bevy/crates/bevy_pbr/src/meshlet/meshlet_bindings.wgsl

307 lines
13 KiB
WebGPU Shading Language

#define_import_path bevy_pbr::meshlet_bindings
#import bevy_pbr::mesh_types::Mesh
#import bevy_render::view::View
#import bevy_pbr::prepass_bindings::PreviousViewUniforms
#import bevy_pbr::utils::octahedral_decode_signed
struct BvhNode {
aabbs: array<MeshletAabbErrorOffset, 8>,
lod_bounds: array<vec4<f32>, 8>,
child_counts: array<u32, 2>,
_padding: vec2<u32>,
}
struct Meshlet {
start_vertex_position_bit: u32,
start_vertex_attribute_id: u32,
start_index_id: u32,
packed_a: u32,
packed_b: u32,
min_vertex_position_channel_x: f32,
min_vertex_position_channel_y: f32,
min_vertex_position_channel_z: f32,
}
fn get_meshlet_vertex_count(meshlet: ptr<function, Meshlet>) -> u32 {
return extractBits((*meshlet).packed_a, 0u, 8u);
}
fn get_meshlet_triangle_count(meshlet: ptr<function, Meshlet>) -> u32 {
return extractBits((*meshlet).packed_a, 8u, 8u);
}
struct MeshletCullData {
aabb: MeshletAabbErrorOffset,
lod_group_sphere: vec4<f32>,
}
struct MeshletAabb {
center: vec3<f32>,
half_extent: vec3<f32>,
}
struct MeshletAabbErrorOffset {
center_and_error: vec4<f32>,
half_extent_and_child_offset: vec4<f32>,
}
fn get_aabb(aabb: ptr<function, MeshletAabbErrorOffset>) -> MeshletAabb {
return MeshletAabb(
(*aabb).center_and_error.xyz,
(*aabb).half_extent_and_child_offset.xyz,
);
}
fn get_aabb_error(aabb: ptr<function, MeshletAabbErrorOffset>) -> f32 {
return (*aabb).center_and_error.w;
}
fn get_aabb_child_offset(aabb: ptr<function, MeshletAabbErrorOffset>) -> u32 {
return bitcast<u32>((*aabb).half_extent_and_child_offset.w);
}
struct DispatchIndirectArgs {
x: atomic<u32>,
y: u32,
z: u32,
}
struct DrawIndirectArgs {
vertex_count: u32,
instance_count: atomic<u32>,
first_vertex: u32,
first_instance: u32,
}
// Either a BVH node or a meshlet, along with the instance it is associated with.
// Refers to BVH nodes in `meshlet_bvh_cull_queue` and `meshlet_second_pass_bvh_queue`, where `offset` is the index into `meshlet_bvh_nodes`.
// Refers to meshlets in `meshlet_meshlet_cull_queue` and `meshlet_raster_clusters`.
// In `meshlet_meshlet_cull_queue`, `offset` is the index into `meshlet_cull_data`.
// In `meshlet_raster_clusters`, `offset` is the index into `meshlets`.
struct InstancedOffset {
instance_id: u32,
offset: u32,
}
const CENTIMETERS_PER_METER = 100.0;
#ifdef MESHLET_INSTANCE_CULLING_PASS
struct Constants { scene_instance_count: u32 }
var<push_constant> constants: Constants;
// Cull data
@group(0) @binding(0) var depth_pyramid: texture_2d<f32>;
@group(0) @binding(1) var<uniform> view: View;
@group(0) @binding(2) var<uniform> previous_view: PreviousViewUniforms;
// Per entity instance data
@group(0) @binding(3) var<storage, read> meshlet_instance_uniforms: array<Mesh>;
@group(0) @binding(4) var<storage, read> meshlet_view_instance_visibility: array<u32>; // 1 bit per entity instance, packed as a bitmask
@group(0) @binding(5) var<storage, read> meshlet_instance_aabbs: array<MeshletAabb>;
@group(0) @binding(6) var<storage, read> meshlet_instance_bvh_root_nodes: array<u32>;
// BVH cull queue data
@group(0) @binding(7) var<storage, read_write> meshlet_bvh_cull_count_write: atomic<u32>;
@group(0) @binding(8) var<storage, read_write> meshlet_bvh_cull_dispatch: DispatchIndirectArgs;
@group(0) @binding(9) var<storage, read_write> meshlet_bvh_cull_queue: array<InstancedOffset>;
// Second pass queue data
#ifdef MESHLET_FIRST_CULLING_PASS
@group(0) @binding(10) var<storage, read_write> meshlet_second_pass_instance_count: atomic<u32>;
@group(0) @binding(11) var<storage, read_write> meshlet_second_pass_instance_dispatch: DispatchIndirectArgs;
@group(0) @binding(12) var<storage, read_write> meshlet_second_pass_instance_candidates: array<u32>;
#else
@group(0) @binding(10) var<storage, read> meshlet_second_pass_instance_count: u32;
@group(0) @binding(11) var<storage, read> meshlet_second_pass_instance_candidates: array<u32>;
#endif
#endif
#ifdef MESHLET_BVH_CULLING_PASS
struct Constants { read_from_front: u32, rightmost_slot: u32 }
var<push_constant> constants: Constants;
// Cull data
@group(0) @binding(0) var depth_pyramid: texture_2d<f32>; // From the end of the last frame for the first culling pass, and from the first raster pass for the second culling pass
@group(0) @binding(1) var<uniform> view: View;
@group(0) @binding(2) var<uniform> previous_view: PreviousViewUniforms;
// Global mesh data
@group(0) @binding(3) var<storage, read> meshlet_bvh_nodes: array<BvhNode>;
// Per entity instance data
@group(0) @binding(4) var<storage, read> meshlet_instance_uniforms: array<Mesh>;
// BVH cull queue data
@group(0) @binding(5) var<storage, read> meshlet_bvh_cull_count_read: u32;
@group(0) @binding(6) var<storage, read_write> meshlet_bvh_cull_count_write: atomic<u32>;
@group(0) @binding(7) var<storage, read_write> meshlet_bvh_cull_dispatch: DispatchIndirectArgs;
@group(0) @binding(8) var<storage, read_write> meshlet_bvh_cull_queue: array<InstancedOffset>;
// Meshlet cull queue data
@group(0) @binding(9) var<storage, read_write> meshlet_meshlet_cull_count_early: atomic<u32>;
@group(0) @binding(10) var<storage, read_write> meshlet_meshlet_cull_count_late: atomic<u32>;
@group(0) @binding(11) var<storage, read_write> meshlet_meshlet_cull_dispatch_early: DispatchIndirectArgs;
@group(0) @binding(12) var<storage, read_write> meshlet_meshlet_cull_dispatch_late: DispatchIndirectArgs;
@group(0) @binding(13) var<storage, read_write> meshlet_meshlet_cull_queue: array<InstancedOffset>;
// Second pass queue data
#ifdef MESHLET_FIRST_CULLING_PASS
@group(0) @binding(14) var<storage, read_write> meshlet_second_pass_bvh_count: atomic<u32>;
@group(0) @binding(15) var<storage, read_write> meshlet_second_pass_bvh_dispatch: DispatchIndirectArgs;
@group(0) @binding(16) var<storage, read_write> meshlet_second_pass_bvh_queue: array<InstancedOffset>;
#endif
#endif
#ifdef MESHLET_CLUSTER_CULLING_PASS
struct Constants { rightmost_slot: u32 }
var<push_constant> constants: Constants;
// Cull data
@group(0) @binding(0) var depth_pyramid: texture_2d<f32>; // From the end of the last frame for the first culling pass, and from the first raster pass for the second culling pass
@group(0) @binding(1) var<uniform> view: View;
@group(0) @binding(2) var<uniform> previous_view: PreviousViewUniforms;
// Global mesh data
@group(0) @binding(3) var<storage, read> meshlet_cull_data: array<MeshletCullData>;
// Per entity instance data
@group(0) @binding(4) var<storage, read> meshlet_instance_uniforms: array<Mesh>;
// Raster queue data
@group(0) @binding(5) var<storage, read_write> meshlet_software_raster_indirect_args: DispatchIndirectArgs;
@group(0) @binding(6) var<storage, read_write> meshlet_hardware_raster_indirect_args: DrawIndirectArgs;
@group(0) @binding(7) var<storage, read> meshlet_previous_raster_counts: array<u32>;
@group(0) @binding(8) var<storage, read_write> meshlet_raster_clusters: array<InstancedOffset>;
// Meshlet cull queue data
@group(0) @binding(9) var<storage, read> meshlet_meshlet_cull_count_read: u32;
// Second pass queue data
#ifdef MESHLET_FIRST_CULLING_PASS
@group(0) @binding(10) var<storage, read_write> meshlet_meshlet_cull_count_write: atomic<u32>;
@group(0) @binding(11) var<storage, read_write> meshlet_meshlet_cull_dispatch: DispatchIndirectArgs;
@group(0) @binding(12) var<storage, read_write> meshlet_meshlet_cull_queue: array<InstancedOffset>;
#else
@group(0) @binding(10) var<storage, read> meshlet_meshlet_cull_queue: array<InstancedOffset>;
#endif
#endif
#ifdef MESHLET_VISIBILITY_BUFFER_RASTER_PASS
@group(0) @binding(0) var<storage, read> meshlet_raster_clusters: array<InstancedOffset>; // Per cluster
@group(0) @binding(1) var<storage, read> meshlets: array<Meshlet>; // Per meshlet
@group(0) @binding(2) var<storage, read> meshlet_indices: array<u32>; // Many per meshlet
@group(0) @binding(3) var<storage, read> meshlet_vertex_positions: array<u32>; // Many per meshlet
@group(0) @binding(4) var<storage, read> meshlet_instance_uniforms: array<Mesh>; // Per entity instance
@group(0) @binding(5) var<storage, read> meshlet_previous_raster_counts: array<u32>;
@group(0) @binding(6) var<storage, read> meshlet_software_raster_cluster_count: u32;
#ifdef MESHLET_VISIBILITY_BUFFER_RASTER_PASS_OUTPUT
@group(0) @binding(7) var meshlet_visibility_buffer: texture_storage_2d<r64uint, atomic>;
#else
@group(0) @binding(7) var meshlet_visibility_buffer: texture_storage_2d<r32uint, atomic>;
#endif
@group(0) @binding(8) var<uniform> view: View;
// TODO: Load only twice, instead of 3x in cases where you load 3 indices per thread?
fn get_meshlet_vertex_id(index_id: u32) -> u32 {
let packed_index = meshlet_indices[index_id >> 2u];
let bit_offset = (index_id & 3u) * 8u;
return extractBits(packed_index, bit_offset, 8u);
}
fn get_meshlet_vertex_position(meshlet: ptr<function, Meshlet>, vertex_id: u32) -> vec3<f32> {
// Get bitstream start for the vertex
let unpacked = unpack4xU8((*meshlet).packed_b);
let bits_per_channel = unpacked.xyz;
let bits_per_vertex = bits_per_channel.x + bits_per_channel.y + bits_per_channel.z;
var start_bit = (*meshlet).start_vertex_position_bit + (vertex_id * bits_per_vertex);
// Read each vertex channel from the bitstream
var vertex_position_packed = vec3(0u);
for (var i = 0u; i < 3u; i++) {
let lower_word_index = start_bit >> 5u;
let lower_word_bit_offset = start_bit & 31u;
var next_32_bits = meshlet_vertex_positions[lower_word_index] >> lower_word_bit_offset;
if lower_word_bit_offset + bits_per_channel[i] > 32u {
next_32_bits |= meshlet_vertex_positions[lower_word_index + 1u] << (32u - lower_word_bit_offset);
}
vertex_position_packed[i] = extractBits(next_32_bits, 0u, bits_per_channel[i]);
start_bit += bits_per_channel[i];
}
// Remap [0, range_max - range_min] vec3<u32> to [range_min, range_max] vec3<f32>
var vertex_position = vec3<f32>(vertex_position_packed) + vec3(
(*meshlet).min_vertex_position_channel_x,
(*meshlet).min_vertex_position_channel_y,
(*meshlet).min_vertex_position_channel_z,
);
// Reverse vertex quantization
let vertex_position_quantization_factor = unpacked.w;
vertex_position /= f32(1u << vertex_position_quantization_factor) * CENTIMETERS_PER_METER;
return vertex_position;
}
#endif
#ifdef MESHLET_MESH_MATERIAL_PASS
@group(2) @binding(0) var meshlet_visibility_buffer: texture_storage_2d<r64uint, read>;
@group(2) @binding(1) var<storage, read> meshlet_raster_clusters: array<InstancedOffset>; // Per cluster
@group(2) @binding(2) var<storage, read> meshlets: array<Meshlet>; // Per meshlet
@group(2) @binding(3) var<storage, read> meshlet_indices: array<u32>; // Many per meshlet
@group(2) @binding(4) var<storage, read> meshlet_vertex_positions: array<u32>; // Many per meshlet
@group(2) @binding(5) var<storage, read> meshlet_vertex_normals: array<u32>; // Many per meshlet
@group(2) @binding(6) var<storage, read> meshlet_vertex_uvs: array<vec2<f32>>; // Many per meshlet
@group(2) @binding(7) var<storage, read> meshlet_instance_uniforms: array<Mesh>; // Per entity instance
// TODO: Load only twice, instead of 3x in cases where you load 3 indices per thread?
fn get_meshlet_vertex_id(index_id: u32) -> u32 {
let packed_index = meshlet_indices[index_id >> 2u];
let bit_offset = (index_id & 3u) * 8u;
return extractBits(packed_index, bit_offset, 8u);
}
fn get_meshlet_vertex_position(meshlet: ptr<function, Meshlet>, vertex_id: u32) -> vec3<f32> {
// Get bitstream start for the vertex
let unpacked = unpack4xU8((*meshlet).packed_b);
let bits_per_channel = unpacked.xyz;
let bits_per_vertex = bits_per_channel.x + bits_per_channel.y + bits_per_channel.z;
var start_bit = (*meshlet).start_vertex_position_bit + (vertex_id * bits_per_vertex);
// Read each vertex channel from the bitstream
var vertex_position_packed = vec3(0u);
for (var i = 0u; i < 3u; i++) {
let lower_word_index = start_bit >> 5u;
let lower_word_bit_offset = start_bit & 31u;
var next_32_bits = meshlet_vertex_positions[lower_word_index] >> lower_word_bit_offset;
if lower_word_bit_offset + bits_per_channel[i] > 32u {
next_32_bits |= meshlet_vertex_positions[lower_word_index + 1u] << (32u - lower_word_bit_offset);
}
vertex_position_packed[i] = extractBits(next_32_bits, 0u, bits_per_channel[i]);
start_bit += bits_per_channel[i];
}
// Remap [0, range_max - range_min] vec3<u32> to [range_min, range_max] vec3<f32>
var vertex_position = vec3<f32>(vertex_position_packed) + vec3(
(*meshlet).min_vertex_position_channel_x,
(*meshlet).min_vertex_position_channel_y,
(*meshlet).min_vertex_position_channel_z,
);
// Reverse vertex quantization
let vertex_position_quantization_factor = unpacked.w;
vertex_position /= f32(1u << vertex_position_quantization_factor) * CENTIMETERS_PER_METER;
return vertex_position;
}
fn get_meshlet_vertex_normal(meshlet: ptr<function, Meshlet>, vertex_id: u32) -> vec3<f32> {
let packed_normal = meshlet_vertex_normals[(*meshlet).start_vertex_attribute_id + vertex_id];
return octahedral_decode_signed(unpack2x16snorm(packed_normal));
}
fn get_meshlet_vertex_uv(meshlet: ptr<function, Meshlet>, vertex_id: u32) -> vec2<f32> {
return meshlet_vertex_uvs[(*meshlet).start_vertex_attribute_id + vertex_id];
}
#endif