bevy/crates/bevy_render/src/maths.wgsl
Patrick Walton d59b1e71ef
Implement percentage-closer filtering (PCF) for point lights. (#12910)
I ported the two existing PCF techniques to the cubemap domain as best I
could. Generally, the technique is to create a 2D orthonormal basis
using Gram-Schmidt normalization, then apply the technique over that
basis. The results look fine, though the shadow bias often needs
adjusting.

For comparison, Unity uses a 4-tap pattern for PCF on point lights of
(1, 1, 1), (-1, -1, 1), (-1, 1, -1), (1, -1, -1). I tried this but
didn't like the look, so I went with the design above, which ports the
2D techniques to the 3D domain. There's surprisingly little material on
point light PCF.

I've gone through every example using point lights and verified that the
shadow maps look fine, adjusting biases as necessary.

Fixes #3628.

---

## Changelog

### Added
* Shadows from point lights now support percentage-closer filtering
(PCF), and as a result look less aliased.

### Changed
* `ShadowFilteringMethod::Castano13` and
`ShadowFilteringMethod::Jimenez14` have been renamed to
`ShadowFilteringMethod::Gaussian` and `ShadowFilteringMethod::Temporal`
respectively.

## Migration Guide

* `ShadowFilteringMethod::Castano13` and
`ShadowFilteringMethod::Jimenez14` have been renamed to
`ShadowFilteringMethod::Gaussian` and `ShadowFilteringMethod::Temporal`
respectively.
2024-04-10 20:16:08 +00:00

67 lines
2.0 KiB
WebGPU Shading Language

#define_import_path bevy_render::maths
fn affine2_to_square(affine: mat3x2<f32>) -> mat3x3<f32> {
return mat3x3<f32>(
vec3<f32>(affine[0].xy, 0.0),
vec3<f32>(affine[1].xy, 0.0),
vec3<f32>(affine[2].xy, 1.0),
);
}
fn affine3_to_square(affine: mat3x4<f32>) -> mat4x4<f32> {
return transpose(mat4x4<f32>(
affine[0],
affine[1],
affine[2],
vec4<f32>(0.0, 0.0, 0.0, 1.0),
));
}
fn mat2x4_f32_to_mat3x3_unpack(
a: mat2x4<f32>,
b: f32,
) -> mat3x3<f32> {
return mat3x3<f32>(
a[0].xyz,
vec3<f32>(a[0].w, a[1].xy),
vec3<f32>(a[1].zw, b),
);
}
// Extracts the square portion of an affine matrix: i.e. discards the
// translation.
fn affine3_to_mat3x3(affine: mat4x3<f32>) -> mat3x3<f32> {
return mat3x3<f32>(affine[0].xyz, affine[1].xyz, affine[2].xyz);
}
// Returns the inverse of a 3x3 matrix.
fn inverse_mat3x3(matrix: mat3x3<f32>) -> mat3x3<f32> {
let tmp0 = cross(matrix[1], matrix[2]);
let tmp1 = cross(matrix[2], matrix[0]);
let tmp2 = cross(matrix[0], matrix[1]);
let inv_det = 1.0 / dot(matrix[2], tmp2);
return transpose(mat3x3<f32>(tmp0 * inv_det, tmp1 * inv_det, tmp2 * inv_det));
}
// Returns the inverse of an affine matrix.
//
// https://en.wikipedia.org/wiki/Affine_transformation#Groups
fn inverse_affine3(affine: mat4x3<f32>) -> mat4x3<f32> {
let matrix3 = affine3_to_mat3x3(affine);
let inv_matrix3 = inverse_mat3x3(matrix3);
return mat4x3<f32>(inv_matrix3[0], inv_matrix3[1], inv_matrix3[2], -(inv_matrix3 * affine[3]));
}
// Creates an orthonormal basis given a Z vector and an up vector (which becomes
// Y after orthonormalization).
//
// The results are equivalent to the Gram-Schmidt process [1].
//
// [1]: https://math.stackexchange.com/a/1849294
fn orthonormalize(z_unnormalized: vec3<f32>, up: vec3<f32>) -> mat3x3<f32> {
let z_basis = normalize(z_unnormalized);
let x_basis = normalize(cross(z_basis, up));
let y_basis = cross(z_basis, x_basis);
return mat3x3(x_basis, y_basis, z_basis);
}