bevy/crates/bevy_sprite/src/mesh2d/mesh.rs
Patrick Walton 8f36106f9e
Split out the IndirectParametersMetadata into CPU-populated and GPU-populated buffers. (#17863)
The GPU can fill out many of the fields in `IndirectParametersMetadata`
using information it already has:

* `early_instance_count` and `late_instance_count` are always
initialized to zero.

* `mesh_index` is already present in the work item buffer as the
`input_index` of the first work item in each batch.

This patch moves these fields to a separate buffer, the *GPU indirect
parameters metadata* buffer. That way, it avoids having to write them on
CPU during `batch_and_prepare_binned_render_phase`. This effectively
reduces the number of bits that that function must write per mesh from
160 to 64 (in addition to the 64 bits per mesh *instance*).

Additionally, this PR refactors `UntypedPhaseIndirectParametersBuffers`
to add another layer, `MeshClassIndirectParametersBuffers`, which allows
abstracting over the buffers corresponding indexed and non-indexed
meshes. This patch doesn't make much use of this abstraction, but
forthcoming patches will, and it's overall a cleaner approach.

This didn't seem to have much of an effect by itself on
`batch_and_prepare_binned_render_phase` time, but subsequent PRs
dependent on this PR yield roughly a 2× speedup.
2025-02-18 00:53:44 +00:00

922 lines
34 KiB
Rust

use bevy_app::Plugin;
use bevy_asset::{load_internal_asset, weak_handle, AssetId, Handle};
use crate::{tonemapping_pipeline_key, Material2dBindGroupId};
use bevy_core_pipeline::tonemapping::DebandDither;
use bevy_core_pipeline::{
core_2d::{AlphaMask2d, Camera2d, Opaque2d, Transparent2d, CORE_2D_DEPTH_FORMAT},
tonemapping::{
get_lut_bind_group_layout_entries, get_lut_bindings, Tonemapping, TonemappingLuts,
},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::component::Tick;
use bevy_ecs::system::SystemChangeTick;
use bevy_ecs::{
prelude::*,
query::ROQueryItem,
system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_image::{BevyDefault, Image, ImageSampler, TextureFormatPixelInfo};
use bevy_math::{Affine3, Vec4};
use bevy_render::mesh::MeshTag;
use bevy_render::prelude::Msaa;
use bevy_render::RenderSet::PrepareAssets;
use bevy_render::{
batching::{
gpu_preprocessing::IndirectParametersCpuMetadata,
no_gpu_preprocessing::{
self, batch_and_prepare_binned_render_phase, batch_and_prepare_sorted_render_phase,
write_batched_instance_buffer, BatchedInstanceBuffer,
},
GetBatchData, GetFullBatchData, NoAutomaticBatching,
},
globals::{GlobalsBuffer, GlobalsUniform},
mesh::{
allocator::MeshAllocator, Mesh, Mesh2d, MeshVertexBufferLayoutRef, RenderMesh,
RenderMeshBufferInfo,
},
render_asset::RenderAssets,
render_phase::{
sweep_old_entities, PhaseItem, PhaseItemExtraIndex, RenderCommand, RenderCommandResult,
TrackedRenderPass,
},
render_resource::{binding_types::uniform_buffer, *},
renderer::{RenderDevice, RenderQueue},
sync_world::{MainEntity, MainEntityHashMap},
texture::{DefaultImageSampler, FallbackImage, GpuImage},
view::{
ExtractedView, ViewTarget, ViewUniform, ViewUniformOffset, ViewUniforms, ViewVisibility,
},
Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};
use bevy_transform::components::GlobalTransform;
use nonmax::NonMaxU32;
use tracing::error;
#[derive(Default)]
pub struct Mesh2dRenderPlugin;
pub const MESH2D_VERTEX_OUTPUT: Handle<Shader> =
weak_handle!("71e279c7-85a0-46ac-9a76-1586cbf506d0");
pub const MESH2D_VIEW_TYPES_HANDLE: Handle<Shader> =
weak_handle!("01087b0d-91e9-46ac-8628-dfe19a7d4b83");
pub const MESH2D_VIEW_BINDINGS_HANDLE: Handle<Shader> =
weak_handle!("fbdd8b80-503d-4688-bcec-db29ab4620b2");
pub const MESH2D_TYPES_HANDLE: Handle<Shader> =
weak_handle!("199f2089-6e99-4348-9bb1-d82816640a7f");
pub const MESH2D_BINDINGS_HANDLE: Handle<Shader> =
weak_handle!("a7bd44cc-0580-4427-9a00-721cf386b6e4");
pub const MESH2D_FUNCTIONS_HANDLE: Handle<Shader> =
weak_handle!("0d08ff71-68c1-4017-83e2-bfc34d285c51");
pub const MESH2D_SHADER_HANDLE: Handle<Shader> =
weak_handle!("91a7602b-df95-4ea3-9d97-076abcb69d91");
impl Plugin for Mesh2dRenderPlugin {
fn build(&self, app: &mut bevy_app::App) {
load_internal_asset!(
app,
MESH2D_VERTEX_OUTPUT,
"mesh2d_vertex_output.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
MESH2D_VIEW_TYPES_HANDLE,
"mesh2d_view_types.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
MESH2D_VIEW_BINDINGS_HANDLE,
"mesh2d_view_bindings.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
MESH2D_TYPES_HANDLE,
"mesh2d_types.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
MESH2D_FUNCTIONS_HANDLE,
"mesh2d_functions.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, MESH2D_SHADER_HANDLE, "mesh2d.wgsl", Shader::from_wgsl);
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<ViewKeyCache>()
.init_resource::<RenderMesh2dInstances>()
.init_resource::<SpecializedMeshPipelines<Mesh2dPipeline>>()
.add_systems(ExtractSchedule, extract_mesh2d)
.add_systems(
Render,
(
(
sweep_old_entities::<Opaque2d>,
sweep_old_entities::<AlphaMask2d>,
)
.in_set(RenderSet::QueueSweep),
batch_and_prepare_binned_render_phase::<Opaque2d, Mesh2dPipeline>
.in_set(RenderSet::PrepareResources),
batch_and_prepare_binned_render_phase::<AlphaMask2d, Mesh2dPipeline>
.in_set(RenderSet::PrepareResources),
batch_and_prepare_sorted_render_phase::<Transparent2d, Mesh2dPipeline>
.in_set(RenderSet::PrepareResources),
write_batched_instance_buffer::<Mesh2dPipeline>
.in_set(RenderSet::PrepareResourcesFlush),
prepare_mesh2d_bind_group.in_set(RenderSet::PrepareBindGroups),
prepare_mesh2d_view_bind_groups.in_set(RenderSet::PrepareBindGroups),
no_gpu_preprocessing::clear_batched_cpu_instance_buffers::<Mesh2dPipeline>
.in_set(RenderSet::Cleanup)
.after(RenderSet::Render),
),
);
}
}
fn finish(&self, app: &mut bevy_app::App) {
let mut mesh_bindings_shader_defs = Vec::with_capacity(1);
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
let render_device = render_app.world().resource::<RenderDevice>();
let batched_instance_buffer =
BatchedInstanceBuffer::<Mesh2dUniform>::new(render_device);
if let Some(per_object_buffer_batch_size) =
GpuArrayBuffer::<Mesh2dUniform>::batch_size(render_device)
{
mesh_bindings_shader_defs.push(ShaderDefVal::UInt(
"PER_OBJECT_BUFFER_BATCH_SIZE".into(),
per_object_buffer_batch_size,
));
}
render_app
.insert_resource(batched_instance_buffer)
.init_resource::<Mesh2dPipeline>()
.init_resource::<ViewKeyCache>()
.init_resource::<ViewSpecializationTicks>()
.add_systems(
Render,
check_views_need_specialization.in_set(PrepareAssets),
);
}
// Load the mesh_bindings shader module here as it depends on runtime information about
// whether storage buffers are supported, or the maximum uniform buffer binding size.
load_internal_asset!(
app,
MESH2D_BINDINGS_HANDLE,
"mesh2d_bindings.wgsl",
Shader::from_wgsl_with_defs,
mesh_bindings_shader_defs
);
}
}
#[derive(Resource, Deref, DerefMut, Default, Debug, Clone)]
pub struct ViewKeyCache(MainEntityHashMap<Mesh2dPipelineKey>);
#[derive(Resource, Deref, DerefMut, Default, Debug, Clone)]
pub struct ViewSpecializationTicks(MainEntityHashMap<Tick>);
pub fn check_views_need_specialization(
mut view_key_cache: ResMut<ViewKeyCache>,
mut view_specialization_ticks: ResMut<ViewSpecializationTicks>,
views: Query<(
&MainEntity,
&ExtractedView,
&Msaa,
Option<&Tonemapping>,
Option<&DebandDither>,
)>,
ticks: SystemChangeTick,
) {
for (view_entity, view, msaa, tonemapping, dither) in &views {
let mut view_key = Mesh2dPipelineKey::from_msaa_samples(msaa.samples())
| Mesh2dPipelineKey::from_hdr(view.hdr);
if !view.hdr {
if let Some(tonemapping) = tonemapping {
view_key |= Mesh2dPipelineKey::TONEMAP_IN_SHADER;
view_key |= tonemapping_pipeline_key(*tonemapping);
}
if let Some(DebandDither::Enabled) = dither {
view_key |= Mesh2dPipelineKey::DEBAND_DITHER;
}
}
if !view_key_cache
.get_mut(view_entity)
.is_some_and(|current_key| *current_key == view_key)
{
view_key_cache.insert(*view_entity, view_key);
view_specialization_ticks.insert(*view_entity, ticks.this_run());
}
}
}
#[derive(Component)]
pub struct Mesh2dTransforms {
pub world_from_local: Affine3,
pub flags: u32,
}
#[derive(ShaderType, Clone, Copy)]
pub struct Mesh2dUniform {
// Affine 4x3 matrix transposed to 3x4
pub world_from_local: [Vec4; 3],
// 3x3 matrix packed in mat2x4 and f32 as:
// [0].xyz, [1].x,
// [1].yz, [2].xy
// [2].z
pub local_from_world_transpose_a: [Vec4; 2],
pub local_from_world_transpose_b: f32,
pub flags: u32,
pub tag: u32,
}
impl Mesh2dUniform {
fn from_components(mesh_transforms: &Mesh2dTransforms, tag: u32) -> Self {
let (local_from_world_transpose_a, local_from_world_transpose_b) =
mesh_transforms.world_from_local.inverse_transpose_3x3();
Self {
world_from_local: mesh_transforms.world_from_local.to_transpose(),
local_from_world_transpose_a,
local_from_world_transpose_b,
flags: mesh_transforms.flags,
tag,
}
}
}
// NOTE: These must match the bit flags in bevy_sprite/src/mesh2d/mesh2d.wgsl!
bitflags::bitflags! {
#[repr(transparent)]
pub struct MeshFlags: u32 {
const NONE = 0;
const UNINITIALIZED = 0xFFFF;
}
}
pub struct RenderMesh2dInstance {
pub transforms: Mesh2dTransforms,
pub mesh_asset_id: AssetId<Mesh>,
pub material_bind_group_id: Material2dBindGroupId,
pub automatic_batching: bool,
pub tag: u32,
}
#[derive(Default, Resource, Deref, DerefMut)]
pub struct RenderMesh2dInstances(MainEntityHashMap<RenderMesh2dInstance>);
#[derive(Component, Default)]
pub struct Mesh2dMarker;
pub fn extract_mesh2d(
mut render_mesh_instances: ResMut<RenderMesh2dInstances>,
query: Extract<
Query<(
Entity,
&ViewVisibility,
&GlobalTransform,
&Mesh2d,
Option<&MeshTag>,
Has<NoAutomaticBatching>,
)>,
>,
) {
render_mesh_instances.clear();
for (entity, view_visibility, transform, handle, tag, no_automatic_batching) in &query {
if !view_visibility.get() {
continue;
}
render_mesh_instances.insert(
entity.into(),
RenderMesh2dInstance {
transforms: Mesh2dTransforms {
world_from_local: (&transform.affine()).into(),
flags: MeshFlags::empty().bits(),
},
mesh_asset_id: handle.0.id(),
material_bind_group_id: Material2dBindGroupId::default(),
automatic_batching: !no_automatic_batching,
tag: tag.map_or(0, |i| **i),
},
);
}
}
#[derive(Resource, Clone)]
pub struct Mesh2dPipeline {
pub view_layout: BindGroupLayout,
pub mesh_layout: BindGroupLayout,
// This dummy white texture is to be used in place of optional textures
pub dummy_white_gpu_image: GpuImage,
pub per_object_buffer_batch_size: Option<u32>,
}
impl FromWorld for Mesh2dPipeline {
fn from_world(world: &mut World) -> Self {
let mut system_state: SystemState<(
Res<RenderDevice>,
Res<RenderQueue>,
Res<DefaultImageSampler>,
)> = SystemState::new(world);
let (render_device, render_queue, default_sampler) = system_state.get_mut(world);
let render_device = render_device.into_inner();
let tonemapping_lut_entries = get_lut_bind_group_layout_entries();
let view_layout = render_device.create_bind_group_layout(
"mesh2d_view_layout",
&BindGroupLayoutEntries::with_indices(
ShaderStages::VERTEX_FRAGMENT,
(
(0, uniform_buffer::<ViewUniform>(true)),
(1, uniform_buffer::<GlobalsUniform>(false)),
(
2,
tonemapping_lut_entries[0].visibility(ShaderStages::FRAGMENT),
),
(
3,
tonemapping_lut_entries[1].visibility(ShaderStages::FRAGMENT),
),
),
),
);
let mesh_layout = render_device.create_bind_group_layout(
"mesh2d_layout",
&BindGroupLayoutEntries::single(
ShaderStages::VERTEX_FRAGMENT,
GpuArrayBuffer::<Mesh2dUniform>::binding_layout(render_device),
),
);
// A 1x1x1 'all 1.0' texture to use as a dummy texture to use in place of optional StandardMaterial textures
let dummy_white_gpu_image = {
let image = Image::default();
let texture = render_device.create_texture(&image.texture_descriptor);
let sampler = match image.sampler {
ImageSampler::Default => (**default_sampler).clone(),
ImageSampler::Descriptor(ref descriptor) => {
render_device.create_sampler(&descriptor.as_wgpu())
}
};
let format_size = image.texture_descriptor.format.pixel_size();
render_queue.write_texture(
texture.as_image_copy(),
image.data.as_ref().expect("Image has no data"),
TexelCopyBufferLayout {
offset: 0,
bytes_per_row: Some(image.width() * format_size as u32),
rows_per_image: None,
},
image.texture_descriptor.size,
);
let texture_view = texture.create_view(&TextureViewDescriptor::default());
GpuImage {
texture,
texture_view,
texture_format: image.texture_descriptor.format,
sampler,
size: image.texture_descriptor.size,
mip_level_count: image.texture_descriptor.mip_level_count,
}
};
Mesh2dPipeline {
view_layout,
mesh_layout,
dummy_white_gpu_image,
per_object_buffer_batch_size: GpuArrayBuffer::<Mesh2dUniform>::batch_size(
render_device,
),
}
}
}
impl Mesh2dPipeline {
pub fn get_image_texture<'a>(
&'a self,
gpu_images: &'a RenderAssets<GpuImage>,
handle_option: &Option<Handle<Image>>,
) -> Option<(&'a TextureView, &'a Sampler)> {
if let Some(handle) = handle_option {
let gpu_image = gpu_images.get(handle)?;
Some((&gpu_image.texture_view, &gpu_image.sampler))
} else {
Some((
&self.dummy_white_gpu_image.texture_view,
&self.dummy_white_gpu_image.sampler,
))
}
}
}
impl GetBatchData for Mesh2dPipeline {
type Param = (
SRes<RenderMesh2dInstances>,
SRes<RenderAssets<RenderMesh>>,
SRes<MeshAllocator>,
);
type CompareData = (Material2dBindGroupId, AssetId<Mesh>);
type BufferData = Mesh2dUniform;
fn get_batch_data(
(mesh_instances, _, _): &SystemParamItem<Self::Param>,
(_entity, main_entity): (Entity, MainEntity),
) -> Option<(Self::BufferData, Option<Self::CompareData>)> {
let mesh_instance = mesh_instances.get(&main_entity)?;
Some((
Mesh2dUniform::from_components(&mesh_instance.transforms, mesh_instance.tag),
mesh_instance.automatic_batching.then_some((
mesh_instance.material_bind_group_id,
mesh_instance.mesh_asset_id,
)),
))
}
}
impl GetFullBatchData for Mesh2dPipeline {
type BufferInputData = ();
fn get_binned_batch_data(
(mesh_instances, _, _): &SystemParamItem<Self::Param>,
main_entity: MainEntity,
) -> Option<Self::BufferData> {
let mesh_instance = mesh_instances.get(&main_entity)?;
Some(Mesh2dUniform::from_components(
&mesh_instance.transforms,
mesh_instance.tag,
))
}
fn get_index_and_compare_data(
_: &SystemParamItem<Self::Param>,
_query_item: MainEntity,
) -> Option<(NonMaxU32, Option<Self::CompareData>)> {
error!(
"`get_index_and_compare_data` is only intended for GPU mesh uniform building, \
but this is not yet implemented for 2d meshes"
);
None
}
fn get_binned_index(
_: &SystemParamItem<Self::Param>,
_query_item: MainEntity,
) -> Option<NonMaxU32> {
error!(
"`get_binned_index` is only intended for GPU mesh uniform building, \
but this is not yet implemented for 2d meshes"
);
None
}
fn write_batch_indirect_parameters_metadata(
indexed: bool,
base_output_index: u32,
batch_set_index: Option<NonMaxU32>,
indirect_parameters_buffer: &mut bevy_render::batching::gpu_preprocessing::UntypedPhaseIndirectParametersBuffers,
indirect_parameters_offset: u32,
) {
// Note that `IndirectParameters` covers both of these structures, even
// though they actually have distinct layouts. See the comment above that
// type for more information.
let indirect_parameters = IndirectParametersCpuMetadata {
base_output_index,
batch_set_index: match batch_set_index {
None => !0,
Some(batch_set_index) => u32::from(batch_set_index),
},
};
if indexed {
indirect_parameters_buffer
.indexed
.set(indirect_parameters_offset, indirect_parameters);
} else {
indirect_parameters_buffer
.non_indexed
.set(indirect_parameters_offset, indirect_parameters);
}
}
}
bitflags::bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
// NOTE: Apparently quadro drivers support up to 64x MSAA.
// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
// FIXME: make normals optional?
pub struct Mesh2dPipelineKey: u32 {
const NONE = 0;
const HDR = 1 << 0;
const TONEMAP_IN_SHADER = 1 << 1;
const DEBAND_DITHER = 1 << 2;
const BLEND_ALPHA = 1 << 3;
const MAY_DISCARD = 1 << 4;
const MSAA_RESERVED_BITS = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
const PRIMITIVE_TOPOLOGY_RESERVED_BITS = Self::PRIMITIVE_TOPOLOGY_MASK_BITS << Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
const TONEMAP_METHOD_RESERVED_BITS = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_NONE = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_ACES_FITTED = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_AGX = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_TONY_MC_MAPFACE = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_BLENDER_FILMIC = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
}
}
impl Mesh2dPipelineKey {
const MSAA_MASK_BITS: u32 = 0b111;
const MSAA_SHIFT_BITS: u32 = 32 - Self::MSAA_MASK_BITS.count_ones();
const PRIMITIVE_TOPOLOGY_MASK_BITS: u32 = 0b111;
const PRIMITIVE_TOPOLOGY_SHIFT_BITS: u32 = Self::MSAA_SHIFT_BITS - 3;
const TONEMAP_METHOD_MASK_BITS: u32 = 0b111;
const TONEMAP_METHOD_SHIFT_BITS: u32 =
Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS - Self::TONEMAP_METHOD_MASK_BITS.count_ones();
pub fn from_msaa_samples(msaa_samples: u32) -> Self {
let msaa_bits =
(msaa_samples.trailing_zeros() & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
Self::from_bits_retain(msaa_bits)
}
pub fn from_hdr(hdr: bool) -> Self {
if hdr {
Mesh2dPipelineKey::HDR
} else {
Mesh2dPipelineKey::NONE
}
}
pub fn msaa_samples(&self) -> u32 {
1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
}
pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self {
let primitive_topology_bits = ((primitive_topology as u32)
& Self::PRIMITIVE_TOPOLOGY_MASK_BITS)
<< Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
Self::from_bits_retain(primitive_topology_bits)
}
pub fn primitive_topology(&self) -> PrimitiveTopology {
let primitive_topology_bits = (self.bits() >> Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
& Self::PRIMITIVE_TOPOLOGY_MASK_BITS;
match primitive_topology_bits {
x if x == PrimitiveTopology::PointList as u32 => PrimitiveTopology::PointList,
x if x == PrimitiveTopology::LineList as u32 => PrimitiveTopology::LineList,
x if x == PrimitiveTopology::LineStrip as u32 => PrimitiveTopology::LineStrip,
x if x == PrimitiveTopology::TriangleList as u32 => PrimitiveTopology::TriangleList,
x if x == PrimitiveTopology::TriangleStrip as u32 => PrimitiveTopology::TriangleStrip,
_ => PrimitiveTopology::default(),
}
}
}
impl SpecializedMeshPipeline for Mesh2dPipeline {
type Key = Mesh2dPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayoutRef,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut shader_defs = Vec::new();
let mut vertex_attributes = Vec::new();
if layout.0.contains(Mesh::ATTRIBUTE_POSITION) {
shader_defs.push("VERTEX_POSITIONS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
}
if layout.0.contains(Mesh::ATTRIBUTE_NORMAL) {
shader_defs.push("VERTEX_NORMALS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_NORMAL.at_shader_location(1));
}
if layout.0.contains(Mesh::ATTRIBUTE_UV_0) {
shader_defs.push("VERTEX_UVS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_0.at_shader_location(2));
}
if layout.0.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push("VERTEX_TANGENTS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
}
if layout.0.contains(Mesh::ATTRIBUTE_COLOR) {
shader_defs.push("VERTEX_COLORS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(4));
}
if key.contains(Mesh2dPipelineKey::TONEMAP_IN_SHADER) {
shader_defs.push("TONEMAP_IN_SHADER".into());
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_TEXTURE_BINDING_INDEX".into(),
2,
));
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_SAMPLER_BINDING_INDEX".into(),
3,
));
let method = key.intersection(Mesh2dPipelineKey::TONEMAP_METHOD_RESERVED_BITS);
match method {
Mesh2dPipelineKey::TONEMAP_METHOD_NONE => {
shader_defs.push("TONEMAP_METHOD_NONE".into());
}
Mesh2dPipelineKey::TONEMAP_METHOD_REINHARD => {
shader_defs.push("TONEMAP_METHOD_REINHARD".into());
}
Mesh2dPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE => {
shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
}
Mesh2dPipelineKey::TONEMAP_METHOD_ACES_FITTED => {
shader_defs.push("TONEMAP_METHOD_ACES_FITTED".into());
}
Mesh2dPipelineKey::TONEMAP_METHOD_AGX => {
shader_defs.push("TONEMAP_METHOD_AGX".into());
}
Mesh2dPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM => {
shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
}
Mesh2dPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC => {
shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
}
Mesh2dPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE => {
shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
}
_ => {}
}
// Debanding is tied to tonemapping in the shader, cannot run without it.
if key.contains(Mesh2dPipelineKey::DEBAND_DITHER) {
shader_defs.push("DEBAND_DITHER".into());
}
}
if key.contains(Mesh2dPipelineKey::MAY_DISCARD) {
shader_defs.push("MAY_DISCARD".into());
}
let vertex_buffer_layout = layout.0.get_layout(&vertex_attributes)?;
let format = match key.contains(Mesh2dPipelineKey::HDR) {
true => ViewTarget::TEXTURE_FORMAT_HDR,
false => TextureFormat::bevy_default(),
};
let (depth_write_enabled, label, blend);
if key.contains(Mesh2dPipelineKey::BLEND_ALPHA) {
label = "transparent_mesh2d_pipeline";
blend = Some(BlendState::ALPHA_BLENDING);
depth_write_enabled = false;
} else {
label = "opaque_mesh2d_pipeline";
blend = None;
depth_write_enabled = true;
}
Ok(RenderPipelineDescriptor {
vertex: VertexState {
shader: MESH2D_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_buffer_layout],
},
fragment: Some(FragmentState {
shader: MESH2D_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format,
blend,
write_mask: ColorWrites::ALL,
})],
}),
layout: vec![self.view_layout.clone(), self.mesh_layout.clone()],
push_constant_ranges: vec![],
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: None,
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: key.primitive_topology(),
strip_index_format: None,
},
depth_stencil: Some(DepthStencilState {
format: CORE_2D_DEPTH_FORMAT,
depth_write_enabled,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some(label.into()),
zero_initialize_workgroup_memory: false,
})
}
}
#[derive(Resource)]
pub struct Mesh2dBindGroup {
pub value: BindGroup,
}
pub fn prepare_mesh2d_bind_group(
mut commands: Commands,
mesh2d_pipeline: Res<Mesh2dPipeline>,
render_device: Res<RenderDevice>,
mesh2d_uniforms: Res<BatchedInstanceBuffer<Mesh2dUniform>>,
) {
if let Some(binding) = mesh2d_uniforms.instance_data_binding() {
commands.insert_resource(Mesh2dBindGroup {
value: render_device.create_bind_group(
"mesh2d_bind_group",
&mesh2d_pipeline.mesh_layout,
&BindGroupEntries::single(binding),
),
});
}
}
#[derive(Component)]
pub struct Mesh2dViewBindGroup {
pub value: BindGroup,
}
pub fn prepare_mesh2d_view_bind_groups(
mut commands: Commands,
render_device: Res<RenderDevice>,
mesh2d_pipeline: Res<Mesh2dPipeline>,
view_uniforms: Res<ViewUniforms>,
views: Query<(Entity, &Tonemapping), (With<ExtractedView>, With<Camera2d>)>,
globals_buffer: Res<GlobalsBuffer>,
tonemapping_luts: Res<TonemappingLuts>,
images: Res<RenderAssets<GpuImage>>,
fallback_image: Res<FallbackImage>,
) {
let (Some(view_binding), Some(globals)) = (
view_uniforms.uniforms.binding(),
globals_buffer.buffer.binding(),
) else {
return;
};
for (entity, tonemapping) in &views {
let lut_bindings =
get_lut_bindings(&images, &tonemapping_luts, tonemapping, &fallback_image);
let view_bind_group = render_device.create_bind_group(
"mesh2d_view_bind_group",
&mesh2d_pipeline.view_layout,
&BindGroupEntries::with_indices((
(0, view_binding.clone()),
(1, globals.clone()),
(2, lut_bindings.0),
(3, lut_bindings.1),
)),
);
commands.entity(entity).insert(Mesh2dViewBindGroup {
value: view_bind_group,
});
}
}
pub struct SetMesh2dViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMesh2dViewBindGroup<I> {
type Param = ();
type ViewQuery = (Read<ViewUniformOffset>, Read<Mesh2dViewBindGroup>);
type ItemQuery = ();
#[inline]
fn render<'w>(
_item: &P,
(view_uniform, mesh2d_view_bind_group): ROQueryItem<'w, Self::ViewQuery>,
_view: Option<()>,
_param: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(I, &mesh2d_view_bind_group.value, &[view_uniform.offset]);
RenderCommandResult::Success
}
}
pub struct SetMesh2dBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMesh2dBindGroup<I> {
type Param = SRes<Mesh2dBindGroup>;
type ViewQuery = ();
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_item_query: Option<()>,
mesh2d_bind_group: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let mut dynamic_offsets: [u32; 1] = Default::default();
let mut offset_count = 0;
if let PhaseItemExtraIndex::DynamicOffset(dynamic_offset) = item.extra_index() {
dynamic_offsets[offset_count] = dynamic_offset;
offset_count += 1;
}
pass.set_bind_group(
I,
&mesh2d_bind_group.into_inner().value,
&dynamic_offsets[..offset_count],
);
RenderCommandResult::Success
}
}
pub struct DrawMesh2d;
impl<P: PhaseItem> RenderCommand<P> for DrawMesh2d {
type Param = (
SRes<RenderAssets<RenderMesh>>,
SRes<RenderMesh2dInstances>,
SRes<MeshAllocator>,
);
type ViewQuery = ();
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_item_query: Option<()>,
(meshes, render_mesh2d_instances, mesh_allocator): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let meshes = meshes.into_inner();
let render_mesh2d_instances = render_mesh2d_instances.into_inner();
let mesh_allocator = mesh_allocator.into_inner();
let Some(RenderMesh2dInstance { mesh_asset_id, .. }) =
render_mesh2d_instances.get(&item.main_entity())
else {
return RenderCommandResult::Skip;
};
let Some(gpu_mesh) = meshes.get(*mesh_asset_id) else {
return RenderCommandResult::Skip;
};
let Some(vertex_buffer_slice) = mesh_allocator.mesh_vertex_slice(mesh_asset_id) else {
return RenderCommandResult::Skip;
};
pass.set_vertex_buffer(0, vertex_buffer_slice.buffer.slice(..));
let batch_range = item.batch_range();
match &gpu_mesh.buffer_info {
RenderMeshBufferInfo::Indexed {
index_format,
count,
} => {
let Some(index_buffer_slice) = mesh_allocator.mesh_index_slice(mesh_asset_id)
else {
return RenderCommandResult::Skip;
};
pass.set_index_buffer(index_buffer_slice.buffer.slice(..), 0, *index_format);
pass.draw_indexed(
index_buffer_slice.range.start..(index_buffer_slice.range.start + count),
vertex_buffer_slice.range.start as i32,
batch_range.clone(),
);
}
RenderMeshBufferInfo::NonIndexed => {
pass.draw(vertex_buffer_slice.range, batch_range.clone());
}
}
RenderCommandResult::Success
}
}