bevy/crates/bevy_math/src/primitives/dim2.rs
Rob Parrett 651b22f31f
Update typos (#17126)
# Objective

Use the latest version of `typos` and fix the typos that it now detects

# Additional Info

By the way, `typos` has a "low priority typo suggestions issue" where we
can throw typos we find that `typos` doesn't catch.

(This link may go stale) https://github.com/crate-ci/typos/issues/1200
2025-01-03 17:44:26 +00:00

2252 lines
72 KiB
Rust

use core::f32::consts::{FRAC_1_SQRT_2, FRAC_PI_2, FRAC_PI_3, PI};
use derive_more::derive::From;
use thiserror::Error;
use super::{Measured2d, Primitive2d, WindingOrder};
use crate::{
ops::{self, FloatPow},
Dir2, Vec2,
};
#[cfg(feature = "alloc")]
use super::polygon::is_polygon_simple;
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
#[cfg(feature = "alloc")]
use alloc::{boxed::Box, vec::Vec};
/// A circle primitive, representing the set of points some distance from the origin
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Circle {
/// The radius of the circle
pub radius: f32,
}
impl Primitive2d for Circle {}
impl Default for Circle {
/// Returns the default [`Circle`] with a radius of `0.5`.
fn default() -> Self {
Self { radius: 0.5 }
}
}
impl Circle {
/// Create a new [`Circle`] from a `radius`
#[inline(always)]
pub const fn new(radius: f32) -> Self {
Self { radius }
}
/// Get the diameter of the circle
#[inline(always)]
pub fn diameter(&self) -> f32 {
2.0 * self.radius
}
/// Finds the point on the circle that is closest to the given `point`.
///
/// If the point is outside the circle, the returned point will be on the perimeter of the circle.
/// Otherwise, it will be inside the circle and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
let distance_squared = point.length_squared();
if distance_squared <= self.radius.squared() {
// The point is inside the circle.
point
} else {
// The point is outside the circle.
// Find the closest point on the perimeter of the circle.
let dir_to_point = point / ops::sqrt(distance_squared);
self.radius * dir_to_point
}
}
}
impl Measured2d for Circle {
/// Get the area of the circle
#[inline(always)]
fn area(&self) -> f32 {
PI * self.radius.squared()
}
/// Get the perimeter or circumference of the circle
#[inline(always)]
#[doc(alias = "circumference")]
fn perimeter(&self) -> f32 {
2.0 * PI * self.radius
}
}
/// A primitive representing an arc between two points on a circle.
///
/// An arc has no area.
/// If you want to include the portion of a circle's area swept out by the arc,
/// use the pie-shaped [`CircularSector`].
/// If you want to include only the space inside the convex hull of the arc,
/// use the bowl-shaped [`CircularSegment`].
///
/// The arc is drawn starting from [`Vec2::Y`], extending by `half_angle` radians on
/// either side. The center of the circle is the origin [`Vec2::ZERO`]. Note that this
/// means that the origin may not be within the `Arc2d`'s convex hull.
///
/// **Warning:** Arcs with negative angle or radius, or with angle greater than an entire circle, are not officially supported.
/// It is recommended to normalize arcs to have an angle in [0, 2π].
#[derive(Clone, Copy, Debug, PartialEq)]
#[doc(alias("CircularArc", "CircleArc"))]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Arc2d {
/// The radius of the circle
pub radius: f32,
/// Half the angle defining the arc
pub half_angle: f32,
}
impl Primitive2d for Arc2d {}
impl Default for Arc2d {
/// Returns the default [`Arc2d`] with radius `0.5`, covering one third of a circle
fn default() -> Self {
Self {
radius: 0.5,
half_angle: 2.0 * FRAC_PI_3,
}
}
}
impl Arc2d {
/// Create a new [`Arc2d`] from a `radius` and a `half_angle`
#[inline(always)]
pub fn new(radius: f32, half_angle: f32) -> Self {
Self { radius, half_angle }
}
/// Create a new [`Arc2d`] from a `radius` and an `angle` in radians
#[inline(always)]
pub fn from_radians(radius: f32, angle: f32) -> Self {
Self {
radius,
half_angle: angle / 2.0,
}
}
/// Create a new [`Arc2d`] from a `radius` and an `angle` in degrees.
#[inline(always)]
pub fn from_degrees(radius: f32, angle: f32) -> Self {
Self {
radius,
half_angle: angle.to_radians() / 2.0,
}
}
/// Create a new [`Arc2d`] from a `radius` and a `fraction` of a single turn.
///
/// For instance, `0.5` turns is a semicircle.
#[inline(always)]
pub fn from_turns(radius: f32, fraction: f32) -> Self {
Self {
radius,
half_angle: fraction * PI,
}
}
/// Get the angle of the arc
#[inline(always)]
pub fn angle(&self) -> f32 {
self.half_angle * 2.0
}
/// Get the length of the arc
#[inline(always)]
pub fn length(&self) -> f32 {
self.angle() * self.radius
}
/// Get the right-hand end point of the arc
#[inline(always)]
pub fn right_endpoint(&self) -> Vec2 {
self.radius * Vec2::from_angle(FRAC_PI_2 - self.half_angle)
}
/// Get the left-hand end point of the arc
#[inline(always)]
pub fn left_endpoint(&self) -> Vec2 {
self.radius * Vec2::from_angle(FRAC_PI_2 + self.half_angle)
}
/// Get the endpoints of the arc
#[inline(always)]
pub fn endpoints(&self) -> [Vec2; 2] {
[self.left_endpoint(), self.right_endpoint()]
}
/// Get the midpoint of the arc
#[inline]
pub fn midpoint(&self) -> Vec2 {
self.radius * Vec2::Y
}
/// Get half the distance between the endpoints (half the length of the chord)
#[inline(always)]
pub fn half_chord_length(&self) -> f32 {
self.radius * ops::sin(self.half_angle)
}
/// Get the distance between the endpoints (the length of the chord)
#[inline(always)]
pub fn chord_length(&self) -> f32 {
2.0 * self.half_chord_length()
}
/// Get the midpoint of the two endpoints (the midpoint of the chord)
#[inline(always)]
pub fn chord_midpoint(&self) -> Vec2 {
self.apothem() * Vec2::Y
}
/// Get the length of the apothem of this arc, that is,
/// the distance from the center of the circle to the midpoint of the chord, in the direction of the midpoint of the arc.
/// Equivalently, the [`radius`](Self::radius) minus the [`sagitta`](Self::sagitta).
///
/// Note that for a [`major`](Self::is_major) arc, the apothem will be negative.
#[inline(always)]
// Naming note: Various sources are inconsistent as to whether the apothem is the segment between the center and the
// midpoint of a chord, or the length of that segment. Given this confusion, we've opted for the definition
// used by Wolfram MathWorld, which is the distance rather than the segment.
pub fn apothem(&self) -> f32 {
let sign = if self.is_minor() { 1.0 } else { -1.0 };
sign * ops::sqrt(self.radius.squared() - self.half_chord_length().squared())
}
/// Get the length of the sagitta of this arc, that is,
/// the length of the line between the midpoints of the arc and its chord.
/// Equivalently, the height of the triangle whose base is the chord and whose apex is the midpoint of the arc.
///
/// The sagitta is also the sum of the [`radius`](Self::radius) and the [`apothem`](Self::apothem).
pub fn sagitta(&self) -> f32 {
self.radius - self.apothem()
}
/// Produces true if the arc is at most half a circle.
///
/// **Note:** This is not the negation of [`is_major`](Self::is_major): an exact semicircle is both major and minor.
#[inline(always)]
pub fn is_minor(&self) -> bool {
self.half_angle <= FRAC_PI_2
}
/// Produces true if the arc is at least half a circle.
///
/// **Note:** This is not the negation of [`is_minor`](Self::is_minor): an exact semicircle is both major and minor.
#[inline(always)]
pub fn is_major(&self) -> bool {
self.half_angle >= FRAC_PI_2
}
}
/// A primitive representing a circular sector: a pie slice of a circle.
///
/// The segment is positioned so that it always includes [`Vec2::Y`] and is vertically symmetrical.
/// To orient the sector differently, apply a rotation.
/// The sector is drawn with the center of its circle at the origin [`Vec2::ZERO`].
///
/// **Warning:** Circular sectors with negative angle or radius, or with angle greater than an entire circle, are not officially supported.
/// We recommend normalizing circular sectors to have an angle in [0, 2π].
#[derive(Clone, Copy, Debug, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct CircularSector {
/// The arc defining the sector
#[cfg_attr(all(feature = "serialize", feature = "alloc"), serde(flatten))]
pub arc: Arc2d,
}
impl Primitive2d for CircularSector {}
impl Default for CircularSector {
/// Returns the default [`CircularSector`] with radius `0.5` and covering a third of a circle
fn default() -> Self {
Self::from(Arc2d::default())
}
}
impl Measured2d for CircularSector {
#[inline(always)]
fn area(&self) -> f32 {
self.arc.radius.squared() * self.arc.half_angle
}
#[inline(always)]
fn perimeter(&self) -> f32 {
if self.half_angle() >= PI {
self.arc.radius * 2.0 * PI
} else {
2.0 * self.radius() + self.arc_length()
}
}
}
impl CircularSector {
/// Create a new [`CircularSector`] from a `radius` and an `angle`
#[inline(always)]
pub fn new(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::new(radius, angle))
}
/// Create a new [`CircularSector`] from a `radius` and an `angle` in radians.
#[inline(always)]
pub fn from_radians(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::from_radians(radius, angle))
}
/// Create a new [`CircularSector`] from a `radius` and an `angle` in degrees.
#[inline(always)]
pub fn from_degrees(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::from_degrees(radius, angle))
}
/// Create a new [`CircularSector`] from a `radius` and a number of `turns` of a circle.
///
/// For instance, `0.5` turns is a semicircle.
#[inline(always)]
pub fn from_turns(radius: f32, fraction: f32) -> Self {
Self::from(Arc2d::from_turns(radius, fraction))
}
/// Get half the angle of the sector
#[inline(always)]
pub fn half_angle(&self) -> f32 {
self.arc.half_angle
}
/// Get the angle of the sector
#[inline(always)]
pub fn angle(&self) -> f32 {
self.arc.angle()
}
/// Get the radius of the sector
#[inline(always)]
pub fn radius(&self) -> f32 {
self.arc.radius
}
/// Get the length of the arc defining the sector
#[inline(always)]
pub fn arc_length(&self) -> f32 {
self.arc.length()
}
/// Get half the length of the chord defined by the sector
///
/// See [`Arc2d::half_chord_length`]
#[inline(always)]
pub fn half_chord_length(&self) -> f32 {
self.arc.half_chord_length()
}
/// Get the length of the chord defined by the sector
///
/// See [`Arc2d::chord_length`]
#[inline(always)]
pub fn chord_length(&self) -> f32 {
self.arc.chord_length()
}
/// Get the midpoint of the chord defined by the sector
///
/// See [`Arc2d::chord_midpoint`]
#[inline(always)]
pub fn chord_midpoint(&self) -> Vec2 {
self.arc.chord_midpoint()
}
/// Get the length of the apothem of this sector
///
/// See [`Arc2d::apothem`]
#[inline(always)]
pub fn apothem(&self) -> f32 {
self.arc.apothem()
}
/// Get the length of the sagitta of this sector
///
/// See [`Arc2d::sagitta`]
#[inline(always)]
pub fn sagitta(&self) -> f32 {
self.arc.sagitta()
}
}
/// A primitive representing a circular segment:
/// the area enclosed by the arc of a circle and its chord (the line between its endpoints).
///
/// The segment is drawn starting from [`Vec2::Y`], extending equally on either side.
/// To orient the segment differently, apply a rotation.
/// The segment is drawn with the center of its circle at the origin [`Vec2::ZERO`].
/// When positioning a segment, the [`apothem`](Self::apothem) function may be particularly useful.
///
/// **Warning:** Circular segments with negative angle or radius, or with angle greater than an entire circle, are not officially supported.
/// We recommend normalizing circular segments to have an angle in [0, 2π].
#[derive(Clone, Copy, Debug, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct CircularSegment {
/// The arc defining the segment
#[cfg_attr(all(feature = "serialize", feature = "alloc"), serde(flatten))]
pub arc: Arc2d,
}
impl Primitive2d for CircularSegment {}
impl Default for CircularSegment {
/// Returns the default [`CircularSegment`] with radius `0.5` and covering a third of a circle
fn default() -> Self {
Self::from(Arc2d::default())
}
}
impl Measured2d for CircularSegment {
#[inline(always)]
fn area(&self) -> f32 {
0.5 * self.arc.radius.squared() * (self.arc.angle() - ops::sin(self.arc.angle()))
}
#[inline(always)]
fn perimeter(&self) -> f32 {
self.chord_length() + self.arc_length()
}
}
impl CircularSegment {
/// Create a new [`CircularSegment`] from a `radius`, and an `angle`
#[inline(always)]
pub fn new(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::new(radius, angle))
}
/// Create a new [`CircularSegment`] from a `radius` and an `angle` in radians.
#[inline(always)]
pub fn from_radians(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::from_radians(radius, angle))
}
/// Create a new [`CircularSegment`] from a `radius` and an `angle` in degrees.
#[inline(always)]
pub fn from_degrees(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::from_degrees(radius, angle))
}
/// Create a new [`CircularSegment`] from a `radius` and a number of `turns` of a circle.
///
/// For instance, `0.5` turns is a semicircle.
#[inline(always)]
pub fn from_turns(radius: f32, fraction: f32) -> Self {
Self::from(Arc2d::from_turns(radius, fraction))
}
/// Get the half-angle of the segment
#[inline(always)]
pub fn half_angle(&self) -> f32 {
self.arc.half_angle
}
/// Get the angle of the segment
#[inline(always)]
pub fn angle(&self) -> f32 {
self.arc.angle()
}
/// Get the radius of the segment
#[inline(always)]
pub fn radius(&self) -> f32 {
self.arc.radius
}
/// Get the length of the arc defining the segment
#[inline(always)]
pub fn arc_length(&self) -> f32 {
self.arc.length()
}
/// Get half the length of the segment's base, also known as its chord
#[inline(always)]
#[doc(alias = "half_base_length")]
pub fn half_chord_length(&self) -> f32 {
self.arc.half_chord_length()
}
/// Get the length of the segment's base, also known as its chord
#[inline(always)]
#[doc(alias = "base_length")]
#[doc(alias = "base")]
pub fn chord_length(&self) -> f32 {
self.arc.chord_length()
}
/// Get the midpoint of the segment's base, also known as its chord
#[inline(always)]
#[doc(alias = "base_midpoint")]
pub fn chord_midpoint(&self) -> Vec2 {
self.arc.chord_midpoint()
}
/// Get the length of the apothem of this segment,
/// which is the signed distance between the segment and the center of its circle
///
/// See [`Arc2d::apothem`]
#[inline(always)]
pub fn apothem(&self) -> f32 {
self.arc.apothem()
}
/// Get the length of the sagitta of this segment, also known as its height
///
/// See [`Arc2d::sagitta`]
#[inline(always)]
#[doc(alias = "height")]
pub fn sagitta(&self) -> f32 {
self.arc.sagitta()
}
}
#[cfg(test)]
mod arc_tests {
use core::f32::consts::FRAC_PI_4;
use core::f32::consts::SQRT_2;
use approx::assert_abs_diff_eq;
use super::*;
struct ArcTestCase {
radius: f32,
half_angle: f32,
angle: f32,
length: f32,
right_endpoint: Vec2,
left_endpoint: Vec2,
endpoints: [Vec2; 2],
midpoint: Vec2,
half_chord_length: f32,
chord_length: f32,
chord_midpoint: Vec2,
apothem: f32,
sagitta: f32,
is_minor: bool,
is_major: bool,
sector_area: f32,
sector_perimeter: f32,
segment_area: f32,
segment_perimeter: f32,
}
impl ArcTestCase {
fn check_arc(&self, arc: Arc2d) {
assert_abs_diff_eq!(self.radius, arc.radius);
assert_abs_diff_eq!(self.half_angle, arc.half_angle);
assert_abs_diff_eq!(self.angle, arc.angle());
assert_abs_diff_eq!(self.length, arc.length());
assert_abs_diff_eq!(self.right_endpoint, arc.right_endpoint());
assert_abs_diff_eq!(self.left_endpoint, arc.left_endpoint());
assert_abs_diff_eq!(self.endpoints[0], arc.endpoints()[0]);
assert_abs_diff_eq!(self.endpoints[1], arc.endpoints()[1]);
assert_abs_diff_eq!(self.midpoint, arc.midpoint());
assert_abs_diff_eq!(self.half_chord_length, arc.half_chord_length());
assert_abs_diff_eq!(self.chord_length, arc.chord_length(), epsilon = 0.00001);
assert_abs_diff_eq!(self.chord_midpoint, arc.chord_midpoint());
assert_abs_diff_eq!(self.apothem, arc.apothem());
assert_abs_diff_eq!(self.sagitta, arc.sagitta());
assert_eq!(self.is_minor, arc.is_minor());
assert_eq!(self.is_major, arc.is_major());
}
fn check_sector(&self, sector: CircularSector) {
assert_abs_diff_eq!(self.radius, sector.radius());
assert_abs_diff_eq!(self.half_angle, sector.half_angle());
assert_abs_diff_eq!(self.angle, sector.angle());
assert_abs_diff_eq!(self.half_chord_length, sector.half_chord_length());
assert_abs_diff_eq!(self.chord_length, sector.chord_length(), epsilon = 0.00001);
assert_abs_diff_eq!(self.chord_midpoint, sector.chord_midpoint());
assert_abs_diff_eq!(self.apothem, sector.apothem());
assert_abs_diff_eq!(self.sagitta, sector.sagitta());
assert_abs_diff_eq!(self.sector_area, sector.area());
assert_abs_diff_eq!(self.sector_perimeter, sector.perimeter());
}
fn check_segment(&self, segment: CircularSegment) {
assert_abs_diff_eq!(self.radius, segment.radius());
assert_abs_diff_eq!(self.half_angle, segment.half_angle());
assert_abs_diff_eq!(self.angle, segment.angle());
assert_abs_diff_eq!(self.half_chord_length, segment.half_chord_length());
assert_abs_diff_eq!(self.chord_length, segment.chord_length(), epsilon = 0.00001);
assert_abs_diff_eq!(self.chord_midpoint, segment.chord_midpoint());
assert_abs_diff_eq!(self.apothem, segment.apothem());
assert_abs_diff_eq!(self.sagitta, segment.sagitta());
assert_abs_diff_eq!(self.segment_area, segment.area());
assert_abs_diff_eq!(self.segment_perimeter, segment.perimeter());
}
}
#[test]
fn zero_angle() {
let tests = ArcTestCase {
radius: 1.0,
half_angle: 0.0,
angle: 0.0,
length: 0.0,
left_endpoint: Vec2::Y,
right_endpoint: Vec2::Y,
endpoints: [Vec2::Y, Vec2::Y],
midpoint: Vec2::Y,
half_chord_length: 0.0,
chord_length: 0.0,
chord_midpoint: Vec2::Y,
apothem: 1.0,
sagitta: 0.0,
is_minor: true,
is_major: false,
sector_area: 0.0,
sector_perimeter: 2.0,
segment_area: 0.0,
segment_perimeter: 0.0,
};
tests.check_arc(Arc2d::new(1.0, 0.0));
tests.check_sector(CircularSector::new(1.0, 0.0));
tests.check_segment(CircularSegment::new(1.0, 0.0));
}
#[test]
fn zero_radius() {
let tests = ArcTestCase {
radius: 0.0,
half_angle: FRAC_PI_4,
angle: FRAC_PI_2,
length: 0.0,
left_endpoint: Vec2::ZERO,
right_endpoint: Vec2::ZERO,
endpoints: [Vec2::ZERO, Vec2::ZERO],
midpoint: Vec2::ZERO,
half_chord_length: 0.0,
chord_length: 0.0,
chord_midpoint: Vec2::ZERO,
apothem: 0.0,
sagitta: 0.0,
is_minor: true,
is_major: false,
sector_area: 0.0,
sector_perimeter: 0.0,
segment_area: 0.0,
segment_perimeter: 0.0,
};
tests.check_arc(Arc2d::new(0.0, FRAC_PI_4));
tests.check_sector(CircularSector::new(0.0, FRAC_PI_4));
tests.check_segment(CircularSegment::new(0.0, FRAC_PI_4));
}
#[test]
fn quarter_circle() {
let sqrt_half: f32 = ops::sqrt(0.5);
let tests = ArcTestCase {
radius: 1.0,
half_angle: FRAC_PI_4,
angle: FRAC_PI_2,
length: FRAC_PI_2,
left_endpoint: Vec2::new(-sqrt_half, sqrt_half),
right_endpoint: Vec2::splat(sqrt_half),
endpoints: [Vec2::new(-sqrt_half, sqrt_half), Vec2::splat(sqrt_half)],
midpoint: Vec2::Y,
half_chord_length: sqrt_half,
chord_length: ops::sqrt(2.0),
chord_midpoint: Vec2::new(0.0, sqrt_half),
apothem: sqrt_half,
sagitta: 1.0 - sqrt_half,
is_minor: true,
is_major: false,
sector_area: FRAC_PI_4,
sector_perimeter: FRAC_PI_2 + 2.0,
segment_area: FRAC_PI_4 - 0.5,
segment_perimeter: FRAC_PI_2 + SQRT_2,
};
tests.check_arc(Arc2d::from_turns(1.0, 0.25));
tests.check_sector(CircularSector::from_turns(1.0, 0.25));
tests.check_segment(CircularSegment::from_turns(1.0, 0.25));
}
#[test]
fn half_circle() {
let tests = ArcTestCase {
radius: 1.0,
half_angle: FRAC_PI_2,
angle: PI,
length: PI,
left_endpoint: Vec2::NEG_X,
right_endpoint: Vec2::X,
endpoints: [Vec2::NEG_X, Vec2::X],
midpoint: Vec2::Y,
half_chord_length: 1.0,
chord_length: 2.0,
chord_midpoint: Vec2::ZERO,
apothem: 0.0,
sagitta: 1.0,
is_minor: true,
is_major: true,
sector_area: FRAC_PI_2,
sector_perimeter: PI + 2.0,
segment_area: FRAC_PI_2,
segment_perimeter: PI + 2.0,
};
tests.check_arc(Arc2d::from_radians(1.0, PI));
tests.check_sector(CircularSector::from_radians(1.0, PI));
tests.check_segment(CircularSegment::from_radians(1.0, PI));
}
#[test]
fn full_circle() {
let tests = ArcTestCase {
radius: 1.0,
half_angle: PI,
angle: 2.0 * PI,
length: 2.0 * PI,
left_endpoint: Vec2::NEG_Y,
right_endpoint: Vec2::NEG_Y,
endpoints: [Vec2::NEG_Y, Vec2::NEG_Y],
midpoint: Vec2::Y,
half_chord_length: 0.0,
chord_length: 0.0,
chord_midpoint: Vec2::NEG_Y,
apothem: -1.0,
sagitta: 2.0,
is_minor: false,
is_major: true,
sector_area: PI,
sector_perimeter: 2.0 * PI,
segment_area: PI,
segment_perimeter: 2.0 * PI,
};
tests.check_arc(Arc2d::from_degrees(1.0, 360.0));
tests.check_sector(CircularSector::from_degrees(1.0, 360.0));
tests.check_segment(CircularSegment::from_degrees(1.0, 360.0));
}
}
/// An ellipse primitive, which is like a circle, but the width and height can be different
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Ellipse {
/// Half of the width and height of the ellipse.
///
/// This corresponds to the two perpendicular radii defining the ellipse.
pub half_size: Vec2,
}
impl Primitive2d for Ellipse {}
impl Default for Ellipse {
/// Returns the default [`Ellipse`] with a half-width of `1.0` and a half-height of `0.5`.
fn default() -> Self {
Self {
half_size: Vec2::new(1.0, 0.5),
}
}
}
impl Ellipse {
/// Create a new `Ellipse` from half of its width and height.
///
/// This corresponds to the two perpendicular radii defining the ellipse.
#[inline(always)]
pub const fn new(half_width: f32, half_height: f32) -> Self {
Self {
half_size: Vec2::new(half_width, half_height),
}
}
/// Create a new `Ellipse` from a given full size.
///
/// `size.x` is the diameter along the X axis, and `size.y` is the diameter along the Y axis.
#[inline(always)]
pub fn from_size(size: Vec2) -> Self {
Self {
half_size: size / 2.0,
}
}
#[inline(always)]
/// Returns the [eccentricity](https://en.wikipedia.org/wiki/Eccentricity_(mathematics)) of the ellipse.
/// It can be thought of as a measure of how "stretched" or elongated the ellipse is.
///
/// The value should be in the range [0, 1), where 0 represents a circle, and 1 represents a parabola.
pub fn eccentricity(&self) -> f32 {
let a = self.semi_major();
let b = self.semi_minor();
ops::sqrt(a * a - b * b) / a
}
#[inline(always)]
/// Get the focal length of the ellipse. This corresponds to the distance between one of the foci and the center of the ellipse.
///
/// The focal length of an ellipse is related to its eccentricity by `eccentricity = focal_length / semi_major`
pub fn focal_length(&self) -> f32 {
let a = self.semi_major();
let b = self.semi_minor();
ops::sqrt(a * a - b * b)
}
/// Returns the length of the semi-major axis. This corresponds to the longest radius of the ellipse.
#[inline(always)]
pub fn semi_major(&self) -> f32 {
self.half_size.max_element()
}
/// Returns the length of the semi-minor axis. This corresponds to the shortest radius of the ellipse.
#[inline(always)]
pub fn semi_minor(&self) -> f32 {
self.half_size.min_element()
}
}
impl Measured2d for Ellipse {
/// Get the area of the ellipse
#[inline(always)]
fn area(&self) -> f32 {
PI * self.half_size.x * self.half_size.y
}
#[inline(always)]
/// Get an approximation for the perimeter or circumference of the ellipse.
///
/// The approximation is reasonably precise with a relative error less than 0.007%, getting more precise as the eccentricity of the ellipse decreases.
fn perimeter(&self) -> f32 {
let a = self.semi_major();
let b = self.semi_minor();
// In the case that `a == b`, the ellipse is a circle
if a / b - 1. < 1e-5 {
return PI * (a + b);
};
// In the case that `a` is much larger than `b`, the ellipse is a line
if a / b > 1e4 {
return 4. * a;
};
// These values are the result of (0.5 choose n)^2 where n is the index in the array
// They could be calculated on the fly but hardcoding them yields more accurate and faster results
// because the actual calculation for these values involves factorials and numbers > 10^23
const BINOMIAL_COEFFICIENTS: [f32; 21] = [
1.,
0.25,
0.015625,
0.00390625,
0.0015258789,
0.00074768066,
0.00042057037,
0.00025963783,
0.00017140154,
0.000119028846,
0.00008599834,
0.00006414339,
0.000049109784,
0.000038430585,
0.000030636627,
0.000024815668,
0.000020380836,
0.000016942893,
0.000014236736,
0.000012077564,
0.000010333865,
];
// The algorithm used here is the Gauss-Kummer infinite series expansion of the elliptic integral expression for the perimeter of ellipses
// For more information see https://www.wolframalpha.com/input/?i=gauss-kummer+series
// We only use the terms up to `i == 20` for this approximation
let h = ((a - b) / (a + b)).squared();
PI * (a + b)
* (0..=20)
.map(|i| BINOMIAL_COEFFICIENTS[i] * ops::powf(h, i as f32))
.sum::<f32>()
}
}
/// A primitive shape formed by the region between two circles, also known as a ring.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "Ring")]
pub struct Annulus {
/// The inner circle of the annulus
pub inner_circle: Circle,
/// The outer circle of the annulus
pub outer_circle: Circle,
}
impl Primitive2d for Annulus {}
impl Default for Annulus {
/// Returns the default [`Annulus`] with radii of `0.5` and `1.0`.
fn default() -> Self {
Self {
inner_circle: Circle::new(0.5),
outer_circle: Circle::new(1.0),
}
}
}
impl Annulus {
/// Create a new [`Annulus`] from the radii of the inner and outer circle
#[inline(always)]
pub const fn new(inner_radius: f32, outer_radius: f32) -> Self {
Self {
inner_circle: Circle::new(inner_radius),
outer_circle: Circle::new(outer_radius),
}
}
/// Get the diameter of the annulus
#[inline(always)]
pub fn diameter(&self) -> f32 {
self.outer_circle.diameter()
}
/// Get the thickness of the annulus
#[inline(always)]
pub fn thickness(&self) -> f32 {
self.outer_circle.radius - self.inner_circle.radius
}
/// Finds the point on the annulus that is closest to the given `point`:
///
/// - If the point is outside of the annulus completely, the returned point will be on the outer perimeter.
/// - If the point is inside of the inner circle (hole) of the annulus, the returned point will be on the inner perimeter.
/// - Otherwise, the returned point is overlapping the annulus and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
let distance_squared = point.length_squared();
if self.inner_circle.radius.squared() <= distance_squared {
if distance_squared <= self.outer_circle.radius.squared() {
// The point is inside the annulus.
point
} else {
// The point is outside the annulus and closer to the outer perimeter.
// Find the closest point on the perimeter of the annulus.
let dir_to_point = point / ops::sqrt(distance_squared);
self.outer_circle.radius * dir_to_point
}
} else {
// The point is outside the annulus and closer to the inner perimeter.
// Find the closest point on the perimeter of the annulus.
let dir_to_point = point / ops::sqrt(distance_squared);
self.inner_circle.radius * dir_to_point
}
}
}
impl Measured2d for Annulus {
/// Get the area of the annulus
#[inline(always)]
fn area(&self) -> f32 {
PI * (self.outer_circle.radius.squared() - self.inner_circle.radius.squared())
}
/// Get the perimeter or circumference of the annulus,
/// which is the sum of the perimeters of the inner and outer circles.
#[inline(always)]
#[doc(alias = "circumference")]
fn perimeter(&self) -> f32 {
2.0 * PI * (self.outer_circle.radius + self.inner_circle.radius)
}
}
/// A rhombus primitive, also known as a diamond shape.
/// A four sided polygon, centered on the origin, where opposite sides are parallel but without
/// requiring right angles.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "Diamond")]
pub struct Rhombus {
/// Size of the horizontal and vertical diagonals of the rhombus
pub half_diagonals: Vec2,
}
impl Primitive2d for Rhombus {}
impl Default for Rhombus {
/// Returns the default [`Rhombus`] with a half-horizontal and half-vertical diagonal of `0.5`.
fn default() -> Self {
Self {
half_diagonals: Vec2::splat(0.5),
}
}
}
impl Rhombus {
/// Create a new `Rhombus` from a vertical and horizontal diagonal sizes.
#[inline(always)]
pub fn new(horizontal_diagonal: f32, vertical_diagonal: f32) -> Self {
Self {
half_diagonals: Vec2::new(horizontal_diagonal / 2.0, vertical_diagonal / 2.0),
}
}
/// Create a new `Rhombus` from a side length with all inner angles equal.
#[inline(always)]
pub fn from_side(side: f32) -> Self {
Self {
half_diagonals: Vec2::splat(side * FRAC_1_SQRT_2),
}
}
/// Create a new `Rhombus` from a given inradius with all inner angles equal.
#[inline(always)]
pub fn from_inradius(inradius: f32) -> Self {
let half_diagonal = inradius * 2.0 / core::f32::consts::SQRT_2;
Self {
half_diagonals: Vec2::new(half_diagonal, half_diagonal),
}
}
/// Get the length of each side of the rhombus
#[inline(always)]
pub fn side(&self) -> f32 {
self.half_diagonals.length()
}
/// Get the radius of the circumcircle on which all vertices
/// of the rhombus lie
#[inline(always)]
pub fn circumradius(&self) -> f32 {
self.half_diagonals.x.max(self.half_diagonals.y)
}
/// Get the radius of the largest circle that can
/// be drawn within the rhombus
#[inline(always)]
#[doc(alias = "apothem")]
pub fn inradius(&self) -> f32 {
let side = self.side();
if side == 0.0 {
0.0
} else {
(self.half_diagonals.x * self.half_diagonals.y) / side
}
}
/// Finds the point on the rhombus that is closest to the given `point`.
///
/// If the point is outside the rhombus, the returned point will be on the perimeter of the rhombus.
/// Otherwise, it will be inside the rhombus and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
// Fold the problem into the positive quadrant
let point_abs = point.abs();
let half_diagonals = self.half_diagonals.abs(); // to ensure correct sign
// The unnormalised normal vector perpendicular to the side of the rhombus
let normal = Vec2::new(half_diagonals.y, half_diagonals.x);
let normal_magnitude_squared = normal.length_squared();
if normal_magnitude_squared == 0.0 {
return Vec2::ZERO; // A null Rhombus has only one point anyway.
}
// The last term corresponds to normal.dot(rhombus_vertex)
let distance_unnormalised = normal.dot(point_abs) - half_diagonals.x * half_diagonals.y;
// The point is already inside so we simply return it.
if distance_unnormalised <= 0.0 {
return point;
}
// Clamp the point to the edge
let mut result = point_abs - normal * distance_unnormalised / normal_magnitude_squared;
// Clamp the point back to the positive quadrant
// if it's outside, it needs to be clamped to either vertex
if result.x <= 0.0 {
result = Vec2::new(0.0, half_diagonals.y);
} else if result.y <= 0.0 {
result = Vec2::new(half_diagonals.x, 0.0);
}
// Finally, we restore the signs of the original vector
result.copysign(point)
}
}
impl Measured2d for Rhombus {
/// Get the area of the rhombus
#[inline(always)]
fn area(&self) -> f32 {
2.0 * self.half_diagonals.x * self.half_diagonals.y
}
/// Get the perimeter of the rhombus
#[inline(always)]
fn perimeter(&self) -> f32 {
4.0 * self.side()
}
}
/// An unbounded plane in 2D space. It forms a separating surface through the origin,
/// stretching infinitely far
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Plane2d {
/// The normal of the plane. The plane will be placed perpendicular to this direction
pub normal: Dir2,
}
impl Primitive2d for Plane2d {}
impl Default for Plane2d {
/// Returns the default [`Plane2d`] with a normal pointing in the `+Y` direction.
fn default() -> Self {
Self { normal: Dir2::Y }
}
}
impl Plane2d {
/// Create a new `Plane2d` from a normal
///
/// # Panics
///
/// Panics if the given `normal` is zero (or very close to zero), or non-finite.
#[inline(always)]
pub fn new(normal: Vec2) -> Self {
Self {
normal: Dir2::new(normal).expect("normal must be nonzero and finite"),
}
}
}
/// An infinite line going through the origin along a direction in 2D space.
///
/// For a finite line: [`Segment2d`]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Line2d {
/// The direction of the line. The line extends infinitely in both the given direction
/// and its opposite direction
pub direction: Dir2,
}
impl Primitive2d for Line2d {}
/// A segment of a line going through the origin along a direction in 2D space.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "LineSegment2d")]
pub struct Segment2d {
/// The direction of the line segment
pub direction: Dir2,
/// Half the length of the line segment. The segment extends by this amount in both
/// the given direction and its opposite direction
pub half_length: f32,
}
impl Primitive2d for Segment2d {}
impl Segment2d {
/// Create a new `Segment2d` from a direction and full length of the segment
#[inline(always)]
pub fn new(direction: Dir2, length: f32) -> Self {
Self {
direction,
half_length: length / 2.0,
}
}
/// Create a new `Segment2d` from its endpoints and compute its geometric center
///
/// # Panics
///
/// Panics if `point1 == point2`
#[inline(always)]
pub fn from_points(point1: Vec2, point2: Vec2) -> (Self, Vec2) {
let diff = point2 - point1;
let length = diff.length();
(
// We are dividing by the length here, so the vector is normalized.
Self::new(Dir2::new_unchecked(diff / length), length),
(point1 + point2) / 2.,
)
}
/// Get the position of the first point on the line segment
#[inline(always)]
pub fn point1(&self) -> Vec2 {
*self.direction * -self.half_length
}
/// Get the position of the second point on the line segment
#[inline(always)]
pub fn point2(&self) -> Vec2 {
*self.direction * self.half_length
}
}
/// A series of connected line segments in 2D space.
///
/// For a version without generics: [`BoxedPolyline2d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Polyline2d<const N: usize> {
/// The vertices of the polyline
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polyline2d<N> {}
impl<const N: usize> FromIterator<Vec2> for Polyline2d<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polyline2d<N> {
/// Create a new `Polyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A series of connected line segments in 2D space, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polyline2d`]
#[cfg(feature = "alloc")]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolyline2d {
/// The vertices of the polyline
pub vertices: Box<[Vec2]>,
}
#[cfg(feature = "alloc")]
impl Primitive2d for BoxedPolyline2d {}
#[cfg(feature = "alloc")]
impl FromIterator<Vec2> for BoxedPolyline2d {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
#[cfg(feature = "alloc")]
impl BoxedPolyline2d {
/// Create a new `BoxedPolyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A triangle in 2D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Triangle2d {
/// The vertices of the triangle
pub vertices: [Vec2; 3],
}
impl Primitive2d for Triangle2d {}
impl Default for Triangle2d {
/// Returns the default [`Triangle2d`] with the vertices `[0.0, 0.5]`, `[-0.5, -0.5]`, and `[0.5, -0.5]`.
fn default() -> Self {
Self {
vertices: [Vec2::Y * 0.5, Vec2::new(-0.5, -0.5), Vec2::new(0.5, -0.5)],
}
}
}
impl Triangle2d {
/// Create a new `Triangle2d` from points `a`, `b`, and `c`
#[inline(always)]
pub const fn new(a: Vec2, b: Vec2, c: Vec2) -> Self {
Self {
vertices: [a, b, c],
}
}
/// Get the [`WindingOrder`] of the triangle
#[inline(always)]
#[doc(alias = "orientation")]
pub fn winding_order(&self) -> WindingOrder {
let [a, b, c] = self.vertices;
let area = (b - a).perp_dot(c - a);
if area > f32::EPSILON {
WindingOrder::CounterClockwise
} else if area < -f32::EPSILON {
WindingOrder::Clockwise
} else {
WindingOrder::Invalid
}
}
/// Compute the circle passing through all three vertices of the triangle.
/// The vector in the returned tuple is the circumcenter.
pub fn circumcircle(&self) -> (Circle, Vec2) {
// We treat the triangle as translated so that vertex A is at the origin. This simplifies calculations.
//
// A = (0, 0)
// *
// / \
// / \
// / \
// / \
// / U \
// / \
// *-------------*
// B C
let a = self.vertices[0];
let (b, c) = (self.vertices[1] - a, self.vertices[2] - a);
let b_length_sq = b.length_squared();
let c_length_sq = c.length_squared();
// Reference: https://en.wikipedia.org/wiki/Circumcircle#Cartesian_coordinates_2
let inv_d = (2.0 * (b.x * c.y - b.y * c.x)).recip();
let ux = inv_d * (c.y * b_length_sq - b.y * c_length_sq);
let uy = inv_d * (b.x * c_length_sq - c.x * b_length_sq);
let u = Vec2::new(ux, uy);
// Compute true circumcenter and circumradius, adding the tip coordinate so that
// A is translated back to its actual coordinate.
let center = u + a;
let radius = u.length();
(Circle { radius }, center)
}
/// Checks if the triangle is degenerate, meaning it has zero area.
///
/// A triangle is degenerate if the cross product of the vectors `ab` and `ac` has a length less than `10e-7`.
/// This indicates that the three vertices are collinear or nearly collinear.
#[inline(always)]
pub fn is_degenerate(&self) -> bool {
let [a, b, c] = self.vertices;
let ab = (b - a).extend(0.);
let ac = (c - a).extend(0.);
ab.cross(ac).length() < 10e-7
}
/// Checks if the triangle is acute, meaning all angles are less than 90 degrees
#[inline(always)]
pub fn is_acute(&self) -> bool {
let [a, b, c] = self.vertices;
let ab = b - a;
let bc = c - b;
let ca = a - c;
// a^2 + b^2 < c^2 for an acute triangle
let mut side_lengths = [
ab.length_squared(),
bc.length_squared(),
ca.length_squared(),
];
side_lengths.sort_by(|a, b| a.partial_cmp(b).unwrap());
side_lengths[0] + side_lengths[1] > side_lengths[2]
}
/// Checks if the triangle is obtuse, meaning one angle is greater than 90 degrees
#[inline(always)]
pub fn is_obtuse(&self) -> bool {
let [a, b, c] = self.vertices;
let ab = b - a;
let bc = c - b;
let ca = a - c;
// a^2 + b^2 > c^2 for an obtuse triangle
let mut side_lengths = [
ab.length_squared(),
bc.length_squared(),
ca.length_squared(),
];
side_lengths.sort_by(|a, b| a.partial_cmp(b).unwrap());
side_lengths[0] + side_lengths[1] < side_lengths[2]
}
/// Reverse the [`WindingOrder`] of the triangle
/// by swapping the first and last vertices.
#[inline(always)]
pub fn reverse(&mut self) {
self.vertices.swap(0, 2);
}
/// This triangle but reversed.
#[inline(always)]
#[must_use]
pub fn reversed(mut self) -> Self {
self.reverse();
self
}
}
impl Measured2d for Triangle2d {
/// Get the area of the triangle
#[inline(always)]
fn area(&self) -> f32 {
let [a, b, c] = self.vertices;
ops::abs(a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y)) / 2.0
}
/// Get the perimeter of the triangle
#[inline(always)]
fn perimeter(&self) -> f32 {
let [a, b, c] = self.vertices;
let ab = a.distance(b);
let bc = b.distance(c);
let ca = c.distance(a);
ab + bc + ca
}
}
/// A rectangle primitive, which is like a square, except that the width and height can be different
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "Quad")]
pub struct Rectangle {
/// Half of the width and height of the rectangle
pub half_size: Vec2,
}
impl Primitive2d for Rectangle {}
impl Default for Rectangle {
/// Returns the default [`Rectangle`] with a half-width and half-height of `0.5`.
fn default() -> Self {
Self {
half_size: Vec2::splat(0.5),
}
}
}
impl Rectangle {
/// Create a new `Rectangle` from a full width and height
#[inline(always)]
pub fn new(width: f32, height: f32) -> Self {
Self::from_size(Vec2::new(width, height))
}
/// Create a new `Rectangle` from a given full size
#[inline(always)]
pub fn from_size(size: Vec2) -> Self {
Self {
half_size: size / 2.0,
}
}
/// Create a new `Rectangle` from two corner points
#[inline(always)]
pub fn from_corners(point1: Vec2, point2: Vec2) -> Self {
Self {
half_size: (point2 - point1).abs() / 2.0,
}
}
/// Create a `Rectangle` from a single length.
/// The resulting `Rectangle` will be the same size in every direction.
#[inline(always)]
pub fn from_length(length: f32) -> Self {
Self {
half_size: Vec2::splat(length / 2.0),
}
}
/// Get the size of the rectangle
#[inline(always)]
pub fn size(&self) -> Vec2 {
2.0 * self.half_size
}
/// Finds the point on the rectangle that is closest to the given `point`.
///
/// If the point is outside the rectangle, the returned point will be on the perimeter of the rectangle.
/// Otherwise, it will be inside the rectangle and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
// Clamp point coordinates to the rectangle
point.clamp(-self.half_size, self.half_size)
}
}
impl Measured2d for Rectangle {
/// Get the area of the rectangle
#[inline(always)]
fn area(&self) -> f32 {
4.0 * self.half_size.x * self.half_size.y
}
/// Get the perimeter of the rectangle
#[inline(always)]
fn perimeter(&self) -> f32 {
4.0 * (self.half_size.x + self.half_size.y)
}
}
/// A polygon with N vertices.
///
/// For a version without generics: [`BoxedPolygon`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Polygon<const N: usize> {
/// The vertices of the `Polygon`
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polygon<N> {}
impl<const N: usize> FromIterator<Vec2> for Polygon<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polygon<N> {
/// Create a new `Polygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
/// Tests if the polygon is simple.
///
/// A polygon is simple if it is not self intersecting and not self tangent.
/// As such, no two edges of the polygon may cross each other and each vertex must not lie on another edge.
#[cfg(feature = "alloc")]
pub fn is_simple(&self) -> bool {
is_polygon_simple(&self.vertices)
}
}
impl<const N: usize> From<ConvexPolygon<N>> for Polygon<N> {
fn from(val: ConvexPolygon<N>) -> Self {
Polygon {
vertices: val.vertices,
}
}
}
/// A convex polygon with `N` vertices.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct ConvexPolygon<const N: usize> {
/// The vertices of the [`ConvexPolygon`].
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for ConvexPolygon<N> {}
/// An error that happens when creating a [`ConvexPolygon`].
#[derive(Error, Debug, Clone)]
pub enum ConvexPolygonError {
/// The created polygon is not convex.
#[error("The created polygon is not convex")]
Concave,
}
impl<const N: usize> ConvexPolygon<N> {
fn triangle_winding_order(
&self,
a_index: usize,
b_index: usize,
c_index: usize,
) -> WindingOrder {
let a = self.vertices[a_index];
let b = self.vertices[b_index];
let c = self.vertices[c_index];
Triangle2d::new(a, b, c).winding_order()
}
/// Create a [`ConvexPolygon`] from its `vertices`.
///
/// # Errors
///
/// Returns [`ConvexPolygonError::Concave`] if the `vertices` do not form a convex polygon.
pub fn new(vertices: [Vec2; N]) -> Result<Self, ConvexPolygonError> {
let polygon = Self::new_unchecked(vertices);
let ref_winding_order = polygon.triangle_winding_order(N - 1, 0, 1);
for i in 1..N {
let winding_order = polygon.triangle_winding_order(i - 1, i, (i + 1) % N);
if winding_order != ref_winding_order {
return Err(ConvexPolygonError::Concave);
}
}
Ok(polygon)
}
/// Create a [`ConvexPolygon`] from its `vertices`, without checks.
/// Use this version only if you know that the `vertices` make up a convex polygon.
#[inline(always)]
pub fn new_unchecked(vertices: [Vec2; N]) -> Self {
Self { vertices }
}
/// Get the vertices of this polygon
#[inline(always)]
pub fn vertices(&self) -> &[Vec2; N] {
&self.vertices
}
}
impl<const N: usize> TryFrom<Polygon<N>> for ConvexPolygon<N> {
type Error = ConvexPolygonError;
fn try_from(val: Polygon<N>) -> Result<Self, Self::Error> {
ConvexPolygon::new(val.vertices)
}
}
/// A polygon with a variable number of vertices, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polygon`]
#[cfg(feature = "alloc")]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolygon {
/// The vertices of the `BoxedPolygon`
pub vertices: Box<[Vec2]>,
}
#[cfg(feature = "alloc")]
impl Primitive2d for BoxedPolygon {}
#[cfg(feature = "alloc")]
impl FromIterator<Vec2> for BoxedPolygon {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
#[cfg(feature = "alloc")]
impl BoxedPolygon {
/// Create a new `BoxedPolygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
/// Tests if the polygon is simple.
///
/// A polygon is simple if it is not self intersecting and not self tangent.
/// As such, no two edges of the polygon may cross each other and each vertex must not lie on another edge.
pub fn is_simple(&self) -> bool {
is_polygon_simple(&self.vertices)
}
}
/// A polygon centered on the origin where all vertices lie on a circle, equally far apart.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct RegularPolygon {
/// The circumcircle on which all vertices lie
pub circumcircle: Circle,
/// The number of sides
pub sides: u32,
}
impl Primitive2d for RegularPolygon {}
impl Default for RegularPolygon {
/// Returns the default [`RegularPolygon`] with six sides (a hexagon) and a circumradius of `0.5`.
fn default() -> Self {
Self {
circumcircle: Circle { radius: 0.5 },
sides: 6,
}
}
}
impl RegularPolygon {
/// Create a new `RegularPolygon`
/// from the radius of the circumcircle and a number of sides
///
/// # Panics
///
/// Panics if `circumradius` is negative
#[inline(always)]
pub fn new(circumradius: f32, sides: u32) -> Self {
assert!(
circumradius.is_sign_positive(),
"polygon has a negative radius"
);
assert!(sides > 2, "polygon has less than 3 sides");
Self {
circumcircle: Circle {
radius: circumradius,
},
sides,
}
}
/// Get the radius of the circumcircle on which all vertices
/// of the regular polygon lie
#[inline(always)]
pub fn circumradius(&self) -> f32 {
self.circumcircle.radius
}
/// Get the inradius or apothem of the regular polygon.
/// This is the radius of the largest circle that can
/// be drawn within the polygon
#[inline(always)]
#[doc(alias = "apothem")]
pub fn inradius(&self) -> f32 {
self.circumradius() * ops::cos(PI / self.sides as f32)
}
/// Get the length of one side of the regular polygon
#[inline(always)]
pub fn side_length(&self) -> f32 {
2.0 * self.circumradius() * ops::sin(PI / self.sides as f32)
}
/// Get the internal angle of the regular polygon in degrees.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the interior of the polygon
#[inline(always)]
pub fn internal_angle_degrees(&self) -> f32 {
(self.sides - 2) as f32 / self.sides as f32 * 180.0
}
/// Get the internal angle of the regular polygon in radians.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the interior of the polygon
#[inline(always)]
pub fn internal_angle_radians(&self) -> f32 {
(self.sides - 2) as f32 * PI / self.sides as f32
}
/// Get the external angle of the regular polygon in degrees.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the exterior of the polygon
#[inline(always)]
pub fn external_angle_degrees(&self) -> f32 {
360.0 / self.sides as f32
}
/// Get the external angle of the regular polygon in radians.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the exterior of the polygon
#[inline(always)]
pub fn external_angle_radians(&self) -> f32 {
2.0 * PI / self.sides as f32
}
/// Returns an iterator over the vertices of the regular polygon,
/// rotated counterclockwise by the given angle in radians.
///
/// With a rotation of 0, a vertex will be placed at the top `(0.0, circumradius)`.
pub fn vertices(self, rotation: f32) -> impl IntoIterator<Item = Vec2> {
// Add pi/2 so that the polygon has a vertex at the top (sin is 1.0 and cos is 0.0)
let start_angle = rotation + FRAC_PI_2;
let step = core::f32::consts::TAU / self.sides as f32;
(0..self.sides).map(move |i| {
let theta = start_angle + i as f32 * step;
let (sin, cos) = ops::sin_cos(theta);
Vec2::new(cos, sin) * self.circumcircle.radius
})
}
}
impl Measured2d for RegularPolygon {
/// Get the area of the regular polygon
#[inline(always)]
fn area(&self) -> f32 {
let angle: f32 = 2.0 * PI / (self.sides as f32);
(self.sides as f32) * self.circumradius().squared() * ops::sin(angle) / 2.0
}
/// Get the perimeter of the regular polygon.
/// This is the sum of its sides
#[inline(always)]
fn perimeter(&self) -> f32 {
self.sides as f32 * self.side_length()
}
}
/// A 2D capsule primitive, also known as a stadium or pill shape.
///
/// A two-dimensional capsule is defined as a neighborhood of points at a distance (radius) from a line
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "stadium", alias = "pill")]
pub struct Capsule2d {
/// The radius of the capsule
pub radius: f32,
/// Half the height of the capsule, excluding the semicircles
pub half_length: f32,
}
impl Primitive2d for Capsule2d {}
impl Default for Capsule2d {
/// Returns the default [`Capsule2d`] with a radius of `0.5` and a half-height of `0.5`,
/// excluding the semicircles.
fn default() -> Self {
Self {
radius: 0.5,
half_length: 0.5,
}
}
}
impl Capsule2d {
/// Create a new `Capsule2d` from a radius and length
pub fn new(radius: f32, length: f32) -> Self {
Self {
radius,
half_length: length / 2.0,
}
}
/// Get the part connecting the semicircular ends of the capsule as a [`Rectangle`]
#[inline]
pub fn to_inner_rectangle(&self) -> Rectangle {
Rectangle::new(self.radius * 2.0, self.half_length * 2.0)
}
}
impl Measured2d for Capsule2d {
/// Get the area of the capsule
#[inline]
fn area(&self) -> f32 {
// pi*r^2 + (2r)*l
PI * self.radius.squared() + self.to_inner_rectangle().area()
}
/// Get the perimeter of the capsule
#[inline]
fn perimeter(&self) -> f32 {
// 2pi*r + 2l
2.0 * PI * self.radius + 4.0 * self.half_length
}
}
#[cfg(test)]
mod tests {
// Reference values were computed by hand and/or with external tools
use super::*;
use approx::{assert_abs_diff_eq, assert_relative_eq};
#[test]
fn rectangle_closest_point() {
let rectangle = Rectangle::new(2.0, 2.0);
assert_eq!(rectangle.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(rectangle.closest_point(Vec2::NEG_ONE * 10.0), Vec2::NEG_ONE);
assert_eq!(
rectangle.closest_point(Vec2::new(0.25, 0.1)),
Vec2::new(0.25, 0.1)
);
}
#[test]
fn circle_closest_point() {
let circle = Circle { radius: 1.0 };
assert_eq!(circle.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(
circle.closest_point(Vec2::NEG_ONE * 10.0),
Vec2::NEG_ONE.normalize()
);
assert_eq!(
circle.closest_point(Vec2::new(0.25, 0.1)),
Vec2::new(0.25, 0.1)
);
}
#[test]
fn annulus_closest_point() {
let annulus = Annulus::new(1.5, 2.0);
assert_eq!(annulus.closest_point(Vec2::X * 10.0), Vec2::X * 2.0);
assert_eq!(
annulus.closest_point(Vec2::NEG_ONE),
Vec2::NEG_ONE.normalize() * 1.5
);
assert_eq!(
annulus.closest_point(Vec2::new(1.55, 0.85)),
Vec2::new(1.55, 0.85)
);
}
#[test]
fn rhombus_closest_point() {
let rhombus = Rhombus::new(2.0, 1.0);
assert_eq!(rhombus.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(
rhombus.closest_point(Vec2::NEG_ONE * 0.2),
Vec2::NEG_ONE * 0.2
);
assert_eq!(
rhombus.closest_point(Vec2::new(-0.55, 0.35)),
Vec2::new(-0.5, 0.25)
);
let rhombus = Rhombus::new(0.0, 0.0);
assert_eq!(rhombus.closest_point(Vec2::X * 10.0), Vec2::ZERO);
assert_eq!(rhombus.closest_point(Vec2::NEG_ONE * 0.2), Vec2::ZERO);
assert_eq!(rhombus.closest_point(Vec2::new(-0.55, 0.35)), Vec2::ZERO);
}
#[test]
fn circle_math() {
let circle = Circle { radius: 3.0 };
assert_eq!(circle.diameter(), 6.0, "incorrect diameter");
assert_eq!(circle.area(), 28.274334, "incorrect area");
assert_eq!(circle.perimeter(), 18.849556, "incorrect perimeter");
}
#[test]
fn capsule_math() {
let capsule = Capsule2d::new(2.0, 9.0);
assert_eq!(
capsule.to_inner_rectangle(),
Rectangle::new(4.0, 9.0),
"rectangle wasn't created correctly from a capsule"
);
assert_eq!(capsule.area(), 48.566371, "incorrect area");
assert_eq!(capsule.perimeter(), 30.566371, "incorrect perimeter");
}
#[test]
fn annulus_math() {
let annulus = Annulus::new(2.5, 3.5);
assert_eq!(annulus.diameter(), 7.0, "incorrect diameter");
assert_eq!(annulus.thickness(), 1.0, "incorrect thickness");
assert_eq!(annulus.area(), 18.849556, "incorrect area");
assert_eq!(annulus.perimeter(), 37.699112, "incorrect perimeter");
}
#[test]
fn rhombus_math() {
let rhombus = Rhombus::new(3.0, 4.0);
assert_eq!(rhombus.area(), 6.0, "incorrect area");
assert_eq!(rhombus.perimeter(), 10.0, "incorrect perimeter");
assert_eq!(rhombus.side(), 2.5, "incorrect side");
assert_eq!(rhombus.inradius(), 1.2, "incorrect inradius");
assert_eq!(rhombus.circumradius(), 2.0, "incorrect circumradius");
let rhombus = Rhombus::new(0.0, 0.0);
assert_eq!(rhombus.area(), 0.0, "incorrect area");
assert_eq!(rhombus.perimeter(), 0.0, "incorrect perimeter");
assert_eq!(rhombus.side(), 0.0, "incorrect side");
assert_eq!(rhombus.inradius(), 0.0, "incorrect inradius");
assert_eq!(rhombus.circumradius(), 0.0, "incorrect circumradius");
let rhombus = Rhombus::from_side(core::f32::consts::SQRT_2);
assert_abs_diff_eq!(rhombus.half_diagonals, Vec2::new(1.0, 1.0));
assert_abs_diff_eq!(
rhombus.half_diagonals,
Rhombus::from_inradius(FRAC_1_SQRT_2).half_diagonals
);
}
#[test]
fn ellipse_math() {
let ellipse = Ellipse::new(3.0, 1.0);
assert_eq!(ellipse.area(), 9.424778, "incorrect area");
assert_eq!(ellipse.eccentricity(), 0.94280905, "incorrect eccentricity");
let line = Ellipse::new(1., 0.);
assert_eq!(line.eccentricity(), 1., "incorrect line eccentricity");
let circle = Ellipse::new(2., 2.);
assert_eq!(circle.eccentricity(), 0., "incorrect circle eccentricity");
}
#[test]
fn ellipse_perimeter() {
let circle = Ellipse::new(1., 1.);
assert_relative_eq!(circle.perimeter(), 6.2831855);
let line = Ellipse::new(75_000., 0.5);
assert_relative_eq!(line.perimeter(), 300_000.);
let ellipse = Ellipse::new(0.5, 2.);
assert_relative_eq!(ellipse.perimeter(), 8.578423);
let ellipse = Ellipse::new(5., 3.);
assert_relative_eq!(ellipse.perimeter(), 25.526999);
}
#[test]
fn triangle_math() {
let triangle = Triangle2d::new(
Vec2::new(-2.0, -1.0),
Vec2::new(1.0, 4.0),
Vec2::new(7.0, 0.0),
);
assert_eq!(triangle.area(), 21.0, "incorrect area");
assert_eq!(triangle.perimeter(), 22.097439, "incorrect perimeter");
let degenerate_triangle =
Triangle2d::new(Vec2::new(-1., 0.), Vec2::new(0., 0.), Vec2::new(1., 0.));
assert!(degenerate_triangle.is_degenerate());
let acute_triangle =
Triangle2d::new(Vec2::new(-1., 0.), Vec2::new(1., 0.), Vec2::new(0., 5.));
let obtuse_triangle =
Triangle2d::new(Vec2::new(-1., 0.), Vec2::new(1., 0.), Vec2::new(0., 0.5));
assert!(acute_triangle.is_acute());
assert!(!acute_triangle.is_obtuse());
assert!(!obtuse_triangle.is_acute());
assert!(obtuse_triangle.is_obtuse());
}
#[test]
fn triangle_winding_order() {
let mut cw_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(-0.5, -1.2),
Vec2::new(-1.0, -1.0),
);
assert_eq!(cw_triangle.winding_order(), WindingOrder::Clockwise);
let ccw_triangle = Triangle2d::new(
Vec2::new(-1.0, -1.0),
Vec2::new(-0.5, -1.2),
Vec2::new(0.0, 2.0),
);
assert_eq!(ccw_triangle.winding_order(), WindingOrder::CounterClockwise);
// The clockwise triangle should be the same as the counterclockwise
// triangle when reversed
cw_triangle.reverse();
assert_eq!(cw_triangle, ccw_triangle);
let invalid_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(0.0, -1.0),
Vec2::new(0.0, -1.2),
);
assert_eq!(invalid_triangle.winding_order(), WindingOrder::Invalid);
}
#[test]
fn rectangle_math() {
let rectangle = Rectangle::new(3.0, 7.0);
assert_eq!(
rectangle,
Rectangle::from_corners(Vec2::new(-1.5, -3.5), Vec2::new(1.5, 3.5))
);
assert_eq!(rectangle.area(), 21.0, "incorrect area");
assert_eq!(rectangle.perimeter(), 20.0, "incorrect perimeter");
}
#[test]
fn regular_polygon_math() {
let polygon = RegularPolygon::new(3.0, 6);
assert_eq!(polygon.inradius(), 2.598076, "incorrect inradius");
assert_eq!(polygon.side_length(), 3.0, "incorrect side length");
assert_relative_eq!(polygon.area(), 23.38268, epsilon = 0.00001);
assert_eq!(polygon.perimeter(), 18.0, "incorrect perimeter");
assert_eq!(
polygon.internal_angle_degrees(),
120.0,
"incorrect internal angle"
);
assert_eq!(
polygon.internal_angle_radians(),
120_f32.to_radians(),
"incorrect internal angle"
);
assert_eq!(
polygon.external_angle_degrees(),
60.0,
"incorrect external angle"
);
assert_eq!(
polygon.external_angle_radians(),
60_f32.to_radians(),
"incorrect external angle"
);
}
#[test]
fn triangle_circumcenter() {
let triangle = Triangle2d::new(
Vec2::new(10.0, 2.0),
Vec2::new(-5.0, -3.0),
Vec2::new(2.0, -1.0),
);
let (Circle { radius }, circumcenter) = triangle.circumcircle();
// Calculated with external calculator
assert_eq!(radius, 98.34887);
assert_eq!(circumcenter, Vec2::new(-28.5, 92.5));
}
#[test]
fn regular_polygon_vertices() {
let polygon = RegularPolygon::new(1.0, 4);
// Regular polygons have a vertex at the top by default
let mut vertices = polygon.vertices(0.0).into_iter();
assert!((vertices.next().unwrap() - Vec2::Y).length() < 1e-7);
// Rotate by 45 degrees, forming an axis-aligned square
let mut rotated_vertices = polygon.vertices(core::f32::consts::FRAC_PI_4).into_iter();
// Distance from the origin to the middle of a side, derived using Pythagorean theorem
let side_distance = FRAC_1_SQRT_2;
assert!(
(rotated_vertices.next().unwrap() - Vec2::new(-side_distance, side_distance)).length()
< 1e-7,
);
}
}