167 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			167 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # Bevy Reflect
 | |
| 
 | |
| This crate enables you to dynamically interact with Rust types:
 | |
| 
 | |
| * Derive the Reflect traits
 | |
| * Interact with fields using their names (for named structs) or indices (for tuple structs)
 | |
| * "Patch" your types with new values
 | |
| * Look up nested fields using "path strings"
 | |
| * Iterate over struct fields
 | |
| * Automatically serialize and deserialize via Serde (without explicit serde impls)
 | |
| * Trait "reflection"
 | |
| 
 | |
| ## Features
 | |
| 
 | |
| ### Derive the Reflect traits
 | |
| 
 | |
| ```rust ignore
 | |
| // this will automatically implement the Reflect trait and the Struct trait (because the type is a struct)
 | |
| #[derive(Reflect)]
 | |
| struct Foo {
 | |
|     a: u32,
 | |
|     b: Bar,
 | |
|     c: Vec<i32>,
 | |
|     d: Vec<Baz>,
 | |
| }
 | |
| 
 | |
| // this will automatically implement the Reflect trait and the TupleStruct trait (because the type is a tuple struct)
 | |
| #[derive(Reflect)]
 | |
| struct Bar(String);
 | |
| 
 | |
| #[derive(Reflect, FromReflect)]
 | |
| struct Baz {
 | |
|     value: f32,
 | |
| }
 | |
| 
 | |
| // We will use this value to illustrate `bevy_reflect` features
 | |
| let mut foo = Foo {
 | |
|     a: 1,
 | |
|     b: Bar("hello".to_string()),
 | |
|     c: vec![1, 2],
 | |
|     d: vec![Baz { value: 3.14 }],
 | |
| };
 | |
| ```
 | |
| 
 | |
| ### Interact with fields using their names
 | |
| 
 | |
| ```rust ignore
 | |
| assert_eq!(*foo.get_field::<u32>("a").unwrap(), 1);
 | |
| 
 | |
| *foo.get_field_mut::<u32>("a").unwrap() = 2;
 | |
| 
 | |
| assert_eq!(foo.a, 2);
 | |
| ```
 | |
| 
 | |
| ### "Patch" your types with new values
 | |
| 
 | |
| ```rust ignore
 | |
| let mut dynamic_struct = DynamicStruct::default();
 | |
| dynamic_struct.insert("a", 42u32);
 | |
| dynamic_struct.insert("c", vec![3, 4, 5]);
 | |
| 
 | |
| foo.apply(&dynamic_struct);
 | |
| 
 | |
| assert_eq!(foo.a, 42);
 | |
| assert_eq!(foo.c, vec![3, 4, 5]);
 | |
| ```
 | |
| 
 | |
| ### Look up nested fields using "path strings"
 | |
| 
 | |
| ```rust ignore
 | |
| let value = *foo.get_path::<f32>("d[0].value").unwrap();
 | |
| assert_eq!(value, 3.14);
 | |
| ```
 | |
| 
 | |
| ### Iterate over struct fields
 | |
| 
 | |
| ```rust ignore
 | |
| for (i, value: &Reflect) in foo.iter_fields().enumerate() {
 | |
|     let field_name = foo.name_at(i).unwrap();
 | |
|     if let Some(value) = value.downcast_ref::<u32>() {
 | |
|         println!("{} is a u32 with the value: {}", field_name, *value);
 | |
|     }
 | |
| }
 | |
| ```
 | |
| 
 | |
| ### Automatically serialize and deserialize via Serde (without explicit serde impls)
 | |
| 
 | |
| ```rust ignore
 | |
| let mut registry = TypeRegistry::default();
 | |
| registry.register::<u32>();
 | |
| registry.register::<i32>();
 | |
| registry.register::<f32>();
 | |
| registry.register::<String>();
 | |
| registry.register::<Bar>();
 | |
| registry.register::<Baz>();
 | |
| 
 | |
| let serializer = ReflectSerializer::new(&foo, ®istry);
 | |
| let serialized = ron::ser::to_string_pretty(&serializer, ron::ser::PrettyConfig::default()).unwrap();
 | |
| 
 | |
| let mut deserializer = ron::de::Deserializer::from_str(&serialized).unwrap();
 | |
| let reflect_deserializer = ReflectDeserializer::new(®istry);
 | |
| let value = reflect_deserializer.deserialize(&mut deserializer).unwrap();
 | |
| let dynamic_struct = value.take::<DynamicStruct>().unwrap();
 | |
| 
 | |
| assert!(foo.reflect_partial_eq(&dynamic_struct).unwrap());
 | |
| ```
 | |
| 
 | |
| ### Trait "reflection"
 | |
| 
 | |
| Call a trait on a given `&dyn Reflect` reference without knowing the underlying type!
 | |
| 
 | |
| ```rust ignore
 | |
| #[derive(Reflect)]
 | |
| #[reflect(DoThing)]
 | |
| struct MyType {
 | |
|     value: String,
 | |
| }
 | |
| 
 | |
| impl DoThing for MyType {
 | |
|     fn do_thing(&self) -> String {
 | |
|         format!("{} World!", self.value)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[reflect_trait]
 | |
| pub trait DoThing {
 | |
|     fn do_thing(&self) -> String;
 | |
| }
 | |
| 
 | |
| // First, lets box our type as a Box<dyn Reflect>
 | |
| let reflect_value: Box<dyn Reflect> = Box::new(MyType {
 | |
|     value: "Hello".to_string(),
 | |
| });
 | |
| 
 | |
| // This means we no longer have direct access to MyType or its methods. We can only call Reflect methods on reflect_value.
 | |
| // What if we want to call `do_thing` on our type? We could downcast using reflect_value.downcast_ref::<MyType>(), but what if we
 | |
| // don't know the type at compile time?
 | |
| 
 | |
| // Normally in rust we would be out of luck at this point. Lets use our new reflection powers to do something cool!
 | |
| let mut type_registry = TypeRegistry::default();
 | |
| type_registry.register::<MyType>();
 | |
| 
 | |
| // The #[reflect] attribute we put on our DoThing trait generated a new `ReflectDoThing` struct, which implements TypeData.
 | |
| // This was added to MyType's TypeRegistration.
 | |
| let reflect_do_thing = type_registry
 | |
|     .get_type_data::<ReflectDoThing>(reflect_value.type_id())
 | |
|     .unwrap();
 | |
| 
 | |
| // We can use this generated type to convert our `&dyn Reflect` reference to a `&dyn DoThing` reference
 | |
| let my_trait: &dyn DoThing = reflect_do_thing.get(&*reflect_value).unwrap();
 | |
| 
 | |
| // Which means we can now call do_thing(). Magic!
 | |
| println!("{}", my_trait.do_thing());
 | |
| 
 | |
| // This works because the #[reflect(MyTrait)] we put on MyType informed the Reflect derive to insert a new instance
 | |
| // of ReflectDoThing into MyType's registration. The instance knows how to cast &dyn Reflect to &dyn MyType, because it
 | |
| // knows that &dyn Reflect should first be downcasted to &MyType, which can then be safely casted to &dyn MyType
 | |
| ```
 | |
| 
 | |
| ## Why make this?
 | |
| 
 | |
| The whole point of Rust is static safety! Why build something that makes it easy to throw it all away?
 | |
| 
 | |
| * Some problems are inherently dynamic (scripting, some types of serialization / deserialization)
 | |
| * Sometimes the dynamic way is easier
 | |
| * Sometimes the dynamic way puts less burden on your users to derive a bunch of traits (this was a big motivator for the Bevy project)
 | 
