bevy/crates/bevy_render/src/render_resource/buffer_vec.rs
IceSentry a22ecede49
Only create changed buffer if it already exists (#13242)
# Objective

- `DynamicUniformBuffer` tries to create a buffer as soon as the changed
flag is set to true. This doesn't work correctly when the buffer wasn't
already created. This currently creates a crash because it's trying to
create a buffer of size 0 if the flag is set but there's no buffer yet.

## Solution

- Don't create a changed buffer until there's data that needs to be
written to a buffer.

## Testing

- run `cargo run --example scene_viewer` and see that it doesn't crash
anymore

Fixes #13235
2024-05-05 22:16:11 +00:00

426 lines
13 KiB
Rust

use std::{iter, marker::PhantomData};
use crate::{
render_resource::Buffer,
renderer::{RenderDevice, RenderQueue},
};
use bytemuck::{must_cast_slice, NoUninit};
use encase::{
internal::{WriteInto, Writer},
ShaderType,
};
use wgpu::{BufferAddress, BufferUsages};
use super::GpuArrayBufferable;
/// A structure for storing raw bytes that have already been properly formatted
/// for use by the GPU.
///
/// "Properly formatted" means that item data already meets the alignment and padding
/// requirements for how it will be used on the GPU. The item type must implement [`NoUninit`]
/// for its data representation to be directly copyable.
///
/// Index, vertex, and instance-rate vertex buffers have no alignment nor padding requirements and
/// so this helper type is a good choice for them.
///
/// The contained data is stored in system RAM. Calling [`reserve`](RawBufferVec::reserve)
/// allocates VRAM from the [`RenderDevice`].
/// [`write_buffer`](RawBufferVec::write_buffer) queues copying of the data
/// from system RAM to VRAM.
///
/// Other options for storing GPU-accessible data are:
/// * [`StorageBuffer`](crate::render_resource::StorageBuffer)
/// * [`DynamicStorageBuffer`](crate::render_resource::DynamicStorageBuffer)
/// * [`UniformBuffer`](crate::render_resource::UniformBuffer)
/// * [`DynamicUniformBuffer`](crate::render_resource::DynamicUniformBuffer)
/// * [`GpuArrayBuffer`](crate::render_resource::GpuArrayBuffer)
/// * [`BufferVec`]
/// * [`Texture`](crate::render_resource::Texture)
pub struct RawBufferVec<T: NoUninit> {
values: Vec<T>,
buffer: Option<Buffer>,
capacity: usize,
item_size: usize,
buffer_usage: BufferUsages,
label: Option<String>,
changed: bool,
}
impl<T: NoUninit> RawBufferVec<T> {
pub const fn new(buffer_usage: BufferUsages) -> Self {
Self {
values: Vec::new(),
buffer: None,
capacity: 0,
item_size: std::mem::size_of::<T>(),
buffer_usage,
label: None,
changed: false,
}
}
#[inline]
pub fn buffer(&self) -> Option<&Buffer> {
self.buffer.as_ref()
}
#[inline]
pub fn capacity(&self) -> usize {
self.capacity
}
#[inline]
pub fn len(&self) -> usize {
self.values.len()
}
#[inline]
pub fn is_empty(&self) -> bool {
self.values.is_empty()
}
pub fn push(&mut self, value: T) -> usize {
let index = self.values.len();
self.values.push(value);
index
}
pub fn append(&mut self, other: &mut RawBufferVec<T>) {
self.values.append(&mut other.values);
}
pub fn set_label(&mut self, label: Option<&str>) {
let label = label.map(str::to_string);
if label != self.label {
self.changed = true;
}
self.label = label;
}
pub fn get_label(&self) -> Option<&str> {
self.label.as_deref()
}
/// Creates a [`Buffer`] on the [`RenderDevice`] with size
/// at least `std::mem::size_of::<T>() * capacity`, unless a such a buffer already exists.
///
/// If a [`Buffer`] exists, but is too small, references to it will be discarded,
/// and a new [`Buffer`] will be created. Any previously created [`Buffer`]s
/// that are no longer referenced will be deleted by the [`RenderDevice`]
/// once it is done using them (typically 1-2 frames).
///
/// In addition to any [`BufferUsages`] provided when
/// the `RawBufferVec` was created, the buffer on the [`RenderDevice`]
/// is marked as [`BufferUsages::COPY_DST`](BufferUsages).
pub fn reserve(&mut self, capacity: usize, device: &RenderDevice) {
let size = self.item_size * capacity;
if capacity > self.capacity || (self.changed && size > 0) {
self.capacity = capacity;
self.buffer = Some(device.create_buffer(&wgpu::BufferDescriptor {
label: self.label.as_deref(),
size: size as BufferAddress,
usage: BufferUsages::COPY_DST | self.buffer_usage,
mapped_at_creation: false,
}));
self.changed = false;
}
}
/// Queues writing of data from system RAM to VRAM using the [`RenderDevice`]
/// and the provided [`RenderQueue`].
///
/// Before queuing the write, a [`reserve`](RawBufferVec::reserve) operation
/// is executed.
pub fn write_buffer(&mut self, device: &RenderDevice, queue: &RenderQueue) {
if self.values.is_empty() {
return;
}
self.reserve(self.values.len(), device);
if let Some(buffer) = &self.buffer {
let range = 0..self.item_size * self.values.len();
let bytes: &[u8] = must_cast_slice(&self.values);
queue.write_buffer(buffer, 0, &bytes[range]);
}
}
pub fn truncate(&mut self, len: usize) {
self.values.truncate(len);
}
pub fn clear(&mut self) {
self.values.clear();
}
pub fn values(&self) -> &Vec<T> {
&self.values
}
pub fn values_mut(&mut self) -> &mut Vec<T> {
&mut self.values
}
}
impl<T: NoUninit> Extend<T> for RawBufferVec<T> {
#[inline]
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
self.values.extend(iter);
}
}
/// Like [`RawBufferVec`], but doesn't require that the data type `T` be
/// [`NoUninit`].
///
/// This is a high-performance data structure that you should use whenever
/// possible if your data is more complex than is suitable for [`RawBufferVec`].
/// The [`ShaderType`] trait from the `encase` library is used to ensure that
/// the data is correctly aligned for use by the GPU.
///
/// For performance reasons, unlike [`RawBufferVec`], this type doesn't allow
/// CPU access to the data after it's been added via [`BufferVec::push`]. If you
/// need CPU access to the data, consider another type, such as
/// [`StorageBuffer`].
pub struct BufferVec<T>
where
T: ShaderType + WriteInto,
{
data: Vec<u8>,
buffer: Option<Buffer>,
capacity: usize,
buffer_usage: BufferUsages,
label: Option<String>,
label_changed: bool,
phantom: PhantomData<T>,
}
impl<T> BufferVec<T>
where
T: ShaderType + WriteInto,
{
/// Creates a new [`BufferVec`] with the given [`BufferUsages`].
pub const fn new(buffer_usage: BufferUsages) -> Self {
Self {
data: vec![],
buffer: None,
capacity: 0,
buffer_usage,
label: None,
label_changed: false,
phantom: PhantomData,
}
}
/// Returns a handle to the buffer, if the data has been uploaded.
#[inline]
pub fn buffer(&self) -> Option<&Buffer> {
self.buffer.as_ref()
}
/// Returns the amount of space that the GPU will use before reallocating.
#[inline]
pub fn capacity(&self) -> usize {
self.capacity
}
/// Returns the number of items that have been pushed to this buffer.
#[inline]
pub fn len(&self) -> usize {
self.data.len() / u64::from(T::min_size()) as usize
}
/// Returns true if the buffer is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
/// Adds a new value and returns its index.
pub fn push(&mut self, value: T) -> usize {
let element_size = u64::from(T::min_size()) as usize;
let offset = self.data.len();
// TODO: Consider using unsafe code to push uninitialized, to prevent
// the zeroing. It shows up in profiles.
self.data.extend(iter::repeat(0).take(element_size));
// Take a slice of the new data for `write_into` to use. This is
// important: it hoists the bounds check up here so that the compiler
// can eliminate all the bounds checks that `write_into` will emit.
let mut dest = &mut self.data[offset..(offset + element_size)];
value.write_into(&mut Writer::new(&value, &mut dest, 0).unwrap());
offset / u64::from(T::min_size()) as usize
}
/// Changes the debugging label of the buffer.
///
/// The next time the buffer is updated (via [`reserve`]), Bevy will inform
/// the driver of the new label.
pub fn set_label(&mut self, label: Option<&str>) {
let label = label.map(str::to_string);
if label != self.label {
self.label_changed = true;
}
self.label = label;
}
/// Returns the label
pub fn get_label(&self) -> Option<&str> {
self.label.as_deref()
}
/// Creates a [`Buffer`] on the [`RenderDevice`] with size
/// at least `std::mem::size_of::<T>() * capacity`, unless such a buffer already exists.
///
/// If a [`Buffer`] exists, but is too small, references to it will be discarded,
/// and a new [`Buffer`] will be created. Any previously created [`Buffer`]s
/// that are no longer referenced will be deleted by the [`RenderDevice`]
/// once it is done using them (typically 1-2 frames).
///
/// In addition to any [`BufferUsages`] provided when
/// the `BufferVec` was created, the buffer on the [`RenderDevice`]
/// is marked as [`BufferUsages::COPY_DST`](BufferUsages).
pub fn reserve(&mut self, capacity: usize, device: &RenderDevice) {
if capacity <= self.capacity && !self.label_changed {
return;
}
self.capacity = capacity;
let size = u64::from(T::min_size()) as usize * capacity;
self.buffer = Some(device.create_buffer(&wgpu::BufferDescriptor {
label: self.label.as_deref(),
size: size as BufferAddress,
usage: BufferUsages::COPY_DST | self.buffer_usage,
mapped_at_creation: false,
}));
self.label_changed = false;
}
/// Queues writing of data from system RAM to VRAM using the [`RenderDevice`]
/// and the provided [`RenderQueue`].
///
/// Before queuing the write, a [`reserve`](BufferVec::reserve) operation is
/// executed.
pub fn write_buffer(&mut self, device: &RenderDevice, queue: &RenderQueue) {
if self.data.is_empty() {
return;
}
self.reserve(self.data.len() / u64::from(T::min_size()) as usize, device);
let Some(buffer) = &self.buffer else { return };
queue.write_buffer(buffer, 0, &self.data);
}
/// Reduces the length of the buffer.
pub fn truncate(&mut self, len: usize) {
self.data.truncate(u64::from(T::min_size()) as usize * len);
}
/// Removes all elements from the buffer.
pub fn clear(&mut self) {
self.data.clear();
}
}
/// Like a [`BufferVec`], but only reserves space on the GPU for elements
/// instead of initializing them CPU-side.
///
/// This type is useful when you're accumulating "output slots" for a GPU
/// compute shader to write into.
///
/// The type `T` need not be [`NoUninit`], unlike [`RawBufferVec`]; it only has to
/// be [`GpuArrayBufferable`].
pub struct UninitBufferVec<T>
where
T: GpuArrayBufferable,
{
buffer: Option<Buffer>,
len: usize,
capacity: usize,
item_size: usize,
buffer_usage: BufferUsages,
label: Option<String>,
label_changed: bool,
phantom: PhantomData<T>,
}
impl<T> UninitBufferVec<T>
where
T: GpuArrayBufferable,
{
/// Creates a new [`UninitBufferVec`] with the given [`BufferUsages`].
pub const fn new(buffer_usage: BufferUsages) -> Self {
Self {
len: 0,
buffer: None,
capacity: 0,
item_size: std::mem::size_of::<T>(),
buffer_usage,
label: None,
label_changed: false,
phantom: PhantomData,
}
}
/// Returns the buffer, if allocated.
#[inline]
pub fn buffer(&self) -> Option<&Buffer> {
self.buffer.as_ref()
}
/// Reserves space for one more element in the buffer and returns its index.
pub fn add(&mut self) -> usize {
let index = self.len;
self.len += 1;
index
}
/// Returns true if no elements have been added to this [`UninitBufferVec`].
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Removes all elements from the buffer.
pub fn clear(&mut self) {
self.len = 0;
}
/// Returns the length of the buffer.
pub fn len(&self) -> usize {
self.len
}
/// Materializes the buffer on the GPU with space for `capacity` elements.
///
/// If the buffer is already big enough, this function doesn't reallocate
/// the buffer.
pub fn reserve(&mut self, capacity: usize, device: &RenderDevice) {
if capacity <= self.capacity && !self.label_changed {
return;
}
self.capacity = capacity;
let size = self.item_size * capacity;
self.buffer = Some(device.create_buffer(&wgpu::BufferDescriptor {
label: self.label.as_deref(),
size: size as wgpu::BufferAddress,
usage: BufferUsages::COPY_DST | self.buffer_usage,
mapped_at_creation: false,
}));
self.label_changed = false;
}
/// Materializes the buffer on the GPU, with an appropriate size for the
/// elements that have been pushed so far.
pub fn write_buffer(&mut self, device: &RenderDevice) {
if !self.is_empty() {
self.reserve(self.len, device);
}
}
}