity if multiple cameras exist. This reduces the complexity for users with just one camera, while giving control in contexts where it matters. ## Changelog - Adds `TargetCamera(Entity)` component to specify which camera should a node tree be rendered into. If only one camera exists, this component is optional. - Adds an example of rendering UI to a texture and using it as a material in a 3D world. - Fixes recalculation of physical viewport size when target scale factor changes. This can happen when the window is moved between displays with different DPI. - Changes examples to demonstrate assigning UI to different viewports and windows and make interactions in an offset viewport testable. - Removes `UiCameraConfig`. UI visibility now can be controlled via combination of explicit `TargetCamera` and `Visibility` on the root nodes. --------- Co-authored-by: davier <bricedavier@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
![]() |
a657478675
|
resolve all internal ambiguities (#10411)
- ignore all ambiguities that are not a problem - remove `.before(Assets::<Image>::track_assets),` that points into a different schedule (-> should this be caught?) - add some explicit orderings: - run `poll_receivers` and `update_accessibility_nodes` after `window_closed` in `bevy_winit::accessibility` - run `bevy_ui::accessibility::calc_bounds` after `CameraUpdateSystem` - run ` bevy_text::update_text2d_layout` and `bevy_ui::text_system` after `font_atlas_set::remove_dropped_font_atlas_sets` - add `app.ignore_ambiguity(a, b)` function for cases where you want to ignore an ambiguity between two independent plugins `A` and `B` - add `IgnoreAmbiguitiesPlugin` in `DefaultPlugins` that allows cross-crate ambiguities like `bevy_animation`/`bevy_ui` - Fixes https://github.com/bevyengine/bevy/issues/9511 ## Before **Render**  **PostUpdate**  ## After **Render**  **PostUpdate**  --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: François <mockersf@gmail.com> |
||
![]() |
720d6dab82
|
Change Window scale factor to f32 (adopted) (#10897)
# Objective - Finish the work done in #8942 . ## Solution - Rebase the changes made in #8942 and fix the issues stopping it from being merged earlier --------- Co-authored-by: Thomas <1234328+thmsgntz@users.noreply.github.com> |
||
![]() |
fd308571c4
|
Remove unnecessary path prefixes (#10749)
# Objective - Shorten paths by removing unnecessary prefixes ## Solution - Remove the prefixes from many paths which do not need them. Finding the paths was done automatically using built-in refactoring tools in Jetbrains RustRover. |
||
![]() |
0e9f6e92ea
|
Add clippy::manual_let_else at warn level to lints (#10684)
# Objective Related to #10612. Enable the [`clippy::manual_let_else`](https://rust-lang.github.io/rust-clippy/master/#manual_let_else) lint as a warning. The `let else` form seems more idiomatic to me than a `match`/`if else` that either match a pattern or diverge, and from the clippy doc, the lint doesn't seem to have any possible false positive. ## Solution Add the lint as warning in `Cargo.toml`, refactor places where the lint triggers. |
||
![]() |
951c9bb1a2
|
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere (#10011)
# Objective - Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796 ## Solution - Use the new [lints] table that will land in 1.74 (https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints) - inherit lint to the workspace, crates and examples. ``` [lints] workspace = true ``` ## Changelog - Bump rust version to 1.74 - Enable lints table for the workspace ```toml [workspace.lints.clippy] type_complexity = "allow" ``` - Allow type complexity for all crates and examples ```toml [lints] workspace = true ``` --------- Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com> |
||
![]() |
fd232ad360
|
Add UI Materials (#9506)
# Objective - Add Ui Materials so that UI can render more complex and animated widgets. - Fixes #5607 ## Solution - Create a UiMaterial trait for specifying a Shader Asset and Bind Group Layout/Data. - Create a pipeline for rendering these Materials inside the Ui layout/tree. - Create a MaterialNodeBundle for simple spawning. ## Changelog - Created a `UiMaterial` trait for specifying a Shader asset and Bind Group. - Created a `UiMaterialPipeline` for rendering said Materials. - Added Example [`ui_material` ](https://github.com/MarkusTheOrt/bevy/blob/ui_material/examples/ui/ui_material.rs) for example usage. - Created [`UiVertexOutput`](https://github.com/MarkusTheOrt/bevy/blob/ui_material/crates/bevy_ui/src/render/ui_vertex_output.wgsl) export as VertexData for shaders. - Created [`material_ui`](https://github.com/MarkusTheOrt/bevy/blob/ui_material/crates/bevy_ui/src/render/ui_material.wgsl) shader as default for both Vertex and Fragment shaders. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: François <mockersf@gmail.com> |
||
![]() |
2e887b856f
|
UI node outlines (#9931)
# Objective Add support for drawing outlines outside the borders of UI nodes. ## Solution Add a new `Outline` component with `width`, `offset` and `color` fields. Added `outline_width` and `outline_offset` fields to `Node`. This is set after layout recomputation by the `resolve_outlines_system`. Properties of outlines: * Unlike borders, outlines have to be the same width on each edge. * Outlines do not occupy any space in the layout. * The `Outline` component won't be added to any of the UI node bundles, it needs to be inserted separately. * Outlines are drawn outside the node's border, so they are clipped using the clipping rect of their entity's parent UI node (if it exists). * `Val::Percent` outline widths are resolved based on the width of the outlined UI node. * The offset of the `Outline` adds space between an outline and the edge of its node. I was leaning towards adding an `outline` field to `Style` but a separate component seems more efficient for queries and change detection. The `Outline` component isn't added to bundles for the same reason. --- ## Examples * This image is from the `borders` example from the Bevy UI examples but modified to include outlines. The UI nodes are the dark red rectangles, the bright red rectangles are borders and the white lines offset from each node are the outlines. The yellow rectangles are separate nodes contained with the dark red nodes: <img width="406" alt="outlines" src="https://github.com/bevyengine/bevy/assets/27962798/4e6f315a-019f-42a4-94ee-cca8e684d64a"> * This is from the same example but using a branch that implements border-radius. Here the the outlines are in orange and there is no offset applied. I broke the borders implementation somehow during the merge, which is why some of the borders from the first screenshot are missing 😅. The outlines work nicely though (as long as you can forgive the lack of anti-aliasing):  --- ## Notes As I explained above, I don't think the `Outline` component should be added to UI node bundles. We can have helper functions though, perhaps something as simple as: ```rust impl NodeBundle { pub fn with_outline(self, outline: Outline) -> (Self, Outline) { (self, outline) } } ``` I didn't include anything like this as I wanted to keep the PR's scope as narrow as possible. Maybe `with_outline` should be in a trait that we implement for each UI node bundle. --- ## Changelog Added support for outlines to Bevy UI. * The `Outline` component adds an outline to a UI node. * The `outline_width` field added to `Node` holds the resolved width of the outline, which is set by the `resolve_outlines_system` after layout recomputation. * Outlines are drawn by the system `extract_uinode_outlines`. |
||
![]() |
35de5e608e
|
register TextLayoutInfo and TextFlags type. (#9919)
derive `Reflect` to `GlyphAtlasInfo`,`PositionedGlyph` and `TextLayoutInfo`. # Objective - I need reflection gets all components of the `TextBundle` and `clone_value` it ## Solution - registry it |
||
![]() |
5eb292dc10
|
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
![]() |
ea734ab5f4
|
bevy_ui: reflect missing types (#9677)
Register `UiCameraConfig` and `UiTextureAtlasImage`, and derive `Reflect` on `UiScale` and register that too. |
||
![]() |
b6a9d8eba7
|
Change UiScale to a tuple struct (#9444)
# Objective Inconvenient initialization of `UiScale` ## Solution Change `UiScale` to a tuple struct ## Migration Guide Replace initialization of `UiScale` like ```UiScale { scale: 1.0 }``` with ```UiScale(1.0)``` |
||
![]() |
f18f28874a
|
Allow tuples and single plugins in add_plugins , deprecate add_plugin (#8097)
# Objective - Better consistency with `add_systems`. - Deprecating `add_plugin` in favor of a more powerful `add_plugins`. - Allow passing `Plugin` to `add_plugins`. - Allow passing tuples to `add_plugins`. ## Solution - `App::add_plugins` now takes an `impl Plugins` parameter. - `App::add_plugin` is deprecated. - `Plugins` is a new sealed trait that is only implemented for `Plugin`, `PluginGroup` and tuples over `Plugins`. - All examples, benchmarks and tests are changed to use `add_plugins`, using tuples where appropriate. --- ## Changelog ### Changed - `App::add_plugins` now accepts all types that implement `Plugins`, which is implemented for: - Types that implement `Plugin`. - Types that implement `PluginGroup`. - Tuples (up to 16 elements) over types that implement `Plugins`. - Deprecated `App::add_plugin` in favor of `App::add_plugins`. ## Migration Guide - Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
8b5bf42c28
|
UI texture atlas support (#8822)
# Objective This adds support for using texture atlas sprites in UI. From discussions today in the ui-dev discord it seems this is a much wanted feature. This was previously attempted in #5070 by @ManevilleF however that was blocked #5103. This work can be easily modified to support #5103 changes after that merges. ## Solution I created a new UI bundle that reuses the existing texture atlas infrastructure. I create a new atlas image component to prevent it from being drawn by the existing non-UI systems and to remove unused parameters. In extract I added new system to calculate the required values for the texture atlas image, this extracts into the same resource as the existing UI Image and Text components. This should have minimal performance impact because if texture atlas is not present then the exact same code path is followed. Also there should be no unintended behavior changes because without the new components the existing systems write the extract same resulting data. I also added an example showing the sprite working and a system to advance the animation on space bar presses. Naming is hard and I would accept any feedback on the bundle name! --- ## Changelog > Added TextureAtlasImageBundle --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> |
||
![]() |
f7aa83a247
|
Ui Node Borders (#7795)
# Objective Implement borders for UI nodes. Relevant discussion: #7785 Related: #5924, #3991 <img width="283" alt="borders" src="https://user-images.githubusercontent.com/27962798/220968899-7661d5ec-6f5b-4b0f-af29-bf9af02259b5.PNG"> ## Solution Add an extraction function to draw the borders. --- Can only do one colour rectangular borders due to the limitations of the Bevy UI renderer. Maybe it can be combined with #3991 eventually to add curved border support. ## Changelog * Added a component `BorderColor`. * Added the `extract_uinode_borders` system to the UI Render App. * Added the UI example `borders` --------- Co-authored-by: Nico Burns <nico@nicoburns.com> |
||
![]() |
83de94f9f9
|
Register a few missed reflect components (#8807)
# Objective - Some reflect components weren't properly registered. ## Solution - We register them - I also sorted the register lines in `Plugin::build` in `bevy_ui` ### Note How I did I find them: - I picked up the list of `Component`s from the `Component` trait page in rustdoc. - Then I tried to register all of them. Removing the registration when it doesn't implement `Reflect` to pass compilation. - Then I added `app.register_type_data::<T, Foo>()`, for all Reflect components. It panics if `T` is not registered. - I repeated the last line N times until bevy stopped panicking at startup --- ## Changelog - Register the following components: `PrimaryWindow` `Fxaa` `FogSettings` `NotShadowCaster` `NotShadowReceiver` `CalculatedClip` `RelativeCursorPosition` |
||
![]() |
08bf1a6c2e
|
Flatten UI Style properties that use Size + remove Size (#8548)
# Objective - Simplify API and make authoring styles easier See: https://github.com/bevyengine/bevy/issues/8540#issuecomment-1536177102 ## Solution - The `size`, `min_size`, `max_size`, and `gap` properties have been replaced by `width`, `height`, `min_width`, `min_height`, `max_width`, `max_height`, `row_gap`, and `column_gap` properties --- ## Changelog - Flattened `Style` properties that have a `Size` value directly into `Style` ## Migration Guide - The `size`, `min_size`, `max_size`, and `gap` properties have been replaced by the `width`, `height`, `min_width`, `min_height`, `max_width`, `max_height`, `row_gap`, and `column_gap` properties. Use the new properties instead. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> |
||
![]() |
71842c5ac9
|
Webgpu support (#8336)
# Objective - Support WebGPU - alternative to #5027 that doesn't need any async / await - fixes #8315 - Surprise fix #7318 ## Solution ### For async renderer initialisation - Update the plugin lifecycle: - app builds the plugin - calls `plugin.build` - registers the plugin - app starts the event loop - event loop waits for `ready` of all registered plugins in the same order - returns `true` by default - then call all `finish` then all `cleanup` in the same order as registered - then execute the schedule In the case of the renderer, to avoid anything async: - building the renderer plugin creates a detached task that will send back the initialised renderer through a mutex in a resource - `ready` will wait for the renderer to be present in the resource - `finish` will take that renderer and place it in the expected resources by other plugins - other plugins (that expect the renderer to be available) `finish` are called and they are able to set up their pipelines - `cleanup` is called, only custom one is still for pipeline rendering ### For WebGPU support - update the `build-wasm-example` script to support passing `--api webgpu` that will build the example with WebGPU support - feature for webgl2 was always enabled when building for wasm. it's now in the default feature list and enabled on all platforms, so check for this feature must also check that the target_arch is `wasm32` --- ## Migration Guide - `Plugin::setup` has been renamed `Plugin::cleanup` - `Plugin::finish` has been added, and plugins adding pipelines should do it in this function instead of `Plugin::build` ```rust // Before impl Plugin for MyPlugin { fn build(&self, app: &mut App) { app.insert_resource::<MyResource> .add_systems(Update, my_system); let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<RenderResourceNeedingDevice>() .init_resource::<OtherRenderResource>(); } } // After impl Plugin for MyPlugin { fn build(&self, app: &mut App) { app.insert_resource::<MyResource> .add_systems(Update, my_system); let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<OtherRenderResource>(); } fn finish(&self, app: &mut App) { let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<RenderResourceNeedingDevice>(); } } ``` |
||
![]() |
ba532e4a37
|
MeasureFunc improvements (#8402)
# Objective fixes #8516 * Give `CalculatedSize` a more specific and intuitive name. * `MeasureFunc`s should only be updated when their `CalculatedSize` is modified by the systems managing their content. For example, suppose that you have a UI displaying an image using an `ImageNode`. When the window is resized, the node's `MeasureFunc` will be updated even though the dimensions of the texture contained by the node are unchanged. * Fix the `CalculatedSize` API so that it no longer requires the extra boxing and the `dyn_clone` method. ## Solution * Rename `CalculatedSize` to `ContentSize` * Only update `MeasureFunc`s on `CalculatedSize` changes. * Remove the `dyn_clone` method from `Measure` and move the `Measure` from the `ContentSize` component rather than cloning it. * Change the measure_func field of `ContentSize` to type `Option<taffy::node::MeasureFunc>`. Add a `set` method that wraps the given measure appropriately. --- ## Changelog * Renamed `CalculatedSize` to `ContentSize`. * Replaced `upsert_leaf` with a function `update_measure` that only updates the node's `MeasureFunc`. * `MeasureFunc`s are only updated when the `ContentSize` changes and not when the layout changes. * Scale factor is no longer applied to the size values passed to the `MeasureFunc`. * Remove the `ContentSize` scaling in `text_system`. * The `dyn_clone` method has been removed from the `Measure` trait. * `Measure`s are moved from the `ContentSize` component instead of cloning them. * Added `set` method to `ContentSize` that replaces the `new` function. ## Migration Guide * `CalculatedSize` has been renamed to `ContentSize`. * The `upsert_leaf` function has been removed from `UiSurface` and replaced with `update_measure` which updates the `MeasureFunc` without node insertion. * The `dyn_clone` method has been removed from the `Measure` trait. * The new function of `CalculatedSize` has been replaced with the method `set`. |
||
![]() |
ee697f820c
|
Register UiImageSize (#8441)
# Objective Add `register_type` and derive `Reflect` for `UiImageSize`. ## Changelog * Added `register_type` and derive `Reflect` for `UiImageSize`. |
||
![]() |
5ed6b628eb
|
Allow bevy_ui crate to compile without the text feature enabled (#8437)
# Objective Allow `bevy_ui` crate to compile without the `text` feature enabled ## Solution - Correctly conditionally compile `text_system` |
||
![]() |
09df19bcad
|
Split UI Overflow by axis (#8095)
# Objective Split the UI overflow enum so that overflow can be set for each axis separately. ## Solution Change `Overflow` from an enum to a struct with `x` and `y` `OverflowAxis` fields, where `OverflowAxis` is an enum with `Clip` and `Visible` variants. Modify `update_clipping` to calculate clipping for each axis separately. If only one axis is clipped, the other axis is given infinite bounds. <img width="642" alt="overflow" src="https://user-images.githubusercontent.com/27962798/227592983-568cf76f-7e40-48c4-a511-43c886f5e431.PNG"> --- ## Changelog * Split the UI overflow implementation so overflow can be set for each axis separately. * Added the enum `OverflowAxis` with `Clip` and `Visible` variants. * Changed `Overflow` to a struct with `x` and `y` fields of type `OverflowAxis`. * `Overflow` has new methods `visible()` and `hidden()` that replace its previous `Clip` and `Visible` variants. * Added `Overflow` helper methods `clip_x()` and `clip_y()` that return a new `Overflow` value with the given axis clipped. * Modified `update_clipping` so it calculates clipping for each axis separately. If a node is only clipped on a single axis, the other axis is given `-f32::INFINITY` to `f32::INFINITY` clipping bounds. ## Migration Guide The `Style` property `Overflow` is now a struct with `x` and `y` fields, that allow for per-axis overflow control. Use these helper functions to replace the variants of `Overflow`: * Replace `Overflow::Visible` with `Overflow::visible()` * Replace `Overflow::Hidden` with `Overflow::clip()` |
||
![]() |
30ac157b80
|
Register some extra types to type registry (#8430)
# Objective Fixes #8415. ## Solution I simply added the missing types to the type registry. ## Changelog Added `#[reflect(Component]` to `bevi_ui::ui_node::ZIndex`, since it impls `Component` and `Reflect.` The following types have been added to the type registry: 1. `bevy_ui::ZIndex` 2. `bevy_math::Rect` 3. `bevy_text::BreakLineOn` 4. `bevy_text::Text2dBounds` |
||
![]() |
fe0ad10b0c
|
Fix text systems broken when resolving merge conflicts in #8026 (#8422)
# Objective - Incorrectly resolved merge conflicts in https://github.com/bevyengine/bevy/pull/8026 have caused UI text to not render at all. ## Solution Restore correct system schedule for text systems |
||
![]() |
363d0f0c7c
|
Add CSS Grid support to bevy_ui (#8026)
# Objective An easy way to create 2D grid layouts ## Solution Enable the `grid` feature in Taffy and add new style types for defining grids. ## Notes - ~I'm having a bit of trouble getting `#[derive(Reflect)]` to work properly. Help with that would be appreciated (EDIT: got it to compile by ignoring the problematic fields, but this presumably can't be merged).~ This is now fixed - ~The alignment types now have a `Normal` variant because I couldn't get reflect to work with `Option`.~ I've decided to stick with the flattened variant, as it saves a level of wrapping when authoring styles. But I've renamed the variants from `Normal` to `Default`. - ~This currently exposes a simplified API on top of grid. In particular the following is not currently supported:~ - ~Negative grid indices~ Now supported. - ~Custom `end` values for grid placement (you can only use `start` and `span`)~ Now supported - ~`minmax()` track sizing functions~ minmax is now support through a `GridTrack::minmax()` constructor - ~`repeat()`~ repeat is now implemented as `RepeatedGridTrack` - ~Documentation still needs to be improved.~ An initial pass over the documentation has been completed. ## Screenshot <img width="846" alt="Screenshot 2023-03-10 at 17 56 21" src="https://user-images.githubusercontent.com/1007307/224435332-69aa9eac-123d-4856-b75d-5449d3f1d426.png"> --- ## Changelog - Support for CSS Grid layout added to `bevy_ui` --------- Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Andreas Weibye <13300393+Weibye@users.noreply.github.com> |
||
![]() |
ffc62c1a81
|
text_system split (#7779)
# Objective `text_system` runs before the UI layout is calculated and the size of the text node is determined, so it cannot correctly shape the text to fit the layout, and has no way of determining if the text needs to be wrapped. The function `text_constraint` attempts to determine the size of the node from the local size constraints in the `Style` component. It can't be made to work, you have to compute the whole layout to get the correct size. A simple example of where this fails completely is a text node set to stretch to fill the empty space adjacent to a node with size constraints set to `Val::Percent(50.)`. The text node will take up half the space, even though its size constraints are `Val::Auto` Also because the `text_system` queries for changes to the `Style` component, when a style value is changed that doesn't affect the node's geometry the text is recomputed unnecessarily. Querying on changes to `Node` is not much better. The UI layout is changed to fit the `CalculatedSize` of the text, so the size of the node is changed and so the text and UI layout get recalculated multiple times from a single change to a `Text`. Also, the `MeasureFunc` doesn't work at all, it doesn't have enough information to fit the text correctly and makes no attempt. Fixes #7663, #6717, #5834, #1490, ## Solution Split the `text_system` into two functions: * `measure_text_system` which calculates the size constraints for the text node and runs before `UiSystem::Flex` * `text_system` which runs after `UiSystem::Flex` and generates the actual text. * Fix the `MeasureFunc` calculations. --- Text wrapping in main: <img width="961" alt="Capturemain" src="https://user-images.githubusercontent.com/27962798/220425740-4fe4bf46-24fb-4685-a1cf-bc01e139e72d.PNG"> With this PR: <img width="961" alt="captured_wrap" src="https://user-images.githubusercontent.com/27962798/220425807-949996b0-f127-4637-9f33-56a6da944fb0.PNG"> ## Changelog * Removed the previous fields from `CalculatedSize`. `CalculatedSize` now contains a boxed `Measure`. * Added `measurement` module to `bevy_ui`. * Added the method `create_text_measure` to `TextPipeline`. * Added a new system `measure_text_system` that runs before `UiSystem::Flex` that creates a `MeasureFunc` for the text. * Rescheduled `text_system` to run after `UiSystem::Flex`. * Added a trait `Measure`. A `Measure` is used to compute the size of a UI node when the size of that node is based on its content. * Added `ImageMeasure` and `TextMeasure` which implement `Measure`. * Added a new component `UiImageSize` which is used by `update_image_calculated_size_system` to track image size changes. * Added a `UiImageSize` component to `ImageBundle`. ## Migration Guide `ImageBundle` has a new component `UiImageSize` which contains the size of the image bundle's texture and is updated automatically by `update_image_calculated_size_system` --------- Co-authored-by: François <mockersf@gmail.com> |
||
![]() |
3ead10a3e0
|
Suppress the clippy::type_complexity lint (#8313)
# Objective The clippy lint `type_complexity` is known not to play well with bevy. It frequently triggers when writing complex queries, and taking the lint's advice of using a type alias almost always just obfuscates the code with no benefit. Because of this, this lint is currently ignored in CI, but unfortunately it still shows up when viewing bevy code in an IDE. As someone who's made a fair amount of pull requests to this repo, I will say that this issue has been a consistent thorn in my side. Since bevy code is filled with spurious, ignorable warnings, it can be very difficult to spot the *real* warnings that must be fixed -- most of the time I just ignore all warnings, only to later find out that one of them was real after I'm done when CI runs. ## Solution Suppress this lint in all bevy crates. This was previously attempted in #7050, but the review process ended up making it more complicated than it needs to be and landed on a subpar solution. The discussion in https://github.com/rust-lang/rust-clippy/pull/10571 explores some better long-term solutions to this problem. Since there is no timeline on when these solutions may land, we should resolve this issue in the meantime by locally suppressing these lints. ### Unresolved issues Currently, these lints are not suppressed in our examples, since that would require suppressing the lint in every single source file. They are still ignored in CI. |
||
![]() |
aefe1f0739
|
Schedule-First: the new and improved add_systems (#8079)
Co-authored-by: Mike <mike.hsu@gmail.com> |
||
![]() |
cb100ba78f
|
Improve UI stack docs and other small tweaks (#8094) | ||
![]() |
fd1af7c8b8
|
Replace multiple calls to add_system with add_systems (#8001)
|
||
![]() |
73c1ab1d42 |
Fix bevy_ui compile error without bevy_text (#7877)
# Objective - Fixes #7874. - The `bevy_text` dependency is optional for `bevy_ui`, but the `accessibility` module depended on it. ## Solution - Guard the `accessibility` module behind the `bevy_text` feature and only add the plugin when it's enabled. |
||
![]() |
8d1f6ff7fa |
Integrate AccessKit (#6874)
# Objective UIs created for Bevy cannot currently be made accessible. This PR aims to address that. ## Solution Integrate AccessKit as a dependency, adding accessibility support to existing bevy_ui widgets. ## Changelog ### Added * Integrate with and expose [AccessKit](https://accesskit.dev) for platform accessibility. * Add `Label` for marking text specifically as a label for UI controls. |
||
![]() |
1bd7306a3a |
make bevy_text optional again (#7801)
# Objective - `bevy_text` used to be "optional". the feature could be disabled, which meant that the systems were not added but `bevy_text` was still compiled because of a hard dependency in `bevy_ui` - Running something without `bevy_text` enabled and with `bevy_ui` enabled now crashes: ``` thread 'main' panicked at 'called `Option::unwrap()` on a `None` value', /bevy/crates/bevy_ecs/src/schedule/schedule.rs:1147:34 ``` - This is because `bevy_ui` declares some of its systems in ambiguity sets with systems from `bevy_text`, which were not added if `bevy_text` is disabled ## Solution - Make `bevy_text` completely optional ## Migration Guide - feature `bevy_text` now completely removes `bevy_text` from the dependencies when not enabled. Enable feature `bevy_text` if you use Bevy to render text |
||
![]() |
f69f1329e0 |
Fix Window feedback loop between the OS and Bevy (#7517)
# Objective Fix #7377 Fix #7513 ## Solution Record the changes made to the Bevy `Window` from `winit` as 'canon' to avoid Bevy sending those changes back to `winit` again, causing a feedback loop. ## Changelog * Removed `ModifiesWindows` system label. Neither `despawn_window` nor `changed_window` actually modify the `Window` component so all the `.after(ModifiesWindows)` shouldn't be necessary. * Moved `changed_window` and `despawn_window` systems to `CoreStage::Last` to avoid systems making changes to the `Window` between `changed_window` and the end of the frame as they would be ignored. ## Migration Guide The `ModifiesWindows` system label was removed. Co-authored-by: devil-ira <justthecooldude@gmail.com> |
||
![]() |
dcc03724a5 |
Base Sets (#7466)
# Objective NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267. "Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365). ## Solution This adds "base sets" as a variant of `SystemSet`: A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive: ```rust #[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)] #[system_set(base)] enum MyBaseSet { A, B, } ``` **Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build. **Base sets cannot belong to other sets**: this is where the word "base" comes from Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set. ```rust app.add_system(foo.in_base_set(MyBaseSet::A)) // X must be a normal set ... base sets cannot be added to base sets .configure_set(X.in_base_set(MyBaseSet::A)) ``` Base sets can still be configured like normal sets: ```rust app.add_system(MyBaseSet::B.after(MyBaseSet::Ap)) ``` The primary use case for base sets is enabling a "default base set": ```rust schedule.set_default_base_set(CoreSet::Update) // this will belong to CoreSet::Update by default .add_system(foo) // this will override the default base set with PostUpdate .add_system(bar.in_base_set(CoreSet::PostUpdate)) ``` This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides. --- ## Changelog - Added "base sets" and ported CoreSet to use them. ## Migration Guide TODO |
||
![]() |
206c7ce219 |
Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets. |
||
![]() |
5972879dec |
Remove ImageMode (#6674)
# Objective Delete `ImageMode`. It doesn't do anything except mislead people into thinking it controls the aspect ratio of images somehow. Fixes #3933 and #6637 ## Solution Delete `ImageMode` ## Changelog Removes the `ImageMode` enum. Removes the `image_mode` field from `ImageBundle` Removes the `With<ImageMode>` query filter from `image_node_system` Renames `image_node_system` to` update_image_calculated_size_system` |
||
![]() |
66f495c44e |
Cleaning up NodeBundle, and some slight UI module re-organization (#6473)
# Objective
`NodeBundle` contains an `image` field, which can be misleading, because if you do supply an image there, nothing will be shown to screen. You need to use an `ImageBundle` instead.
## Solution
* `image` (`UiImage`) field is removed from `NodeBundle`,
* extraction stage queries now make an optional query for `UiImage`, if one is not found, use the image handle that is used as a default by `UiImage`:
|
||
![]() |
4b5a33d970 |
Add z-index support with a predictable UI stack (#5877)
# Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all).  --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
334e09892b |
Revert "Show prelude re-exports in docs (#6448)" (#6449)
This reverts commit
|
||
![]() |
53d387f340 |
Show prelude re-exports in docs (#6448)
# Objective - Right now re-exports are completely hidden in prelude docs. - Fixes #6433 ## Solution - We could show the re-exports without inlining their documentation. |
||
![]() |
456971381c |
Resolve most remaining execution-order ambiguities (#6341)
# Objective Bevy's internal plugins have lots of execution-order ambiguities, which makes the ambiguity detection tool very noisy for our users. ## Solution Silence every last ambiguity that can currently be resolved. Each time an ambiguity is silenced, it is accompanied by a comment describing why it is correct. This description should be based on the public API of the respective systems. Thus, I have added documentation to some systems describing how they use some resources. # Future work Some ambiguities remain, due to issues out of scope for this PR. * The ambiguity checker does not respect `Without<>` filters, leading to false positives. * Ambiguities between `bevy_ui` and `bevy_animation` cannot be resolved, since neither crate knows that the other exists. We will need a general solution to this problem. |
||
![]() |
6ce7ce208e |
Change UI coordinate system to have origin at top left corner (#6000)
# Objective Fixes #5572 ## Solution Approach is to invert the Y-axis of the UI Camera by changing the UI projection matrix to render the UI upside down. After that I'm trying to fix all issues, that pop up: - interaction expected the "old" position - images and text were displayed upside-down - baseline of text was based on the top of the glyph instead of bottom ... probably a lot more. --- Result when running examples: <details> <summary>Button example</summary> main branch:  this pr:  </details> <details> <summary>Text example</summary> m  ain branch: this pr:  </details> <details> <summary>Text debug example</summary> main branch:  this pr:  </details> <details> <summary>Transparency UI example</summary> main branch:  this pr:  </details> <details> <summary>UI example</summary> **ui example** main branch:  this pr:  </details> ## Changelog UI coordinate system and cursor position was changed from bottom left origin, y+ up to top left origin, y+ down. ## Migration Guide All flex layout should be inverted (ColumnReverse => Column, FlexStart => FlexEnd, WrapReverse => Wrap) System where dealing with cursor position should be changed to account for cursor position being based on the top left instead of bottom left |
||
![]() |
dc3f801239 |
Exclusive Systems Now Implement System . Flexible Exclusive System Params (#6083)
# Objective The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move. This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns). ## Solution This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). This means you can remove all cases of `exclusive_system()`: ```rust // before commands.add_system(some_system.exclusive_system()); // after commands.add_system(some_system); ``` I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems: ```rust fn some_exclusive_system( world: &mut World, transforms: &mut QueryState<&Transform>, state: &mut SystemState<(Res<Time>, Query<&Player>)>, ) { for transform in transforms.iter(world) { println!("{transform:?}"); } let (time, players) = state.get(world); for player in players.iter() { println!("{player:?}"); } } ``` Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system. I added some targeted SystemParam `static` constraints, which removed the need for this: ``` rust fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {} ``` ## Related - #2923 - #3001 - #3946 ## Changelog - `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait. - `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems - `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam` - Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api. ## Migration Guide Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems: ```rust // Old (0.8) app.add_system(some_exclusive_system.exclusive_system()); // New (0.9) app.add_system(some_exclusive_system); ``` Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis: ```rust // Old (0.8) app.add_system(some_system.exclusive_system().at_end()); // New (0.9) app.add_system(some_system.at_end()); ``` Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons: ```rust // Old (0.8) fn some_system(world: &mut World) { let mut transforms = world.query::<&Transform>(); for transform in transforms.iter(world) { } } // New (0.9) fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) { for transform in transforms.iter(world) { } } ``` |
||
![]() |
481eec2c92 |
Rename UiColor to BackgroundColor (#6087)
# Objective Fixes #6078. The `UiColor` component is unhelpfully named: it is unclear, ambiguous with border color and ## Solution Rename the `UiColor` component (and associated fields) to `BackgroundColor` / `background_colorl`. ## Migration Guide `UiColor` has been renamed to `BackgroundColor`. This change affects `NodeBundle`, `ButtonBundle` and `ImageBundle`. In addition, the corresponding field on `ExtractedUiNode` has been renamed to `background_color` for consistency. |
||
![]() |
4fadd26168 |
Add UI scaling (#5814)
# Objective - Allow users to change the scaling of the UI - Adopted from #2808 ## Solution - This is an accessibility feature for fixed-size UI elements, allowing the developer to expose a range of UI scales for the player to set a scale that works for their needs. > - The user can modify the UiScale struct to change the scaling at runtime. This multiplies the Px values by the scale given, while not touching any others. > - The example showcases how this even allows for fluid transitions > Here's how the example looks like: https://user-images.githubusercontent.com/1631166/132979069-044161a9-8e85-45ab-9e93-fcf8e3852c2b.mp4 --- ## Changelog - Added a `UiScale` which can be used to scale all of UI Co-authored-by: Andreas Weibye <13300393+Weibye@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
bf085ee1d2 |
Remove Size and UiRect generics (#5404)
# Objective - Migrate changes from #3503. ## Solution - Change `Size<T>` and `UiRect<T>` to `Size` and `UiRect` using `Val`. - Implement `Sub`, `SubAssign`, `Mul`, `MulAssign`, `Div` and `DivAssign` for `Val`. - Update tests for `Size`. --- ## Changelog ### Changed - The generic `T` of `Size` and `UiRect` got removed and instead they both now always use `Val`. ## Migration Guide - The generic `T` of `Size` and `UiRect` got removed and instead they both now always use `Val`. If you used a `Size<f32>` consider replacing it with a `Vec2` which is way more powerful. Co-authored-by: KDecay <KDecayMusic@protonmail.com> |
||
![]() |
f531a94370 |
Remove redundant Size import (#5339)
# Objective - Fixes #5338 - Allow the usage of `use bevy::ui::Size` (see migration guide in #4285) ## Solution - Remove the `use crate::Size` import so that the `pub use geometry::*` import also publicly uses the `Size` struct. |
||
![]() |
4ee73ed904 |
Rename CameraUi (#5234)
# Objective In bevy 0.7, `CameraUi` was a component specifically added to cameras that display the UI. Since camera-driven rendering was merged, it actually does the opposite! This will make it difficult for current users to adapt to 0.8. ## Solution To avoid unnecessary confusion, we rename `CameraUi` into `UiCameraConfig`. --- ## Changelog - Rename `CameraUi` to `UiCameraConfig` |
||
![]() |
f487407e07 |
Camera Driven Rendering (#4745)
This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915):  Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home. |
||
![]() |
989fb8a78d |
Move Rect to bevy_ui and rename it to UiRect (#4276)
# Objective - Closes #335. - Related #4285. - Part of the splitting process of #3503. ## Solution - Move `Rect` to `bevy_ui` and rename it to `UiRect`. ## Reasons - `Rect` is only used in `bevy_ui` and therefore calling it `UiRect` makes the intent clearer. - We have two types that are called `Rect` currently and it's missleading (see `bevy_sprite::Rect` and #335). - Discussion in #3503. ## Changelog ### Changed - The `Rect` type got moved from `bevy_math` to `bevy_ui` and renamed to `UiRect`. ## Migration Guide - The `Rect` type got renamed to `UiRect`. To migrate you just have to change every occurrence of `Rect` to `UiRect`. Co-authored-by: KDecay <KDecayMusic@protonmail.com> |
||
![]() |
5155034a58 |
Converted exclusive systems to parallel systems wherever possible (#2774)
Closes #2767. Converted: - `play_queued_audio_system` - `change_window` |
||
![]() |
7a7f097485 |
Move Size to bevy_ui (#4285)
# Objective - Related #4276. - Part of the splitting process of #3503. ## Solution - Move `Size` to `bevy_ui`. ## Reasons - `Size` is only needed in `bevy_ui` (because it needs to use `Val` instead of `f32`), but it's also used as a worse `Vec2` replacement in other areas. - `Vec2` is more powerful than `Size` so it should be used whenever possible. - Discussion in #3503. ## Changelog ### Changed - The `Size` type got moved from `bevy_math` to `bevy_ui`. ## Migration Guide - The `Size` type got moved from `bevy::math` to `bevy::ui`. To migrate you just have to import `bevy::ui::Size` instead of `bevy::math::Math` or use the `bevy::prelude` instead. Co-authored-by: KDecay <KDecayMusic@protonmail.com> |
||
![]() |
f3a61327a4 |
Remove margins.rs (#4284)
# Objective - Closes #335. - Part of the splitting process of #3503. ## Solution - Remove the `margins.rs` file containing the `Margins` type. ## Reasons - It is unused inside of `bevy`. - The `Rect`/`UiRect` is identical to the `Margins` type and is also used for margins inside of `bevy` (rename of `Rect` happens in #4276) - Discussion in #3503. ## Changelog ### Removed - The `Margins` type got removed. ## Migration Guide - The `Margins` type got removed. To migrate you just have to change every occurrence of `Margins` to `UiRect`. |
||
![]() |
bf6de89622 |
use marker components for cameras instead of name strings (#3635)
**Problem** - whenever you want more than one of the builtin cameras (for example multiple windows, split screen, portals), you need to add a render graph node that executes the correct sub graph, extract the camera into the render world and add the correct `RenderPhase<T>` components - querying for the 3d camera is annoying because you need to compare the camera's name to e.g. `CameraPlugin::CAMERA_3d` **Solution** - Introduce the marker types `Camera3d`, `Camera2d` and `CameraUi` -> `Query<&mut Transform, With<Camera3d>>` works - `PerspectiveCameraBundle::new_3d()` and `PerspectiveCameraBundle::<Camera3d>::default()` contain the `Camera3d` marker - `OrthographicCameraBundle::new_3d()` has `Camera3d`, `OrthographicCameraBundle::new_2d()` has `Camera2d` - remove `ActiveCameras`, `ExtractedCameraNames` - run 2d, 3d and ui passes for every camera of their respective marker -> no custom setup for multiple windows example needed **Open questions** - do we need a replacement for `ActiveCameras`? What about a component `ActiveCamera { is_active: bool }` similar to `Visibility`? Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
32f7997c56 |
Partially document bevy_ui (#3526)
# Objective Updated the docs for bevy_ui as requested by #3492 ## Solution I have documented the parts I understand. anchors.rs is not in use and should be removed, thus I haven't documented that, and some of the more renderer-heavy code is beyond me and needs input from either cart or someone familiar with bevy rendering Co-authored-by: Troels Jessen <kairyuka@gmail.com> |
||
![]() |
0bae5bb8f4 |
Remove dead anchor.rs code (#3551)
# Objective - As noticed by @sheepyhead in #3526, `anchor.rs` is completely unused. ## Solution - Anchors away! |
||
![]() |
959a845704 |
bevy_ui: register Overflow type (#3443)
I forgot to register the new `Overflow` type in #3296. |
||
![]() |
340957994d |
Implement the Overflow::Hidden style property for UI (#3296)
# Objective This PR implements the `overflow` style property in `bevy_ui`. When set to `Overflow::Hidden`, the children of that node are clipped so that overflowing parts are not rendered. This is an important building block for UI widgets. ## Solution Clipping is done on the CPU so that it does not break batching. The clip regions update was implemented as a separate system for clarity, but it could be merged with the other UI systems to avoid doing an additional tree traversal. (I don't think it's important until we fix the layout performance issues though). A scrolling list was added to the `ui_pipelined` example to showcase `Overflow::Hidden`. For the sake of simplicity, it can only be scrolled with a mouse. |
||
![]() |
ffecb05a0a |
Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release. The examples are all ported over and operational with a few exceptions: * I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure. * Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example. * Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority. |
||
![]() |
b724a0f586 |
Down with the system! (#2496)
# Objective - Remove all the `.system()` possible. - Check for remaining missing cases. ## Solution - Remove all `.system()`, fix compile errors - 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446 |
||
![]() |
6d6bc2a8b4 |
Merge AppBuilder into App (#2531)
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet. You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away. Co-Authored-By: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
b1ed28e17e |
Hide re-exported docs (#1985)
Solves #1957 Co-authored-by: caelumLaron <caelum.laron@gmail.com> |
||
![]() |
2bc126e2ce |
Label for ui_focus_system (#1926)
Needed a label because of a conflict with some custom ui systems |
||
![]() |
be1c317d4e |
Resolve (most) internal system ambiguities (#1606)
* Adds labels and orderings to systems that need them (uses the new many-to-many labels for InputSystem) * Removes the Event, PreEvent, Scene, and Ui stages in favor of First, PreUpdate, and PostUpdate (there is more collapsing potential, such as the Asset stages and _maybe_ removing First, but those have more nuance so they should be handled separately) * Ambiguity detection now prints component conflicts * Removed broken change filters from flex calculation (which implicitly relied on the z-update system always modifying translation.z). This will require more work to make it behave as expected so i just removed it (and it was already doing this work every frame). |
||
![]() |
faeccd7a09 |
Reflection cleanup (#1536)
This is an effort to provide the correct `#[reflect_value(...)]` attributes where they are needed. Supersedes #1533 and resolves #1528. --- I am working under the following assumptions (thanks to @bjorn3 and @Davier for advice here): - Any `enum` that derives `Reflect` and one or more of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } needs a `#[reflect_value(...)]` attribute containing the same subset of { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } that is present on the derive. - Same as above for `struct` and `#[reflect(...)]`, respectively. - If a `struct` is used as a component, it should also have `#[reflect(Component)]` - All reflected types should be registered in their plugins I treated the following as components (added `#[reflect(Component)]` if necessary): - `bevy_render` - `struct RenderLayers` - `bevy_transform` - `struct GlobalTransform` - `struct Parent` - `struct Transform` - `bevy_ui` - `struct Style` Not treated as components: - `bevy_math` - `struct Size<T>` - `struct Rect<T>` - Note: The updates for `Size<T>` and `Rect<T>` in `bevy::math::geometry` required using @Davier's suggestion to add `+ PartialEq` to the trait bound. I then registered the specific types used over in `bevy_ui` such as `Size<Val>`, etc. in `bevy_ui`'s plugin, since `bevy::math` does not contain a plugin. - `bevy_render` - `struct Color` - `struct PipelineSpecialization` - `struct ShaderSpecialization` - `enum PrimitiveTopology` - `enum IndexFormat` Not Addressed: - I am not searching for components in Bevy that are _not_ reflected. So if there are components that are not reflected that should be reflected, that will need to be figured out in another PR. - I only added `#[reflect(...)]` or `#[reflect_value(...)]` entries for the set of four traits { `Serialize`, `Deserialize`, `PartialEq`, `Hash` } _if they were derived via `#[derive(...)]`_. I did not look for manual trait implementations of the same set of four, nor did I consider any traits outside the four. Are those other possibilities something that needs to be looked into? |
||
![]() |
3a2a68852c |
Bevy ECS V2 (#1525)
# Bevy ECS V2 This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details: * Complete World rewrite * Multiple component storage types: * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes) * Sparse Sets: fast add/remove, slower iteration * Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now) * Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364) * Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work) * Archetypes are now "just metadata", component storage is separate * Archetype Graph (for faster archetype changes) * Component Metadata * Configure component storage type * Retrieve information about component size/type/name/layout/send-ness/etc * Components are uniquely identified by a densely packed ComponentId * TypeIds are now totally optional (which should make implementing scripting easier) * Super fast "for_each" query iterators * Merged Resources into World. Resources are now just a special type of component * EntityRef/EntityMut builder apis (more efficient and more ergonomic) * Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere * Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime) * With/Without are still taken into account for conflicts, so this should still be comfy to use * Much simpler `IntoSystem` impl * Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId) * Safety Improvements * Entity reservation uses a normal world reference instead of unsafe transmute * QuerySets no longer transmute lifetimes * Made traits "unsafe" where relevant * More thorough safety docs * WorldCell * Exposes safe mutable access to multiple resources at a time in a World * Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)` * Simpler Bundle implementation * Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection" * Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` * Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default * Components now have is_send property (currently only resources support non-send) * More granular module organization * New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()` * `world.resource_scope()` for mutable access to resources and world at the same time * WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it * Significantly slimmed down SystemState in favor of individual SystemParam state * System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference) Fixes #1320 ## `World` Rewrite This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own! (the only shared code between the projects is the entity id allocator, which is already basically ideal) A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details. ## Component Storage (The Problem) Two ECS storage paradigms have gained a lot of traction over the years: * **Archetypal ECS**: * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity. * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype. * Enables super-fast Query iteration due to its cache-friendly data layout * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table" * **Sparse Set ECS**: * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids) * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array. * Adding/removing components is a cheap, constant time operation Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate. Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because: 1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform. 2. users need to take manual action to optimize Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance. ## Hybrid Component Storage (The Solution) In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed): * **Tables** (aka "archetypal" storage) * The default storage. If you don't configure anything, this is what you get * Fast iteration by default * Slower add/remove operations * **Sparse Sets** * Opt-in * Slower iteration * Faster add/remove operations These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set": ```rust world.register_component( ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet) ).unwrap(); ``` ## Archetypes Archetypes are now "just metadata" ... they no longer store components directly. They do store: * The `ComponentId`s of each of the Archetype's components (and that component's storage type) * Archetypes are uniquely defined by their component layouts * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype. * The `TableId` associated with the archetype * For now each archetype has exactly one table (which can have no components), * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it: * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components. * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later) * A list of entities that are in the archetype and the row id of the table they are in * ArchetypeComponentIds * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs * used by the schedule executor for cheap system access control * "Archetype Graph Edges" (see the next section) ## The "Archetype Graph" Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage. The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes. Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph. As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations. ## Stateful Queries World queries are now stateful. This allows us to: 1. Cache archetype (and table) matches * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs). 2. Cache Fetch and Filter state * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed 3. Incrementally build up state * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes) As a result, the direct `World` query api now looks like this: ```rust let mut query = world.query::<(&A, &mut B)>(); for (a, mut b) in query.iter_mut(&mut world) { } ``` Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world). However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam. ## Stateful SystemParams Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now. Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params). (credit goes to @DJMcNab for the initial idea and draft pr here #1364) ## Configurable SystemParams @DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters: ```rust fn foo(value: Local<usize>) { } app.add_system(foo.system().config(|c| c.0 = Some(10))); ``` ## Uber Fast "for_each" Query Iterators Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. ```rust fn system(query: Query<(&A, &mut B)>) { // you now have the option to do this for a speed boost query.for_each_mut(|(a, mut b)| { }); // however normal iterators are still available for (a, mut b) in query.iter_mut() { } } ``` I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`. We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr). ## Component Metadata `World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type. ## Significantly Cheaper `Access<T>` We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed. This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s. ## Merged Resources into World Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity). Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state. I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally). This pr merges Resources into World: ```rust world.insert_resource(1); world.insert_resource(2.0); let a = world.get_resource::<i32>().unwrap(); let mut b = world.get_resource_mut::<f64>().unwrap(); *b = 3.0; ``` Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier. _But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably! ## WorldCell WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access: ```rust let world_cell = world.cell(); let a = world_cell.get_resource_mut::<i32>().unwrap(); let b = world_cell.get_resource_mut::<f64>().unwrap(); ``` This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped. World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. The api is currently limited to resource access, but it can and should be extended to queries / entity component access. ## Resource Scopes WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal! Instead developers can use a "resource scope" ```rust world.resource_scope(|world: &mut World, a: &mut A| { }) ``` This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation. If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty. ## Query Conflicts Use ComponentId Instead of ArchetypeComponentId For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters: ```rust // these queries will never conflict due to their filters fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) { } ``` But it also has a significant downside: ```rust // these queries will not conflict _until_ an entity with A, B, and C is spawned fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) { } ``` The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing. In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace. To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict. ## EntityRef / EntityMut World entity operations on `main` require that the user passes in an `entity` id to each operation: ```rust let entity = world.spawn((A, )); // create a new entity with A world.get::<A>(entity); world.insert(entity, (B, C)); world.insert_one(entity, D); ``` This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required). These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity: ```rust // spawn now takes no inputs and returns an EntityMut let entity = world.spawn() .insert(A) // insert a single component into the entity .insert_bundle((B, C)) // insert a bundle of components into the entity .id() // id returns the Entity id // Returns EntityMut (or panics if the entity does not exist) world.entity_mut(entity) .insert(D) .insert_bundle(SomeBundle::default()); { // returns EntityRef (or panics if the entity does not exist) let d = world.entity(entity) .get::<D>() // gets the D component .unwrap(); // world.get still exists for ergonomics let d = world.get::<D>(entity).unwrap(); } // These variants return Options if you want to check existence instead of panicing world.get_entity_mut(entity) .unwrap() .insert(E); if let Some(entity_ref) = world.get_entity(entity) { let d = entity_ref.get::<D>().unwrap(); } ``` This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change. ## Safety Improvements * Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute * QuerySets no longer transmutes lifetimes * Made traits "unsafe" when implementing a trait incorrectly could cause unsafety * More thorough safety docs ## RemovedComponents SystemParam The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState: ```rust fn system(removed: RemovedComponents<T>) { for entity in removed.iter() { } } ``` ## Simpler Bundle implementation Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used. ## Unified WorldQuery and QueryFilter types (don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change) WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful). QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool. This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit. ## More Granular Modules World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here). ## Remaining Draft Work (to be done in this pr) * ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~ * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~ * ~~batch_iter / par_iter (currently stubbed out)~~ * ~~ChangedRes~~ * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~. * ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~ * ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~ * ~~Nested Bundles (if i find time)~~ ## Potential Future Work * Expand WorldCell to support queries. * Consider not allocating in the empty archetype on `world.spawn()` * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op * this actually regressed performance last time i tried it, but in theory it should be faster * Optimize SparseSet::insert (see `PERF` comment on insert) * Replace SparseArray `Option<T>` with T::MAX to cut down on branching * would enable cheaper get_unchecked() operations * upstream fixedbitset optimizations * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec) * fixedbitset could have a const constructor * Consider implementing Tags (archetype-specific by-value data that affects archetype identity) * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different. * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage. * Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints) * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code) * Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell * this is basically just "systems" so maybe it's not worth it * Add more world ops * `world.clear()` * `world.reserve<T: Bundle>(count: usize)` * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :) * Adapt Commands apis for consistency with new World apis ## Benchmarks key: * `bevy_old`: bevy `main` branch * `bevy`: this branch * `_foreach`: uses an optimized for_each iterator * ` _sparse`: uses sparse set storage (if unspecified assume table storage) * `_system`: runs inside a system (if unspecified assume test happens via direct world ops) ### Simple Insert (from ecs_bench_suite)  ### Simpler Iter (from ecs_bench_suite)  ### Fragment Iter (from ecs_bench_suite)  ### Sparse Fragmented Iter Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes  ### Schedule (from ecs_bench_suite)  ### Add Remove Component (from ecs_bench_suite)  ### Add Remove Component Big Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed  ### Get Component Looks up a single component value a large number of times  |
||
![]() |
e5b0c65c86 |
rename bevy_ui::node module so that bevy_ui::render::node isn't shadowed (#1464)
Previously the `mod node` shadowed the `pub use render::node`, and `CAMERA_UI`, `NODE` and `UI_PASS` constants couldn't be used. |
||
![]() |
c2a427f1a3
|
Non-string labels (#1423 continued) (#1473)
Non-string labels |
||
![]() |
d5a7330431
|
System sets and parallel executor v2 (#1144)
System sets and parallel executor v2 |
||
![]() |
f574c2c547
|
Render text in 2D scenes (#1122)
Render text in 2D scenes |
||
![]() |
841755aaf2
|
Adopt a Fetch pattern for SystemParams (#1074) |