Commit Graph

256 Commits

Author SHA1 Message Date
arcashka
6027890a11
move wgsl color operations from bevy_pbr to bevy_render (#13209)
# Objective

`bevy_pbr/utils.wgsl` shader file contains mathematical constants and
color conversion functions. Both of those should be accessible without
enabling `bevy_pbr` feature. For example, tonemapping can be done in non
pbr scenario, and it uses color conversion functions.

Fixes #13207

## Solution

* Move mathematical constants (such as PI, E) from
`bevy_pbr/src/render/utils.wgsl` into `bevy_render/src/maths.wgsl`
* Move color conversion functions from `bevy_pbr/src/render/utils.wgsl`
into new file `bevy_render/src/color_operations.wgsl`

## Testing
Ran multiple examples, checked they are working:
* tonemapping
* color_grading
* 3d_scene
* animated_material
* deferred_rendering
* 3d_shapes
* fog
* irradiance_volumes
* meshlet
* parallax_mapping
* pbr
* reflection_probes
* shadow_biases
* 2d_gizmos
* light_gizmos
---

## Changelog
* Moved mathematical constants (such as PI, E) from
`bevy_pbr/src/render/utils.wgsl` into `bevy_render/src/maths.wgsl`
* Moved color conversion functions from `bevy_pbr/src/render/utils.wgsl`
into new file `bevy_render/src/color_operations.wgsl`

## Migration Guide
In user's shader code replace usage of mathematical constants from
`bevy_pbr::utils` to the usage of the same constants from
`bevy_render::maths`.
2024-05-04 10:30:23 +00:00
Patrick Walton
16531fb3e3
Implement GPU frustum culling. (#12889)
This commit implements opt-in GPU frustum culling, built on top of the
infrastructure in https://github.com/bevyengine/bevy/pull/12773. To
enable it on a camera, add the `GpuCulling` component to it. To
additionally disable CPU frustum culling, add the `NoCpuCulling`
component. Note that adding `GpuCulling` without `NoCpuCulling`
*currently* does nothing useful. The reason why `GpuCulling` doesn't
automatically imply `NoCpuCulling` is that I intend to follow this patch
up with GPU two-phase occlusion culling, and CPU frustum culling plus
GPU occlusion culling seems like a very commonly-desired mode.

Adding the `GpuCulling` component to a view puts that view into
*indirect mode*. This mode makes all drawcalls indirect, relying on the
mesh preprocessing shader to allocate instances dynamically. In indirect
mode, the `PreprocessWorkItem` `output_index` points not to a
`MeshUniform` instance slot but instead to a set of `wgpu`
`IndirectParameters`, from which it allocates an instance slot
dynamically if frustum culling succeeds. Batch building has been updated
to allocate and track indirect parameter slots, and the AABBs are now
supplied to the GPU as `MeshCullingData`.

A small amount of code relating to the frustum culling has been borrowed
from meshlets and moved into `maths.wgsl`. Note that standard Bevy
frustum culling uses AABBs, while meshlets use bounding spheres; this
means that not as much code can be shared as one might think.

This patch doesn't provide any way to perform GPU culling on shadow
maps, to avoid making this patch bigger than it already is. That can be
a followup.

## Changelog

### Added

* Frustum culling can now optionally be done on the GPU. To enable it,
add the `GpuCulling` component to a camera.
* To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note
that `GpuCulling` doesn't automatically imply `NoCpuCulling`.
2024-04-28 12:50:00 +00:00
robtfm
91a393a9e2
Throttle render assets (#12622)
# Objective

allow throttling of gpu uploads to prevent choppy framerate when many
textures/meshes are loaded in.

## Solution

- `RenderAsset`s can implement `byte_len()` which reports their size.
implemented this for `Mesh` and `Image`
- users can add a `RenderAssetBytesPerFrame` which specifies max bytes
to attempt to upload in a frame
- `render_assets::<A>` checks how many bytes have been written before
attempting to upload assets. the limit is a soft cap: assets will be
written until the total has exceeded the cap, to ensure some forward
progress every frame

notes:
- this is a stopgap until we have multiple wgpu queues for proper
streaming of data
- requires #12606

issues
- ~~fonts sometimes only partially upload. i have no clue why, needs to
be fixed~~ fixed now.
- choosing the #bytes is tricky as it should be hardware / framerate
dependent
- many features are not tested (env maps, light probes, etc) - they
won't break unless `RenderAssetBytesPerFrame` is explicitly used though

---------

Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-04-26 23:43:33 +00:00
BD103
7b8d502083
Fix beta lints (#12980)
# Objective

- Fixes #12976

## Solution

This one is a doozy.

- Run `cargo +beta clippy --workspace --all-targets --all-features` and
fix all issues
- This includes:
- Moving inner attributes to be outer attributes, when the item in
question has both inner and outer attributes
  - Use `ptr::from_ref` in more scenarios
- Extend the valid idents list used by `clippy:doc_markdown` with more
names
  - Use `Clone::clone_from` when possible
  - Remove redundant `ron` import
  - Add backticks to **so many** identifiers and items
    - I'm sorry whoever has to review this

---

## Changelog

- Added links to more identifiers in documentation.
2024-04-16 02:46:46 +00:00
Robert Swain
ab7cbfa8fc
Consolidate Render(Ui)Materials(2d) into RenderAssets (#12827)
# Objective

- Replace `RenderMaterials` / `RenderMaterials2d` / `RenderUiMaterials`
with `RenderAssets` to enable implementing changes to one thing,
`RenderAssets`, that applies to all use cases rather than duplicating
changes everywhere for multiple things that should be one thing.
- Adopts #8149 

## Solution

- Make RenderAsset generic over the destination type rather than the
source type as in #8149
- Use `RenderAssets<PreparedMaterial<M>>` etc for render materials

---

## Changelog

- Changed:
- The `RenderAsset` trait is now implemented on the destination type.
Its `SourceAsset` associated type refers to the type of the source
asset.
- `RenderMaterials`, `RenderMaterials2d`, and `RenderUiMaterials` have
been replaced by `RenderAssets<PreparedMaterial<M>>` and similar.

## Migration Guide

- `RenderAsset` is now implemented for the destination type rather that
the source asset type. The source asset type is now the `RenderAsset`
trait's `SourceAsset` associated type.
2024-04-09 13:26:34 +00:00
François Mockers
93fd02e8ea
remove DeterministicRenderingConfig (#12811)
# Objective

- Since #12453, `DeterministicRenderingConfig` doesn't do anything

## Solution

- Remove it

---

## Migration Guide

- Removed `DeterministicRenderingConfig`. There shouldn't be any z
fighting anymore in the rendering even without setting
`stable_sort_z_fighting`
2024-04-01 09:32:47 +00:00
Cameron
01649f13e2
Refactor App and SubApp internals for better separation (#9202)
# Objective

This is a necessary precursor to #9122 (this was split from that PR to
reduce the amount of code to review all at once).

Moving `!Send` resource ownership to `App` will make it unambiguously
`!Send`. `SubApp` must be `Send`, so it can't wrap `App`.

## Solution

Refactor `App` and `SubApp` to not have a recursive relationship. Since
`SubApp` no longer wraps `App`, once `!Send` resources are moved out of
`World` and into `App`, `SubApp` will become unambiguously `Send`.

There could be less code duplication between `App` and `SubApp`, but
that would break `App` method chaining.

## Changelog

- `SubApp` no longer wraps `App`.
- `App` fields are no longer publicly accessible.
- `App` can no longer be converted into a `SubApp`.
- Various methods now return references to a `SubApp` instead of an
`App`.
## Migration Guide

- To construct a sub-app, use `SubApp::new()`. `App` can no longer
convert into `SubApp`.
- If you implemented a trait for `App`, you may want to implement it for
`SubApp` as well.
- If you're accessing `app.world` directly, you now have to use
`app.world()` and `app.world_mut()`.
- `App::sub_app` now returns `&SubApp`.
- `App::sub_app_mut`  now returns `&mut SubApp`.
- `App::get_sub_app` now returns `Option<&SubApp>.`
- `App::get_sub_app_mut` now returns `Option<&mut SubApp>.`
2024-03-31 03:16:10 +00:00
Patrick Walton
4dadebd9c4
Improve performance by binning together opaque items instead of sorting them. (#12453)
Today, we sort all entities added to all phases, even the phases that
don't strictly need sorting, such as the opaque and shadow phases. This
results in a performance loss because our `PhaseItem`s are rather large
in memory, so sorting is slow. Additionally, determining the boundaries
of batches is an O(n) process.

This commit makes Bevy instead applicable place phase items into *bins*
keyed by *bin keys*, which have the invariant that everything in the
same bin is potentially batchable. This makes determining batch
boundaries O(1), because everything in the same bin can be batched.
Instead of sorting each entity, we now sort only the bin keys. This
drops the sorting time to near-zero on workloads with few bins like
`many_cubes --no-frustum-culling`. Memory usage is improved too, with
batch boundaries and dynamic indices now implicit instead of explicit.
The improved memory usage results in a significant win even on
unbatchable workloads like `many_cubes --no-frustum-culling
--vary-material-data-per-instance`, presumably due to cache effects.

Not all phases can be binned; some, such as transparent and transmissive
phases, must still be sorted. To handle this, this commit splits
`PhaseItem` into `BinnedPhaseItem` and `SortedPhaseItem`. Most of the
logic that today deals with `PhaseItem`s has been moved to
`SortedPhaseItem`. `BinnedPhaseItem` has the new logic.

Frame time results (in ms/frame) are as follows:

| Benchmark                | `binning` | `main`  | Speedup |
| ------------------------ | --------- | ------- | ------- |
| `many_cubes -nfc -vpi` | 232.179     | 312.123   | 34.43%  |
| `many_cubes -nfc`        | 25.874 | 30.117 | 16.40%  |
| `many_foxes`             | 3.276 | 3.515 | 7.30%   |

(`-nfc` is short for `--no-frustum-culling`; `-vpi` is short for
`--vary-per-instance`.)

---

## Changelog

### Changed

* Render phases have been split into binned and sorted phases. Binned
phases, such as the common opaque phase, achieve improved CPU
performance by avoiding the sorting step.

## Migration Guide

- `PhaseItem` has been split into `BinnedPhaseItem` and
`SortedPhaseItem`. If your code has custom `PhaseItem`s, you will need
to migrate them to one of these two types. `SortedPhaseItem` requires
the fewest code changes, but you may want to pick `BinnedPhaseItem` if
your phase doesn't require sorting, as that enables higher performance.

## Tracy graphs

`many-cubes --no-frustum-culling`, `main` branch:
<img width="1064" alt="Screenshot 2024-03-12 180037"
src="https://github.com/bevyengine/bevy/assets/157897/e1180ce8-8e89-46d2-85e3-f59f72109a55">

`many-cubes --no-frustum-culling`, this branch:
<img width="1064" alt="Screenshot 2024-03-12 180011"
src="https://github.com/bevyengine/bevy/assets/157897/0899f036-6075-44c5-a972-44d95895f46c">

You can see that `batch_and_prepare_binned_render_phase` is a much
smaller fraction of the time. Zooming in on that function, with yellow
being this branch and red being `main`, we see:

<img width="1064" alt="Screenshot 2024-03-12 175832"
src="https://github.com/bevyengine/bevy/assets/157897/0dfc8d3f-49f4-496e-8825-a66e64d356d0">

The binning happens in `queue_material_meshes`. Again with yellow being
this branch and red being `main`:
<img width="1064" alt="Screenshot 2024-03-12 175755"
src="https://github.com/bevyengine/bevy/assets/157897/b9b20dc1-11c8-400c-a6cc-1c2e09c1bb96">

We can see that there is a small regression in `queue_material_meshes`
performance, but it's not nearly enough to outweigh the large gains in
`batch_and_prepare_binned_render_phase`.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-03-30 02:55:02 +00:00
James Liu
56bcbb0975
Forbid unsafe in most crates in the engine (#12684)
# Objective
Resolves #3824. `unsafe` code should be the exception, not the norm in
Rust. It's obviously needed for various use cases as it's interfacing
with platforms and essentially running the borrow checker at runtime in
the ECS, but the touted benefits of Bevy is that we are able to heavily
leverage Rust's safety, and we should be holding ourselves accountable
to that by minimizing our unsafe footprint.

## Solution
Deny `unsafe_code` workspace wide. Add explicit exceptions for the
following crates, and forbid it in almost all of the others.

* bevy_ecs - Obvious given how much unsafe is needed to achieve
performant results
* bevy_ptr - Works with raw pointers, even more low level than bevy_ecs.
 * bevy_render - due to needing to integrate with wgpu
 * bevy_window - due to needing to integrate with raw_window_handle
* bevy_utils - Several unsafe utilities used by bevy_ecs. Ideally moved
into bevy_ecs instead of made publicly usable.
 * bevy_reflect - Required for the unsafe type casting it's doing.
 * bevy_transform - for the parallel transform propagation
 * bevy_gizmos  - For the SystemParam impls it has.
* bevy_assets - To support reflection. Might not be required, not 100%
sure yet.
* bevy_mikktspace - due to being a conversion from a C library. Pending
safe rewrite.
* bevy_dynamic_plugin - Inherently unsafe due to the dynamic loading
nature.

Several uses of unsafe were rewritten, as they did not need to be using
them:

* bevy_text - a case of `Option::unchecked` could be rewritten as a
normal for loop and match instead of an iterator.
* bevy_color - the Pod/Zeroable implementations were replaceable with
bytemuck's derive macros.
2024-03-27 03:30:08 +00:00
Ian Kettlewell
b35974010b
Get Bevy building for WebAssembly with multithreading (#12205)
# Objective

This gets Bevy building on Wasm when the `atomics` flag is enabled. This
does not yet multithread Bevy itself, but it allows Bevy users to use a
crate like `wasm_thread` to spawn their own threads and manually
parallelize work. This is a first step towards resolving #4078 . Also
fixes #9304.

This provides a foothold so that Bevy contributors can begin to think
about multithreaded Wasm's constraints and Bevy can work towards changes
to get the engine itself multithreaded.

Some flags need to be set on the Rust compiler when compiling for Wasm
multithreading. Here's what my build script looks like, with the correct
flags set, to test out Bevy examples on web:

```bash
set -e
RUSTFLAGS='-C target-feature=+atomics,+bulk-memory,+mutable-globals' \
     cargo build --example breakout --target wasm32-unknown-unknown -Z build-std=std,panic_abort --release
 wasm-bindgen --out-name wasm_example \
   --out-dir examples/wasm/target \
   --target web target/wasm32-unknown-unknown/release/examples/breakout.wasm
 devserver --header Cross-Origin-Opener-Policy='same-origin' --header Cross-Origin-Embedder-Policy='require-corp' --path examples/wasm
```

A few notes:

1. `cpal` crashes immediately when the `atomics` flag is set. That is
patched in https://github.com/RustAudio/cpal/pull/837, but not yet in
the latest crates.io release.

That can be temporarily worked around by patching Cpal like so:
```toml
[patch.crates-io]
cpal = { git = "https://github.com/RustAudio/cpal" }
```

2. When testing out `wasm_thread` you need to enable the `es_modules`
feature.

## Solution

The largest obstacle to compiling Bevy with `atomics` on web is that
`wgpu` types are _not_ Send and Sync. Longer term Bevy will need an
approach to handle that, but in the near term Bevy is already configured
to be single-threaded on web.

Therefor it is enough to wrap `wgpu` types in a
`send_wrapper::SendWrapper` that _is_ Send / Sync, but panics if
accessed off the `wgpu` thread.

---

## Changelog

- `wgpu` types that are not `Send` are wrapped in
`send_wrapper::SendWrapper` on Wasm + 'atomics'
- CommandBuffers are not generated in parallel on Wasm + 'atomics'

## Questions
- Bevy should probably add CI checks to make sure this doesn't regress.
Should that go in this PR or a separate PR? **Edit:** Added checks to
build Wasm with atomics

---------

Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: daxpedda <daxpedda@gmail.com>
Co-authored-by: François <francois.mockers@vleue.com>
2024-03-25 19:10:18 +00:00
James Liu
f096ad4155
Set the logo and favicon for all of Bevy's published crates (#12696)
# Objective
Currently the built docs only shows the logo and favicon for the top
level `bevy` crate. This makes views like
https://docs.rs/bevy_ecs/latest/bevy_ecs/ look potentially unrelated to
the project at first glance.

## Solution
Reproduce the docs attributes for every crate that Bevy publishes.

Ideally this would be done with some workspace level Cargo.toml control,
but AFAICT, such support does not exist.
2024-03-25 18:52:50 +00:00
JMS55
93b4c6c9a2
Add iOS to synchronous_pipeline_compilation docs (#12694)
iOS uses Metal, so it has the same limitation as macOS, presumably.
2024-03-24 22:01:55 +00:00
LeshaInc
737b719dda
Add pipeline statistics (#9135)
# Objective

It's useful to have access to render pipeline statistics, since they
provide more information than FPS alone. For example, the number of
drawn triangles can be used to debug culling and LODs. The number of
fragment shader invocations can provide a more stable alternative metric
than GPU elapsed time.

See also: Render node GPU timing overlay #8067, which doesn't provide
pipeline statistics, but adds a nice overlay.

## Solution

Add `RenderDiagnosticsPlugin`, which enables collecting pipeline
statistics and CPU & GPU timings.

---

## Changelog

- Add `RenderDiagnosticsPlugin`
- Add `RenderContext::diagnostic_recorder` method

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-03-17 20:29:35 +00:00
Al M
52e3f2007b
Add "all-features = true" to docs.rs metadata for most crates (#12366)
# Objective

Fix missing `TextBundle` (and many others) which are present in the main
crate as default features but optional in the sub-crate. See:

- https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html
- https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html

~~There are probably other instances in other crates that I could track
down, but maybe "all-features = true" should be used by default in all
sub-crates? Not sure.~~ (There were many.) I only noticed this because
rust-analyzer's "open docs" features takes me to the sub-crate, not the
main one.

## Solution

Add "all-features = true" to docs.rs metadata for crates that use
features.

## Changelog

### Changed

- Unified features documented on docs.rs between main crate and
sub-crates
2024-03-08 20:03:09 +00:00
James Liu
9e5db9abc7
Clean up type registrations (#12314)
# Objective
Fix #12304. Remove unnecessary type registrations thanks to #4154.

## Solution
Conservatively remove type registrations. Keeping the top level
components, resources, and events, but dropping everything else that is
a type of a member of those types.
2024-03-06 16:05:53 +00:00
Alice Cecile
599e5e4e76
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective

- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.

## Solution

I've chosen to use the polymorphic `Color` type as our standard
user-facing API.

- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes

Incidental improvements to ease migration:

- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`

## Migration Guide

Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.

These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.

TODO...

- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.

---------

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
Alice Cecile
de004da8d5
Rename bevy_render::Color to LegacyColor (#12069)
# Objective

The migration process for `bevy_color` (#12013) will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.

## Solution

To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.

However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.

As discussed in #12056, by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.

## Migration Guide

THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.

This change should not be shipped to end users: delete this section in
the final migration guide!

---------

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-02-24 21:35:32 +00:00
Sam Pettersson
caa7ec68d4
FIX: iOS Simulator not rendering due to missing CUBE_ARRAY_TEXTURES (#12052)
This PR closes #11978

# Objective

Fix rendering on iOS Simulators.

iOS Simulator doesn't support the capability CUBE_ARRAY_TEXTURES, since
0.13 this started to make iOS Simulator not render anything with the
following message being outputted:

```
2024-02-19T14:59:34.896266Z ERROR bevy_render::render_resource::pipeline_cache: failed to create shader module: Validation Error

Caused by:
    In Device::create_shader_module
    
Shader validation error: 


    Type [40] '' is invalid
    Capability Capabilities(CUBE_ARRAY_TEXTURES) is required
```

## Solution

- Split up NO_ARRAY_TEXTURES_SUPPORT into both NO_ARRAY_TEXTURES_SUPPORT
and NO_CUBE_ARRAY_TEXTURES_SUPPORT and correctly apply
NO_ARRAY_TEXTURES_SUPPORT for iOS Simulator using the cfg flag
introduced in #10178.

---

## Changelog

### Fixed
- Rendering on iOS Simulator due to missing CUBE_ARRAY_TEXTURES support.

---------

Co-authored-by: Sam Pettersson <sam.pettersson@geoguessr.com>
2024-02-23 01:24:59 +00:00
Matty
328008f904
Move AlphaMode into bevy_render (#12012)
# Objective

- Closes #11985

## Solution

- alpha.rs has been moved from bevy_pbr into bevy_render; bevy_pbr and
bevy_gltf now access `AlphaMode` through bevy_render.

---

## Migration Guide

In the present implementation, external consumers of `AlphaMode` will
have to access it through bevy_render rather than through bevy_pbr,
changing their import from `bevy_pbr::AlphaMode` to
`bevy_render::alpha::AlphaMode` (or the corresponding glob import from
`bevy_pbr::prelude::*` to `bevy_render::prelude::*`).

## Uncertainties

Some remaining things from this that I am uncertain about:
- Here, the `app.register_type<AlphaMode>()` call has been moved from
`PbrPlugin` to `RenderPlugin`; I'm not sure if this is quite right, and
I was unable to find any direct relationship between `PbrPlugin` and
`RenderPlugin`.
- `AlphaMode` was placed in the prelude of bevy_render. I'm not certain
that this is actually appropriate.
- bevy_pbr does not re-export `AlphaMode`, which makes this a breaking
change for external consumers.

Any of these things could be easily changed; I'm just not confident that
I necessarily adopted the right approach in these (known) ways since
this codebase and ecosystem is quite new to me.
2024-02-21 19:34:10 +00:00
James Liu
bc82749012
Remove APIs deprecated in 0.13 (#11974)
# Objective
We deprecated quite a few APIs in 0.13. 0.13 has shipped already. It
should be OK to remove them in 0.14's release. Fixes #4059. Fixes #9011.

## Solution
Remove them.
2024-02-19 19:04:47 +00:00
Rob Parrett
ebaa347afe
Add configuration for async pipeline creation on RenderPlugin (#11847)
# Objective

Fixes #11846

## Solution

Add a `synchronous_pipeline_compilation ` field to `RenderPlugin`,
defaulting to `false`.

Most of the diff is whitespace.

## Changelog

Added `synchronous_pipeline_compilation ` to `RenderPlugin` for
disabling async pipeline creation.

## Migration Guide

TODO: consider combining this with the guide for #11846

`RenderPlugin` has a new `synchronous_pipeline_compilation ` property.
The default value is `false`. Set this to `true` if you want to retain
the previous synchronous behavior.

---------

Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
2024-02-16 13:35:47 +00:00
Tristan Guichaoua
694c06f3d0
Inverse missing_docs logic (#11676)
# Objective

Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.

## Solution

Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
2024-02-03 21:40:55 +00:00
Mike
a919cb0a17
Don't auto insert on the extract schedule (#11669)
# Objective

- In #9822 I forgot to disable auto sync points on the Extract Schedule.
We want to do this because the Commands on the Extract Schedule should
be applied on the render thread.
2024-02-03 05:04:57 +00:00
Lixou
16d28ccb91
RenderGraph Labelization (#10644)
# Objective

The whole `Cow<'static, str>` naming for nodes and subgraphs in
`RenderGraph` is a mess.

## Solution

Replaces hardcoded and potentially overlapping strings for nodes and
subgraphs inside `RenderGraph` with bevy's labelsystem.

---

## Changelog

* Two new labels: `RenderLabel` and `RenderSubGraph`.
* Replaced all uses for hardcoded strings with those labels
* Moved `Taa` label from its own mod to all the other `Labels3d`
* `add_render_graph_edges` now needs a tuple of labels
* Moved `ScreenSpaceAmbientOcclusion` label from its own mod with the
`ShadowPass` label to `LabelsPbr`
* Removed  `NodeId`
* Renamed `Edges.id()` to `Edges.label()`
* Removed `NodeLabel`
* Changed examples according to the new label system
* Introduced new `RenderLabel`s: `Labels2d`, `Labels3d`, `LabelsPbr`,
`LabelsUi`
* Introduced new `RenderSubGraph`s: `SubGraph2d`, `SubGraph3d`,
`SubGraphUi`
* Removed `Reflect` and `Default` derive from `CameraRenderGraph`
component struct
* Improved some error messages

## Migration Guide

For Nodes and SubGraphs, instead of using hardcoded strings, you now
pass labels, which can be derived with structs and enums.

```rs
// old
#[derive(Default)]
struct MyRenderNode;
impl MyRenderNode {
    pub const NAME: &'static str = "my_render_node"
}

render_app
    .add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
        core_3d::graph::NAME,
        MyRenderNode::NAME,
    )
    .add_render_graph_edges(
        core_3d::graph::NAME,
        &[
            core_3d::graph::node::TONEMAPPING,
            MyRenderNode::NAME,
            core_3d::graph::node::END_MAIN_PASS_POST_PROCESSING,
        ],
    );

// new
use bevy::core_pipeline::core_3d::graph::{Labels3d, SubGraph3d};

#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
pub struct MyRenderLabel;

#[derive(Default)]
struct MyRenderNode;

render_app
    .add_render_graph_node::<ViewNodeRunner<MyRenderNode>>(
        SubGraph3d,
        MyRenderLabel,
    )
    .add_render_graph_edges(
        SubGraph3d,
        (
            Labels3d::Tonemapping,
            MyRenderLabel,
            Labels3d::EndMainPassPostProcessing,
        ),
    );
```

### SubGraphs

#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph2d` |

#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `NAME` | `SubGraph3d` |

#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::NAME` | `graph::SubGraphUi` |

### Nodes

#### in `bevy_core_pipeline::core_2d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels2d::MsaaWriteback` | 
| `node::MAIN_PASS` | `Labels2d::MainPass` | 
| `node::BLOOM` | `Labels2d::Bloom` | 
| `node::TONEMAPPING` | `Labels2d::Tonemapping` | 
| `node::FXAA` | `Labels2d::Fxaa` | 
| `node::UPSCALING` | `Labels2d::Upscaling` | 
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels2d::ConstrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels2d::EndMainPassPostProcessing` |

#### in `bevy_core_pipeline::core_3d::graph`
| old string-based path | new label |
|-----------------------|-----------|
| `node::MSAA_WRITEBACK` | `Labels3d::MsaaWriteback` | 
| `node::PREPASS` | `Labels3d::Prepass` | 
| `node::DEFERRED_PREPASS` | `Labels3d::DeferredPrepass` | 
| `node::COPY_DEFERRED_LIGHTING_ID` | `Labels3d::CopyDeferredLightingId`
|
| `node::END_PREPASSES` | `Labels3d::EndPrepasses` | 
| `node::START_MAIN_PASS` | `Labels3d::StartMainPass` | 
| `node::MAIN_OPAQUE_PASS` | `Labels3d::MainOpaquePass` | 
| `node::MAIN_TRANSMISSIVE_PASS` | `Labels3d::MainTransmissivePass` | 
| `node::MAIN_TRANSPARENT_PASS` | `Labels3d::MainTransparentPass` | 
| `node::END_MAIN_PASS` | `Labels3d::EndMainPass` | 
| `node::BLOOM` | `Labels3d::Bloom` | 
| `node::TONEMAPPING` | `Labels3d::Tonemapping` | 
| `node::FXAA` | `Labels3d::Fxaa` | 
| `node::UPSCALING` | `Labels3d::Upscaling` | 
| `node::CONTRAST_ADAPTIVE_SHARPENING` |
`Labels3d::ContrastAdaptiveSharpening` |
| `node::END_MAIN_PASS_POST_PROCESSING` |
`Labels3d::EndMainPassPostProcessing` |

#### in `bevy_core_pipeline`
| old string-based path | new label |
|-----------------------|-----------|
| `taa::draw_3d_graph::node::TAA` | `Labels3d::Taa` |

#### in `bevy_pbr`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_3d_graph::node::SHADOW_PASS` | `LabelsPbr::ShadowPass` |
| `ssao::draw_3d_graph::node::SCREEN_SPACE_AMBIENT_OCCLUSION` |
`LabelsPbr::ScreenSpaceAmbientOcclusion` |
| `deferred::DEFFERED_LIGHTING_PASS` | `LabelsPbr::DeferredLightingPass`
|

#### in `bevy_render`
| old string-based path | new label |
|-----------------------|-----------|
| `main_graph::node::CAMERA_DRIVER` | `graph::CameraDriverLabel` |

#### in `bevy_ui::render`
| old string-based path | new label |
|-----------------------|-----------|
| `draw_ui_graph::node::UI_PASS` | `graph::LabelsUi::UiPass` |

---

## Future work

* Make `NodeSlot`s also use types. Ideally, we have an enum with unit
variants where every variant resembles one slot. Then to make sure you
are using the right slot enum and make rust-analyzer play nicely with
it, we should make an associated type in the `Node` trait. With today's
system, we can introduce 3rd party slots to a node, and i wasnt sure if
this was used, so I didn't do this in this PR.

## Unresolved Questions

When looking at the `post_processing` example, we have a struct for the
label and a struct for the node, this seems like boilerplate and on
discord, @IceSentry (sowy for the ping)
[asked](https://discord.com/channels/691052431525675048/743663924229963868/1175197016947699742)
if a node could automatically introduce a label (or i completely
misunderstood that). The problem with that is, that nodes like
`EmptyNode` exist multiple times *inside the same* (sub)graph, so there
we need extern labels to distinguish between those. Hopefully we can
find a way to reduce boilerplate and still have everything unique. For
EmptyNode, we could maybe make a macro which implements an "empty node"
for a type, but for nodes which contain code and need to be present
multiple times, this could get nasty...
2024-01-31 14:51:19 +00:00
Joona Aalto
2bf481c03b
Add Meshable trait and implement meshing for 2D primitives (#11431)
# Objective

The first part of #10569, split up from #11007.

The goal is to implement meshing support for Bevy's new geometric
primitives, starting with 2D primitives. 3D meshing will be added in a
follow-up, and we can consider removing the old mesh shapes completely.

## Solution

Add a `Meshable` trait that primitives need to implement to support
meshing, as suggested by the
[RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/12-primitive-shapes.md#meshing).

```rust
/// A trait for shapes that can be turned into a [`Mesh`].
pub trait Meshable {
    /// The output of [`Self::mesh`]. This can either be a [`Mesh`]
    /// or a builder used for creating a [`Mesh`].
    type Output;

    /// Creates a [`Mesh`] for a shape.
    fn mesh(&self) -> Self::Output;
}
```

This PR implements it for the following primitives:

- `Circle`
- `Ellipse`
- `Rectangle`
- `RegularPolygon`
- `Triangle2d`

The `mesh` method typically returns a builder-like struct such as
`CircleMeshBuilder`. This is needed to support shape-specific
configuration for things like mesh resolution or UV configuration:

```rust
meshes.add(Circle { radius: 0.5 }.mesh().resolution(64));
```

Note that if no configuration is needed, you can even skip calling
`mesh` because `From<MyPrimitive>` is implemented for `Mesh`:

```rust
meshes.add(Circle { radius: 0.5 });
```

I also updated the `2d_shapes` example to use primitives, and tweaked
the colors to have better contrast against the dark background.

Before:

![Old 2D
shapes](https://github.com/bevyengine/bevy/assets/57632562/f1d8c2d5-55be-495f-8ed4-5890154b81ca)

After:

![New 2D
shapes](https://github.com/bevyengine/bevy/assets/57632562/f166c013-34b8-4752-800a-5517b284d978)

Here you can see the UVs and different facing directions: (taken from
#11007, so excuse the 3D primitives at the bottom left)

![UVs and facing
directions](https://github.com/bevyengine/bevy/assets/57632562/eaf0be4e-187d-4b6d-8fb8-c996ba295a8a)

---

## Changelog

- Added `bevy_render::mesh::primitives` module
- Added `Meshable` trait and implemented it for:
  - `Circle`
  - `Ellipse`
  - `Rectangle`
  - `RegularPolygon`
  - `Triangle2d`
- Implemented `Default` and `Copy` for several 2D primitives
- Updated `2d_shapes` example to use primitives
- Tweaked colors in `2d_shapes` example to have better contrast against
the (new-ish) dark background

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-01-29 16:47:47 +00:00
Elabajaba
35ac1b152e
Update to wgpu 0.19 and raw-window-handle 0.6 (#11280)
# Objective

Keep core dependencies up to date.

## Solution

Update the dependencies.

wgpu 0.19 only supports raw-window-handle (rwh) 0.6, so bumping that was
included in this.

The rwh 0.6 version bump is just the simplest way of doing it. There
might be a way we can take advantage of wgpu's new safe surface creation
api, but I'm not familiar enough with bevy's window management to
untangle it and my attempt ended up being a mess of lifetimes and rustc
complaining about missing trait impls (that were implemented). Thanks to
@MiniaczQ for the (much simpler) rwh 0.6 version bump code.

Unblocks https://github.com/bevyengine/bevy/pull/9172 and
https://github.com/bevyengine/bevy/pull/10812

~~This might be blocked on cpal and oboe updating their ndk versions to
0.8, as they both currently target ndk 0.7 which uses rwh 0.5.2~~ Tested
on android, and everything seems to work correctly (audio properly stops
when minimized, and plays when re-focusing the app).

---

## Changelog

- `wgpu` has been updated to 0.19! The long awaited arcanization has
been merged (for more info, see
https://gfx-rs.github.io/2023/11/24/arcanization.html), and Vulkan
should now be working again on Intel GPUs.
- Targeting WebGPU now requires that you add the new `webgpu` feature
(setting the `RUSTFLAGS` environment variable to
`--cfg=web_sys_unstable_apis` is still required). This feature currently
overrides the `webgl2` feature if you have both enabled (the `webgl2`
feature is enabled by default), so it is not recommended to add it as a
default feature to libraries without putting it behind a flag that
allows library users to opt out of it! In the future we plan on
supporting wasm binaries that can target both webgl2 and webgpu now that
wgpu added support for doing so (see
https://github.com/bevyengine/bevy/issues/11505).
- `raw-window-handle` has been updated to version 0.6.

## Migration Guide

- `bevy_render::instance_index::get_instance_index()` has been removed
as the webgl2 workaround is no longer required as it was fixed upstream
in wgpu. The `BASE_INSTANCE_WORKAROUND` shaderdef has also been removed.
- WebGPU now requires the new `webgpu` feature to be enabled. The
`webgpu` feature currently overrides the `webgl2` feature so you no
longer need to disable all default features and re-add them all when
targeting `webgpu`, but binaries built with both the `webgpu` and
`webgl2` features will only target the webgpu backend, and will only
work on browsers that support WebGPU.
- Places where you conditionally compiled things for webgl2 need to be
updated because of this change, eg:
- `#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]`
becomes `#[cfg(any(not(feature = "webgl") ,not(target_arch = "wasm32"),
feature = "webgpu"))]`
- `#[cfg(all(feature = "webgl", target_arch = "wasm32"))]` becomes
`#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature =
"webgpu")))]`
- `if cfg!(all(feature = "webgl", target_arch = "wasm32"))` becomes `if
cfg!(all(feature = "webgl", target_arch = "wasm32", not(feature =
"webgpu")))`
- `create_texture_with_data` now also takes a `TextureDataOrder`. You
can probably just set this to `TextureDataOrder::default()`
- `TextureFormat`'s `block_size` has been renamed to `block_copy_size`
- See the `wgpu` changelog for anything I might've missed:
https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md

---------

Co-authored-by: François <mockersf@gmail.com>
2024-01-26 18:14:21 +00:00
Mike
ee9a1503ed
Async channel v2 (#10692)
# Objective

- Update async channel to v2.

## Solution

- async channel doesn't support `send_blocking` on wasm anymore. So
don't compile the pipelined rendering plugin on wasm anymore.
- Replaces https://github.com/bevyengine/bevy/pull/10405

## Migration Guide
- The `PipelinedRendering` plugin is no longer exported on wasm. If you
are including it in your wasm builds you should remove it.

```rust
#[cfg(all(not(target_arch = "wasm32"))]
app.add_plugins(bevy_render::pipelined_rendering::PipelinedRenderingPlugin);
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-01-15 19:23:00 +00:00
Stepan Koltsov
06bf928927
Option to enable deterministic rendering (#11248)
# Objective

Issue #10243: rendering multiple triangles in the same place results in
flickering.

## Solution

Considered these alternatives:
- `depth_bias` may not work, because of high number of entities, so
creating a material per entity is practically not possible
- rendering at slightly different positions does not work, because when
camera is far, float rounding causes the same issues (edit: assuming we
have to use the same `depth_bias`)
- considered implementing deterministic operation like
`query.par_iter().flat_map(...).collect()` to be used in
`check_visibility` system (which would solve the issue since query is
deterministic), and could not figure out how to make it as cheap as
current approach with thread-local collectors (#11249)

So adding an option to sort entities after `check_visibility` system
run.

Should not be too bad, because after visibility check, only a handful
entities remain.

This is probably not the only source of non-determinism in Bevy, but
this is one I could find so far. At least it fixes the repro example.

## Changelog

- `DeterministicRenderingConfig` option to enable deterministic
rendering

## Test

<img width="1392" alt="image"
src="https://github.com/bevyengine/bevy/assets/28969/c735bce1-3a71-44cd-8677-c19f6c0ee6bd">

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-01-09 00:46:01 +00:00
Stepan Koltsov
dfa1a5e547
Explain where rendering is (#11018)
It was not easy to find. Add some pointers to the comment.
2024-01-08 23:02:46 +00:00
JMS55
70b0eacc3b
Keep track of when a texture is first cleared (#10325)
# Objective
- Custom render passes, or future passes in the engine (such as
https://github.com/bevyengine/bevy/pull/10164) need a better way to know
and indicate to the core passes whether the view color/depth/prepass
attachments have been cleared or not yet this frame, to know if they
should clear it themselves or load it.

## Solution

- For all render targets (depth textures, shadow textures, prepass
textures, main textures) use an atomic bool to track whether or not each
texture has been cleared this frame. Abstracted away in the new
ColorAttachment and DepthAttachment wrappers.

---

## Changelog
- Changed `ViewTarget::get_color_attachment()`, removed arguments.
- Changed `ViewTarget::get_unsampled_color_attachment()`, removed
arguments.
- Removed `Camera3d::clear_color`.
- Removed `Camera2d::clear_color`.
- Added `Camera::clear_color`.
- Added `ExtractedCamera::clear_color`.
- Added `ColorAttachment` and `DepthAttachment` wrappers.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- Core render passes now track when a texture is first bound as an
attachment in order to decide whether to clear or load it.

## Migration Guide
- Remove arguments to `ViewTarget::get_color_attachment()` and
`ViewTarget::get_unsampled_color_attachment()`.
- Configure clear color on `Camera` instead of on `Camera3d` and
`Camera2d`.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- `ViewDepthTexture` must now be created via the `new()` method

---------

Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-12-31 00:37:37 +00:00
Mike
6b84ba97a3
Auto insert sync points (#9822)
# Objective

- Users are often confused when their command effects are not visible in
the next system. This PR auto inserts sync points if there are deferred
buffers on a system and there are dependents on that system (systems
with after relationships).
- Manual sync points can lead to users adding more than needed and it's
hard for the user to have a global understanding of their system graph
to know which sync points can be merged. However we can easily calculate
which sync points can be merged automatically.

## Solution

1. Add new edge types to allow opting out of new behavior
2. Insert an sync point for each edge whose initial node has deferred
system params.
3. Reuse nodes if they're at the number of sync points away.

* add opt outs for specific edges with `after_ignore_deferred`,
`before_ignore_deferred` and `chain_ignore_deferred`. The
`auto_insert_apply_deferred` boolean on `ScheduleBuildSettings` can be
set to false to opt out for the whole schedule.

## Perf
This has a small negative effect on schedule build times.
```text
group                                           auto-sync                              main-for-auto-sync
-----                                           -----------                            ------------------
build_schedule/1000_schedule                    1.06       2.8±0.15s        ? ?/sec    1.00       2.7±0.06s        ? ?/sec
build_schedule/1000_schedule_noconstraints      1.01     26.2±0.88ms        ? ?/sec    1.00     25.8±0.36ms        ? ?/sec
build_schedule/100_schedule                     1.02     13.1±0.33ms        ? ?/sec    1.00     12.9±0.28ms        ? ?/sec
build_schedule/100_schedule_noconstraints       1.08   505.3±29.30µs        ? ?/sec    1.00   469.4±12.48µs        ? ?/sec
build_schedule/500_schedule                     1.00    485.5±6.29ms        ? ?/sec    1.00    485.5±9.80ms        ? ?/sec
build_schedule/500_schedule_noconstraints       1.00      6.8±0.10ms        ? ?/sec    1.02      6.9±0.16ms        ? ?/sec
```
---

## Changelog

- Auto insert sync points and added `after_ignore_deferred`,
`before_ignore_deferred`, `chain_no_deferred` and
`auto_insert_apply_deferred` APIs to opt out of this behavior

## Migration Guide

- `apply_deferred` points are added automatically when there is ordering
relationship with a system that has deferred parameters like `Commands`.
If you want to opt out of this you can switch from `after`, `before`,
and `chain` to the corresponding `ignore_deferred` API,
`after_ignore_deferred`, `before_ignore_deferred` or
`chain_ignore_deferred` for your system/set ordering.
- You can also set `ScheduleBuildSettings::auto_insert_sync_points` to
`false` if you want to do it for the whole schedule. Note that in this
mode you can still add `apply_deferred` points manually.
- For most manual insertions of `apply_deferred` you should remove them
as they cannot be merged with the automatically inserted points and
might reduce parallelizability of the system graph.

## TODO
- [x] remove any apply_deferred used in the engine
- [x] ~~decide if we should deprecate manually using apply_deferred.~~
We'll still allow inserting manual sync points for now for whatever edge
cases users might have.
- [x] Update migration guide
- [x] rerun schedule build benchmarks

---------

Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
2023-12-14 16:34:01 +00:00
Elabajaba
70a592f31a
Update to wgpu 0.18 (#10266)
# Objective

Keep up to date with wgpu.

## Solution

Update the wgpu version.

Currently blocked on naga_oil updating to naga 0.14 and releasing a new
version.

3d scenes (or maybe any scene with lighting?) currently don't render
anything due to
```
error: naga_oil bug, please file a report: composer failed to build a valid header: Type [2] '' is invalid
 = Capability Capabilities(CUBE_ARRAY_TEXTURES) is required
 ```

I'm not sure what should be passed in for `wgpu::InstanceFlags`, or if we want to make the gles3minorversion configurable (might be useful for debugging?)

Currently blocked on https://github.com/bevyengine/naga_oil/pull/63, and https://github.com/gfx-rs/wgpu/issues/4569 to be fixed upstream in wgpu first.

## Known issues

Amd+windows+vulkan has issues with texture_binding_arrays (see the image [here](https://github.com/bevyengine/bevy/pull/10266#issuecomment-1819946278)), but that'll be fixed in the next wgpu/naga version, and you can just use dx12 as a workaround for now (Amd+linux mesa+vulkan texture_binding_arrays are fixed though).

---

## Changelog

Updated wgpu to 0.18, naga to 0.14.2, and naga_oil to 0.11.
- Windows desktop GL should now be less painful as it no longer requires Angle.
- You can now toggle shader validation and debug information for debug and release builds using `WgpuSettings.instance_flags` and [InstanceFlags](https://docs.rs/wgpu/0.18.0/wgpu/struct.InstanceFlags.html)

## Migration Guide

- `RenderPassDescriptor` `color_attachments`  (as well as `RenderPassColorAttachment`, and `RenderPassDepthStencilAttachment`) now use `StoreOp::Store` or `StoreOp::Discard` instead of a `boolean` to declare whether or not they should be stored.
- `RenderPassDescriptor` now have `timestamp_writes` and `occlusion_query_set` fields. These can safely be set to `None`.
- `ComputePassDescriptor` now have a `timestamp_writes` field. This can be set to `None` for now.
- See the [wgpu changelog](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v0180-2023-10-25) for additional details
2023-12-14 02:45:47 +00:00
tygyh
fd308571c4
Remove unnecessary path prefixes (#10749)
# Objective

- Shorten paths by removing unnecessary prefixes

## Solution

- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
2023-11-28 23:43:40 +00:00
TheBigCheese
e67cfdf82b
Enable clippy::undocumented_unsafe_blocks warning across the workspace (#10646)
# Objective

Enables warning on `clippy::undocumented_unsafe_blocks` across the
workspace rather than only in `bevy_ecs`, `bevy_transform` and
`bevy_utils`. This adds a little awkwardness in a few areas of code that
have trivial safety or explain safety for multiple unsafe blocks with
one comment however automatically prevents these comments from being
missed.

## Solution

This adds `undocumented_unsafe_blocks = "warn"` to the workspace
`Cargo.toml` and fixes / adds a few missed safety comments. I also added
`#[allow(clippy::undocumented_unsafe_blocks)]` where the safety is
explained somewhere above.

There are a couple of safety comments I added I'm not 100% sure about in
`bevy_animation` and `bevy_render/src/view` and I'm not sure about the
use of `#[allow(clippy::undocumented_unsafe_blocks)]` compared to adding
comments like `// SAFETY: See above`.
2023-11-21 02:06:24 +00:00
Ame
951c9bb1a2
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere (#10011)
# Objective

- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796

## Solution

- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```

## Changelog

- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```

---------

Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
2023-11-18 20:58:48 +00:00
Edgar Geier
a830530be4
Replace all labels with interned labels (#7762)
# Objective

First of all, this PR took heavy inspiration from #7760 and #5715. It
intends to also fix #5569, but with a slightly different approach.


This also fixes #9335 by reexporting `DynEq`.

## Solution

The advantage of this API is that we can intern a value without
allocating for zero-sized-types and for enum variants that have no
fields. This PR does this automatically in the `SystemSet` and
`ScheduleLabel` derive macros for unit structs and fieldless enum
variants. So this should cover many internal and external use cases of
`SystemSet` and `ScheduleLabel`. In these optimal use cases, no memory
will be allocated.

- The interning returns a `Interned<dyn SystemSet>`, which is just a
wrapper around a `&'static dyn SystemSet`.
- `Hash` and `Eq` are implemented in terms of the pointer value of the
reference, similar to my first approach of anonymous system sets in
#7676.
- Therefore, `Interned<T>` does not implement `Borrow<T>`, only `Deref`.
- The debug output of `Interned<T>` is the same as the interned value.

Edit: 
- `AppLabel` is now also interned and the old
`derive_label`/`define_label` macros were replaced with the new
interning implementation.
- Anonymous set ids are reused for different `Schedule`s, reducing the
amount of leaked memory.

### Pros
- `InternedSystemSet` and `InternedScheduleLabel` behave very similar to
the current `BoxedSystemSet` and `BoxedScheduleLabel`, but can be copied
without an allocation.
- Many use cases don't allocate at all.
- Very fast lookups and comparisons when using `InternedSystemSet` and
`InternedScheduleLabel`.
- The `intern` module might be usable in other areas.
- `Interned{ScheduleLabel, SystemSet, AppLabel}` does implement
`{ScheduleLabel, SystemSet, AppLabel}`, increasing ergonomics.

### Cons
- Implementors of `SystemSet` and `ScheduleLabel` still need to
implement `Hash` and `Eq` (and `Clone`) for it to work.

## Changelog

### Added

- Added `intern` module to `bevy_utils`.
- Added reexports of `DynEq` to `bevy_ecs` and `bevy_app`.

### Changed

- Replaced `BoxedSystemSet` and `BoxedScheduleLabel` with
`InternedSystemSet` and `InternedScheduleLabel`.
- Replaced `impl AsRef<dyn ScheduleLabel>` with `impl ScheduleLabel`.
- Replaced `AppLabelId` with `InternedAppLabel`.
- Changed `AppLabel` to use `Debug` for error messages.
- Changed `AppLabel` to use interning.
- Changed `define_label`/`derive_label` to use interning. 
- Replaced `define_boxed_label`/`derive_boxed_label` with
`define_label`/`derive_label`.
- Changed anonymous set ids to be only unique inside a schedule, not
globally.
- Made interned label types implement their label trait. 

### Removed

- Removed `define_boxed_label` and `derive_boxed_label`. 

## Migration guide

- Replace `BoxedScheduleLabel` and `Box<dyn ScheduleLabel>` with
`InternedScheduleLabel` or `Interned<dyn ScheduleLabel>`.
- Replace `BoxedSystemSet` and `Box<dyn SystemSet>` with
`InternedSystemSet` or `Interned<dyn SystemSet>`.
- Replace `AppLabelId` with `InternedAppLabel` or `Interned<dyn
AppLabel>`.
- Types manually implementing `ScheduleLabel`, `AppLabel` or `SystemSet`
need to implement:
  - `dyn_hash` directly instead of implementing `DynHash`
  - `as_dyn_eq`
- Pass labels to `World::try_schedule_scope`, `World::schedule_scope`,
`World::try_run_schedule`. `World::run_schedule`, `Schedules::remove`,
`Schedules::remove_entry`, `Schedules::contains`, `Schedules::get` and
`Schedules::get_mut` by value instead of by reference.

---------

Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-10-25 21:39:23 +00:00
Bruce Mitchener
6bd3cca0ca
Improve linking within RenderSet docs. (#10143)
# Objective

- Improve formatting and linking within `RenderSet` docs.

## Solution

- Used backticks and intradoc links.
2023-10-16 17:13:20 +00:00
Jan Češpivo
4a61f894b7
chore: Renamed RenderInstance trait to ExtractInstance (#10065)
# Objective

Fixes [#10061]

## Solution

Renamed `RenderInstance` to `ExtractInstance`, `RenderInstances` to
`ExtractedInstances` and `RenderInstancePlugin` to
`ExtractInstancesPlugin`
2023-10-13 17:06:53 +00:00
Patrick Walton
e67d63aa79
Refactor the render instance logic in #9903 so that it's easier for other components to adopt. (#10002)
# Objective

Currently, the only way for custom components that participate in
rendering to opt into the higher-performance extraction method in #9903
is to implement the `RenderInstances` data structure and the extraction
logic manually. This is inconvenient compared to the `ExtractComponent`
API.

## Solution

This commit creates a new `RenderInstance` trait that mirrors the
existing `ExtractComponent` method but uses the higher-performance
approach that #9903 uses. Additionally, `RenderInstance` is more
flexible than `ExtractComponent`, because it can extract multiple
components at once. This makes high-performance rendering components
essentially as easy to write as the existing ones based on component
extraction.

---

## Changelog

### Added

A new `RenderInstance` trait is available mirroring `ExtractComponent`,
but using a higher-performance method to extract one or more components
to the render world. If you have custom components that rendering takes
into account, you may consider migration from `ExtractComponent` to
`RenderInstance` for higher performance.
2023-10-08 10:34:44 +00:00
Mike
687e379800
Updates for rust 1.73 (#10035)
# Objective

- Updates for rust 1.73

## Solution

- new doc check for `redundant_explicit_links`
- updated to text for compile fail tests

---

## Changelog

- updates for rust 1.73
2023-10-06 00:31:10 +00:00
piper
bc88f33e48
Allow other plugins to create renderer resources (#9925)
This is a duplicate of #9632, it was created since I forgot to make a
new branch when I first made this PR, so I was having trouble resolving
merge conflicts, meaning I had to rebuild my PR.

# Objective

- Allow other plugins to create the renderer resources. An example of
where this would be required is my [OpenXR
plugin](https://github.com/awtterpip/bevy_openxr)

## Solution

- Changed the bevy RenderPlugin to optionally take precreated render
resources instead of a configuration.

## Migration Guide

The `RenderPlugin` now takes a `RenderCreation` enum instead of
`WgpuSettings`. `RenderSettings::default()` returns
`RenderSettings::Automatic(WgpuSettings::default())`. `RenderSettings`
also implements `From<WgpuSettings>`.

```rust
// before
RenderPlugin {
    wgpu_settings: WgpuSettings {
    ...
    },
}

// now
RenderPlugin {
    render_creation: RenderCreation::Automatic(WgpuSettings {
    ...
    }),
}
// or
RenderPlugin {
    render_creation: WgpuSettings {
    ...
    }.into(),
}
```

---------

Co-authored-by: Malek <pocmalek@gmail.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-26 19:35:08 +00:00
Robert Swain
5c884c5a15
Automatic batching/instancing of draw commands (#9685)
# Objective

- Implement the foundations of automatic batching/instancing of draw
commands as the next step from #89
- NOTE: More performance improvements will come when more data is
managed and bound in ways that do not require rebinding such as mesh,
material, and texture data.

## Solution

- The core idea for batching of draw commands is to check whether any of
the information that has to be passed when encoding a draw command
changes between two things that are being drawn according to the sorted
render phase order. These should be things like the pipeline, bind
groups and their dynamic offsets, index/vertex buffers, and so on.
  - The following assumptions have been made:
- Only entities with prepared assets (pipelines, materials, meshes) are
queued to phases
- View bindings are constant across a phase for a given draw function as
phases are per-view
- `batch_and_prepare_render_phase` is the only system that performs this
batching and has sole responsibility for preparing the per-object data.
As such the mesh binding and dynamic offsets are assumed to only vary as
a result of the `batch_and_prepare_render_phase` system, e.g. due to
having to split data across separate uniform bindings within the same
buffer due to the maximum uniform buffer binding size.
- Implement `GpuArrayBuffer` for `Mesh2dUniform` to store Mesh2dUniform
in arrays in GPU buffers rather than each one being at a dynamic offset
in a uniform buffer. This is the same optimisation that was made for 3D
not long ago.
- Change batch size for a range in `PhaseItem`, adding API for getting
or mutating the range. This is more flexible than a size as the length
of the range can be used in place of the size, but the start and end can
be otherwise whatever is needed.
- Add an optional mesh bind group dynamic offset to `PhaseItem`. This
avoids having to do a massive table move just to insert
`GpuArrayBufferIndex` components.

## Benchmarks

All tests have been run on an M1 Max on AC power. `bevymark` and
`many_cubes` were modified to use 1920x1080 with a scale factor of 1. I
run a script that runs a separate Tracy capture process, and then runs
the bevy example with `--features bevy_ci_testing,trace_tracy` and
`CI_TESTING_CONFIG=../benchmark.ron` with the contents of
`../benchmark.ron`:
```rust
(
    exit_after: Some(1500)
)
```
...in order to run each test for 1500 frames.

The recent changes to `many_cubes` and `bevymark` added reproducible
random number generation so that with the same settings, the same rng
will occur. They also added benchmark modes that use a fixed delta time
for animations. Combined this means that the same frames should be
rendered both on main and on the branch.

The graphs compare main (yellow) to this PR (red).

### 3D Mesh `many_cubes --benchmark`

<img width="1411" alt="Screenshot 2023-09-03 at 23 42 10"
src="https://github.com/bevyengine/bevy/assets/302146/2088716a-c918-486c-8129-090b26fd2bc4">
The mesh and material are the same for all instances. This is basically
the best case for the initial batching implementation as it results in 1
draw for the ~11.7k visible meshes. It gives a ~30% reduction in median
frame time.

The 1000th frame is identical using the flip tool:

![flip many_cubes-main-mesh3d many_cubes-batching-mesh3d 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/2511f37a-6df8-481a-932f-706ca4de7643)

```
     Mean: 0.000000
     Weighted median: 0.000000
     1st weighted quartile: 0.000000
     3rd weighted quartile: 0.000000
     Min: 0.000000
     Max: 0.000000
     Evaluation time: 0.4615 seconds
```

### 3D Mesh `many_cubes --benchmark --material-texture-count 10`

<img width="1404" alt="Screenshot 2023-09-03 at 23 45 18"
src="https://github.com/bevyengine/bevy/assets/302146/5ee9c447-5bd2-45c6-9706-ac5ff8916daf">
This run uses 10 different materials by varying their textures. The
materials are randomly selected, and there is no sorting by material
bind group for opaque 3D so any batching is 'random'. The PR produces a
~5% reduction in median frame time. If we were to sort the opaque phase
by the material bind group, then this should be a lot faster. This
produces about 10.5k draws for the 11.7k visible entities. This makes
sense as randomly selecting from 10 materials gives a chance that two
adjacent entities randomly select the same material and can be batched.

The 1000th frame is identical in flip:

![flip many_cubes-main-mesh3d-mtc10 many_cubes-batching-mesh3d-mtc10
67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/2b3a8614-9466-4ed8-b50c-d4aa71615dbb)

```
     Mean: 0.000000
     Weighted median: 0.000000
     1st weighted quartile: 0.000000
     3rd weighted quartile: 0.000000
     Min: 0.000000
     Max: 0.000000
     Evaluation time: 0.4537 seconds
```

### 3D Mesh `many_cubes --benchmark --vary-per-instance`

<img width="1394" alt="Screenshot 2023-09-03 at 23 48 44"
src="https://github.com/bevyengine/bevy/assets/302146/f02a816b-a444-4c18-a96a-63b5436f3b7f">
This run varies the material data per instance by randomly-generating
its colour. This is the worst case for batching and that it performs
about the same as `main` is a good thing as it demonstrates that the
batching has minimal overhead when dealing with ~11k visible mesh
entities.

The 1000th frame is identical according to flip:

![flip many_cubes-main-mesh3d-vpi many_cubes-batching-mesh3d-vpi 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/ac5f5c14-9bda-4d1a-8219-7577d4aac68c)

```
     Mean: 0.000000
     Weighted median: 0.000000
     1st weighted quartile: 0.000000
     3rd weighted quartile: 0.000000
     Min: 0.000000
     Max: 0.000000
     Evaluation time: 0.4568 seconds
```

### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode
mesh2d`

<img width="1412" alt="Screenshot 2023-09-03 at 23 59 56"
src="https://github.com/bevyengine/bevy/assets/302146/cb02ae07-237b-4646-ae9f-fda4dafcbad4">
This spawns 160 waves of 1000 quad meshes that are shaded with
ColorMaterial. Each wave has a different material so 160 waves currently
should result in 160 batches. This results in a 50% reduction in median
frame time.

Capturing a screenshot of the 1000th frame main vs PR gives:

![flip bevymark-main-mesh2d bevymark-batching-mesh2d 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/80102728-1217-4059-87af-14d05044df40)

```
     Mean: 0.001222
     Weighted median: 0.750432
     1st weighted quartile: 0.453494
     3rd weighted quartile: 0.969758
     Min: 0.000000
     Max: 0.990296
     Evaluation time: 0.4255 seconds
```

So they seem to produce the same results. I also double-checked the
number of draws. `main` does 160000 draws, and the PR does 160, as
expected.

### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode
mesh2d --material-texture-count 10`

<img width="1392" alt="Screenshot 2023-09-04 at 00 09 22"
src="https://github.com/bevyengine/bevy/assets/302146/4358da2e-ce32-4134-82df-3ab74c40849c">
This generates 10 textures and generates materials for each of those and
then selects one material per wave. The median frame time is reduced by
50%. Similar to the plain run above, this produces 160 draws on the PR
and 160000 on `main` and the 1000th frame is identical (ignoring the fps
counter text overlay).

![flip bevymark-main-mesh2d-mtc10 bevymark-batching-mesh2d-mtc10 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/ebed2822-dce7-426a-858b-b77dc45b986f)

```
     Mean: 0.002877
     Weighted median: 0.964980
     1st weighted quartile: 0.668871
     3rd weighted quartile: 0.982749
     Min: 0.000000
     Max: 0.992377
     Evaluation time: 0.4301 seconds
```

### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode
mesh2d --vary-per-instance`

<img width="1396" alt="Screenshot 2023-09-04 at 00 13 53"
src="https://github.com/bevyengine/bevy/assets/302146/b2198b18-3439-47ad-919a-cdabe190facb">
This creates unique materials per instance by randomly-generating the
material's colour. This is the worst case for 2D batching. Somehow, this
PR manages a 7% reduction in median frame time. Both main and this PR
issue 160000 draws.

The 1000th frame is the same:

![flip bevymark-main-mesh2d-vpi bevymark-batching-mesh2d-vpi 67ppd
ldr](https://github.com/bevyengine/bevy/assets/302146/a2ec471c-f576-4a36-a23b-b24b22578b97)

```
     Mean: 0.001214
     Weighted median: 0.937499
     1st weighted quartile: 0.635467
     3rd weighted quartile: 0.979085
     Min: 0.000000
     Max: 0.988971
     Evaluation time: 0.4462 seconds
```

### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode
sprite`

<img width="1396" alt="Screenshot 2023-09-04 at 12 21 12"
src="https://github.com/bevyengine/bevy/assets/302146/8b31e915-d6be-4cac-abf5-c6a4da9c3d43">
This just spawns 160 waves of 1000 sprites. There should be and is no
notable difference between main and the PR.

### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode
sprite --material-texture-count 10`

<img width="1389" alt="Screenshot 2023-09-04 at 12 36 08"
src="https://github.com/bevyengine/bevy/assets/302146/45fe8d6d-c901-4062-a349-3693dd044413">
This spawns the sprites selecting a texture at random per instance from
the 10 generated textures. This has no significant change vs main and
shouldn't.

### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode
sprite --vary-per-instance`

<img width="1401" alt="Screenshot 2023-09-04 at 12 29 52"
src="https://github.com/bevyengine/bevy/assets/302146/762c5c60-352e-471f-8dbe-bbf10e24ebd6">
This sets the sprite colour as being unique per instance. This can still
all be drawn using one batch. There should be no difference but the PR
produces median frame times that are 4% higher. Investigation showed no
clear sources of cost, rather a mix of give and take that should not
happen. It seems like noise in the results.

### Summary

| Benchmark  | % change in median frame time |
| ------------- | ------------- |
| many_cubes  | 🟩 -30%  |
| many_cubes 10 materials  | 🟩 -5%  |
| many_cubes unique materials  | 🟩 ~0%  |
| bevymark mesh2d  | 🟩 -50%  |
| bevymark mesh2d 10 materials  | 🟩 -50%  |
| bevymark mesh2d unique materials  | 🟩 -7%  |
| bevymark sprite  | 🟥 2%  |
| bevymark sprite 10 materials  | 🟥 0.6%  |
| bevymark sprite unique materials  | 🟥 4.1%  |

---

## Changelog

- Added: 2D and 3D mesh entities that share the same mesh and material
(same textures, same data) are now batched into the same draw command
for better performance.

---------

Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Nicola Papale <nico@nicopap.ch>
2023-09-21 22:12:34 +00:00
François
401b2e77f3
renderer init: create a detached task only on wasm, block otherwise (#9830)
# Objective

- When initializing the renderer, Bevy currently create a detached task
- This is needed on wasm but not on native


## Solution

- Don't create a detached task on native but block on the future
2023-09-19 05:57:54 +00:00
Carter Anderson
5eb292dc10
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal

## Why Does Bevy Need A New Asset System?

Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:

* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.

These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.

## Bevy Asset V2

Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types

## Using The New Asset System

### Normal Unprocessed Asset Loading

By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.

If you are defining a custom asset, first derive `Asset`:

```rust
#[derive(Asset)]
struct Thing {
    value: String,
}
```

Initialize the asset:
```rust
app.init_asset:<Thing>()
```

Implement a new `AssetLoader` for it:

```rust
#[derive(Default)]
struct ThingLoader;

#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
    some_setting: bool,
}

impl AssetLoader for ThingLoader {
    type Asset = Thing;
    type Settings = ThingSettings;

    fn load<'a>(
        &'a self,
        reader: &'a mut Reader,
        settings: &'a ThingSettings,
        load_context: &'a mut LoadContext,
    ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
        Box::pin(async move {
            let mut bytes = Vec::new();
            reader.read_to_end(&mut bytes).await?;
            // convert bytes to value somehow
            Ok(Thing {
                value 
            })
        })
    }

    fn extensions(&self) -> &[&str] {
        &["thing"]
    }
}
```

Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.

Then just register the loader in your Bevy app:

```rust
app.init_asset_loader::<ThingLoader>()
```

Now just add your `Thing` asset files into the `assets` folder and load
them like this:

```rust
fn system(asset_server: Res<AssetServer>) {
    let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```

You can check load states directly via the asset server:

```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```

You can also listen for events:

```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
    for event in events.iter() {
        if event.is_loaded_with_dependencies(&handle) {
        }
    }
}
```

Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.

Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:

```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```

### Processed Assets

Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```

This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.

When deploying processed Bevy apps, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```

This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.

When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:

```rust
(
    meta_format_version: "1.0",
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.

In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 12415480888597742505,
        full_hash: 14344495437905856884,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.

When the processor is enabled, you can use the `Process` metadata
config:

```rust
(
    meta_format_version: "1.0",
    asset: Process(
        processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
        settings: (
            loader_settings: (
                format: FromExtension,
            ),
            saver_settings: (
                generate_mipmaps: true,
            ),
        ),
    ),
)
```

This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.

`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 905599590923828066,
        full_hash: 9948823010183819117,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: Format(Basis),
        ),
    ),
)
```

To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.

To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.

You can configure default processors for file extensions like this:

```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```

There is one more metadata type to be aware of:

```rust
(
    meta_format_version: "1.0",
    asset: Ignore,
)
```

This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.

The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!

`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.

## Open Questions

There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:

### Implied Dependencies vs Dependency Enumeration

There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).

This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.

However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)

### Eager ProcessorDev Asset Loading

I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.

Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.

### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?

In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.

Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.

The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.

I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.

### Folder / File Naming Conventions

All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?

### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?

Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.

### Discuss on_loaded High Level Interface:

This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern

```rust
fn main() {
    App::new()
        .init_asset::<MyAssets>()
        .add_systems(Update, on_loaded(create_array_texture))
        .run();
}

#[derive(Asset, Clone)]
struct MyAssets {
    #[dependency]
    picture_of_my_cat: Handle<Image>,
    #[dependency]
    picture_of_my_other_cat: Handle<Image>,
}

impl FromWorld for ArrayTexture {
    fn from_world(world: &mut World) -> Self {
        picture_of_my_cat: server.load("meow.png"),
        picture_of_my_other_cat: server.load("meeeeeeeow.png"),
    }
}

fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_cat.clone(),  
        ..default()
    });
    
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_other_cat.clone(),  
        ..default()
    });
}

```

The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).

We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.

## Clarifying Questions

### What about Assets as Entities?

This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.

However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)

In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.

### Why not Distill?

[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".

It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).

However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)

Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".

### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?

"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).

Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).

## Draft TODO

- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x]  Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog

## Followup TODO

- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix 
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429

## Next Steps

* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.

---------

Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
Edgar Geier
118509e4aa
Replace IntoSystemSetConfig with IntoSystemSetConfigs (#9247)
# Objective

- Fixes #9244.

## Solution


- Changed the `(Into)SystemSetConfigs` traits and structs be more like
the `(Into)SystemConfigs` traits and structs.
- Replaced uses of `IntoSystemSetConfig` with `IntoSystemSetConfigs`
- Added generic `ItemConfig` and `ItemConfigs` types.
- Changed `SystemConfig(s)` and `SystemSetConfig(s)` to be type aliases
to `ItemConfig(s)`.
- Added generic `process_configs` to `ScheduleGraph`.
- Changed `configure_sets_inner` and `add_systems_inner` to reuse
`process_configs`.

---

## Changelog

- Added `run_if` to `IntoSystemSetConfigs`
- Deprecated `Schedule::configure_set` and `App::configure_set`
- Removed `IntoSystemSetConfig`

## Migration Guide

- Use `App::configure_sets` instead of `App::configure_set`
- Use `Schedule::configure_sets` instead of `Schedule::configure_set`

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-09-05 17:15:27 +00:00
Robert Swain
4fdea02087
Use instancing for sprites (#9597)
# Objective

- Supercedes #8872 
- Improve sprite rendering performance after the regression in #9236 

## Solution

- Use an instance-rate vertex buffer to store per-instance data.
- Store color, UV offset and scale, and a transform per instance.
- Convert Sprite rect, custom_size, anchor, and flip_x/_y to an affine
3x4 matrix and store the transpose of that in the per-instance data.
This is similar to how MeshUniform uses transpose affine matrices.
- Use a special index buffer that has batches of 6 indices referencing 4
vertices. The lower 2 bits indicate the x and y of a quad such that the
corners are:
  ```
  10    11

  00    01
  ```
UVs are implicit but get modified by UV offset and scale The remaining
upper bits contain the instance index.

## Benchmarks

I will compare versus `main` before #9236 because the results should be
as good as or faster than that. Running `bevymark -- 10000 16` on an M1
Max with `main` at `e8b38925` in yellow, this PR in red:

![Screenshot 2023-08-27 at 18 44
10](https://github.com/bevyengine/bevy/assets/302146/bdc5c929-d547-44bb-b519-20dce676a316)

Looking at the median frame times, that's a 37% reduction from before.

---

## Changelog

- Changed: Improved sprite rendering performance by leveraging an
instance-rate vertex buffer.

---------

Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
2023-09-02 18:03:19 +00:00
Joseph
02b520b4e8
Split ComputedVisibility into two components to allow for accurate change detection and speed up visibility propagation (#9497)
# Objective

Fix #8267.
Fixes half of #7840.

The `ComputedVisibility` component contains two flags: hierarchy
visibility, and view visibility (whether its visible to any cameras).
Due to the modular and open-ended way that view visibility is computed,
it triggers change detection every single frame, even when the value
does not change. Since hierarchy visibility is stored in the same
component as view visibility, this means that change detection for
inherited visibility is completely broken.

At the company I work for, this has become a real issue. We are using
change detection to only re-render scenes when necessary. The broken
state of change detection for computed visibility means that we have to
to rely on the non-inherited `Visibility` component for now. This is
workable in the early stages of our project, but since we will
inevitably want to use the hierarchy, we will have to either:

1. Roll our own solution for computed visibility.
2. Fix the issue for everyone.

## Solution

Split the `ComputedVisibility` component into two: `InheritedVisibilty`
and `ViewVisibility`.
This allows change detection to behave properly for
`InheritedVisibility`.
View visiblity is still erratic, although it is less useful to be able
to detect changes
for this flavor of visibility.

Overall, this actually simplifies the API. Since the visibility system
consists of
self-explaining components, it is much easier to document the behavior
and usage.
This approach is more modular and "ECS-like" -- one could
strip out the `ViewVisibility` component entirely if it's not needed,
and rely only on inherited visibility.

---

## Changelog

- `ComputedVisibility` has been removed in favor of:
`InheritedVisibility` and `ViewVisiblity`.

## Migration Guide

The `ComputedVisibilty` component has been split into
`InheritedVisiblity` and
`ViewVisibility`. Replace any usages of
`ComputedVisibility::is_visible_in_hierarchy`
with `InheritedVisibility::get`, and replace
`ComputedVisibility::is_visible_in_view`
 with `ViewVisibility::get`.
 
 ```rust
 // Before:
 commands.spawn(VisibilityBundle {
     visibility: Visibility::Inherited,
     computed_visibility: ComputedVisibility::default(),
 });
 
 // After:
 commands.spawn(VisibilityBundle {
     visibility: Visibility::Inherited,
     inherited_visibility: InheritedVisibility::default(),
     view_visibility: ViewVisibility::default(),
 });
 ```
 
 ```rust
 // Before:
 fn my_system(q: Query<&ComputedVisibilty>) {
     for vis in &q {
         if vis.is_visible_in_hierarchy() {
     
 // After:
 fn my_system(q: Query<&InheritedVisibility>) {
     for inherited_visibility in &q {
         if inherited_visibility.get() {
 ```
 
 ```rust
 // Before:
 fn my_system(q: Query<&ComputedVisibilty>) {
     for vis in &q {
         if vis.is_visible_in_view() {
     
 // After:
 fn my_system(q: Query<&ViewVisibility>) {
     for view_visibility in &q {
         if view_visibility.get() {
 ```
 
 ```rust
 // Before:
 fn my_system(mut q: Query<&mut ComputedVisibilty>) {
     for vis in &mut q {
         vis.set_visible_in_view();
     
 // After:
 fn my_system(mut q: Query<&mut ViewVisibility>) {
     for view_visibility in &mut q {
         view_visibility.set();
 ```

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
Mike
33fdc5f5db
Move schedule name into Schedule (#9600)
# Objective

- Move schedule name into `Schedule` to allow the schedule name to be
used for errors and tracing in Schedule methods
- Fixes #9510

## Solution

- Move label onto `Schedule` and adjust api's on `World` and `Schedule`
to not pass explicit label where it makes sense to.
- add name to errors and tracing.
- `Schedule::new` now takes a label so either add the label or use
`Schedule::default` which uses a default label. `default` is mostly used
in doc examples and tests.

---

## Changelog

- move label onto `Schedule` to improve error message and logging for
schedules.

## Migration Guide

`Schedule::new` and `App::add_schedule`
```rust
// old
let schedule = Schedule::new();
app.add_schedule(MyLabel, schedule);

// new
let schedule = Schedule::new(MyLabel);
app.add_schedule(schedule);
```

if you aren't using a label and are using the schedule struct directly
you can use the default constructor.
```rust
// old
let schedule = Schedule::new();
schedule.run(world);

// new
let schedule = Schedule::default();
schedule.run(world);
```

`Schedules:insert`
```rust
// old
let schedule = Schedule::new();
schedules.insert(MyLabel, schedule);

// new
let schedule = Schedule::new(MyLabel);
schedules.insert(schedule);
```

`World::add_schedule`
```rust
// old
let schedule = Schedule::new();
world.add_schedule(MyLabel, schedule);

// new
let schedule = Schedule::new(MyLabel);
world.add_schedule(schedule);
```
2023-08-28 20:44:48 +00:00
James O'Brien
4f1d9a6315
Reorder render sets, refactor bevy_sprite to take advantage (#9236)
This is a continuation of this PR: #8062 

# Objective

- Reorder render schedule sets to allow data preparation when phase item
order is known to support improved batching
- Part of the batching/instancing etc plan from here:
https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074
- The original idea came from @inodentry and proved to be a good one.
Thanks!
- Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new
ordering

## Solution
- Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` 
- Add a `PrepareAssets` set that runs in parallel with other systems and
sets in the render schedule.
  - Put prepare_assets systems in the `PrepareAssets` set
- If explicit dependencies are needed on Mesh or Material RenderAssets
then depend on the appropriate system.
- Add `ManageViews` and `ManageViewsFlush` sets between
`ExtractCommands` and Queue
- Move `queue_mesh*_bind_group` to the Prepare stage
  - Rename them to `prepare_`
- Put systems that prepare resources (buffers, textures, etc.) into a
`PrepareResources` set inside `Prepare`
- Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set
after `PrepareResources`
- Move `prepare_lights` to the `ManageViews` set
  - `prepare_lights` creates views and this must happen before `Queue`
  - This system needs refactoring to stop handling all responsibilities
- Gather lights, sort, and create shadow map views. Store sorted light
entities in a resource

- Remove `BatchedPhaseItem`
- Replace `batch_range` with `batch_size` representing how many items to
skip after rendering the item or to skip the item entirely if
`batch_size` is 0.
- `queue_sprites` has been split into `queue_sprites` for queueing phase
items and `prepare_sprites` for batching after the `PhaseSort`
  - `PhaseItem`s are still inserted in `queue_sprites`
- After sorting adjacent compatible sprite phase items are accumulated
into `SpriteBatch` components on the first entity of each batch,
containing a range of vertex indices. The associated `PhaseItem`'s
`batch_size` is updated appropriately.
- `SpriteBatch` items are then drawn skipping over the other items in
the batch based on the value in `batch_size`
- A very similar refactor was performed on `bevy_ui`
---

## Changelog

Changed:
- Reordered and reworked render app schedule sets. The main change is
that data is extracted, queued, sorted, and then prepared when the order
of data is known.
- Refactor `bevy_sprite` and `bevy_ui` to take advantage of the
reordering.

## Migration Guide
- Assets such as materials and meshes should now be created in
`PrepareAssets` e.g. `prepare_assets<Mesh>`
- Queueing entities to `RenderPhase`s continues to be done in `Queue`
e.g. `queue_sprites`
- Preparing resources (textures, buffers, etc.) should now be done in
`PrepareResources`, e.g. `prepare_prepass_textures`,
`prepare_mesh_uniforms`
- Prepare bind groups should now be done in `PrepareBindGroups` e.g.
`prepare_mesh_bind_group`
- Any batching or instancing can now be done in `Prepare` where the
order of the phase items is known e.g. `prepare_sprites`

 
## Next Steps
- Introduce some generic mechanism to ensure items that can be batched
are grouped in the phase item order, currently you could easily have
`[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching.
 - Investigate improved orderings for building the MeshUniform buffer
 - Implementing batching across the rest of bevy

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-08-27 14:33:49 +00:00
Robert Swain
c1a5428f8e
Work around naga/wgpu WGSL instance_index -> GLSL gl_InstanceID bug on WebGL2 (#9383)
naga and wgpu should polyfill WGSL instance_index functionality where it
is not available in GLSL. Until that is done, we can work around it in
bevy using a push constant which is converted to a uniform by naga and
wgpu.

# Objective

- Fixes #9375 

## Solution

- Use a push constant to pass in the base instance to the shader on
WebGL2 so that base instance + gl_InstanceID is used to correctly
represent the instance index.

## TODO

- [ ] Benchmark vs per-object dynamic offset MeshUniform as this will
now push a uniform value per-draw as well as update the dynamic offset
per-batch.
- [x] Test on DX12 AMD/NVIDIA to check that this PR does not regress any
problems that were observed there. (@Elabajaba @robtfm were testing that
last time - help appreciated. <3 )

---

## Changelog

- Added: `bevy_render::instance_index` shader import which includes a
workaround for the lack of a WGSL `instance_index` polyfill for WebGL2
in naga and wgpu for the time being. It uses a push_constant which gets
converted to a plain uniform by naga and wgpu.

## Migration Guide

Shader code before:

```
struct Vertex {
    @builtin(instance_index) instance_index: u32,
...
}

@vertex
fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
...

    var model = mesh[vertex_no_morph.instance_index].model;
```

After:

```
#import bevy_render::instance_index

struct Vertex {
    @builtin(instance_index) instance_index: u32,
...
}

@vertex
fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
...

    var model = mesh[bevy_render::instance_index::get_instance_index(vertex_no_morph.instance_index)].model;
```
2023-08-09 18:38:45 +00:00
JMS55
ad011d0455
Add GpuArrayBuffer and BatchedUniformBuffer (#8204)
# Objective

- Add a type for uploading a Rust `Vec<T>` to a GPU `array<T>`.
- Makes progress towards https://github.com/bevyengine/bevy/issues/89.

## Solution

- Port @superdump's `BatchedUniformBuffer` to bevy main, as a fallback
for WebGL2, which doesn't support storage buffers.
- Rather than getting an `array<T>` in a shader, you get an `array<T,
N>`, and have to rebind every N elements via dynamic offsets.
- Add `GpuArrayBuffer` to abstract over
`StorageBuffer<Vec<T>>`/`BatchedUniformBuffer`.

## Future Work
Add a shader macro kinda thing to abstract over the following
automatically:
https://github.com/bevyengine/bevy/pull/8204#pullrequestreview-1396911727

---

## Changelog
* Added `GpuArrayBuffer`, `GpuComponentArrayBufferPlugin`,
`GpuArrayBufferable`, and `GpuArrayBufferIndex` types.
* Added `DynamicUniformBuffer::new_with_alignment()`.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Teodor Tanasoaia <28601907+teoxoy@users.noreply.github.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Vincent <9408210+konsolas@users.noreply.github.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
2023-07-21 16:46:56 +00:00
Vincent
608367f905
Remove unused dependency on once_cell in bevy_render (#9039)
# Objective

bevy_render currently has a dependency on a random older version of
once_cell which is not used anywhere.

## Solution

Remove the dependency

## Changelog

N/A

## Migration Guide

N/A
2023-07-04 21:30:58 +00:00
Nicola Papale
c6170d48f9
Add morph targets (#8158)
# Objective

- Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF
- Supersedes #3722
- Fixes #6814

[Morph targets][1] (also known as shape interpolation, shape keys, or
blend shapes) allow animating individual vertices with fine grained
controls. This is typically used for facial expressions. By specifying
multiple poses as vertex offset, and providing a set of weight of each
pose, it is possible to define surprisingly realistic transitions
between poses. Blending between multiple poses also allow composition.
Morph targets are part of the [gltf standard][2] and are a feature of
Unity and Unreal, and babylone.js, it is only natural to implement them
in bevy.

## Solution

This implementation of morph targets uses a 3d texture where each pixel
is a component of an animated attribute. Each layer is a different
target. We use a 2d texture for each target, because the number of
attribute×components×animated vertices is expected to always exceed the
maximum pixel row size limit of webGL2. It copies fairly closely the way
skinning is implemented on the CPU side, while on the GPU side, the
shader morph target implementation is a relatively trivial detail.

We add an optional `morph_texture` to the `Mesh` struct. The
`morph_texture` is built through a method that accepts an iterator over
attribute buffers.

The `MorphWeights` component, user-accessible, controls the blend of
poses used by mesh instances (so that multiple copy of the same mesh may
have different weights), all the weights are uploaded to a uniform
buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256
poses.

More literature:
* Old babylone.js implementation (vertex attribute-based):
https://www.eternalcoding.com/dev-log-1-morph-targets/
* Babylone.js implementation (similar to ours):
https://www.youtube.com/watch?v=LBPRmGgU0PE
* GPU gems 3:
https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits
* Development discord thread
https://discord.com/channels/691052431525675048/1083325980615114772


https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4


https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258

## Acknowledgements

* Thanks to `storytold` for sponsoring the feature
* Thanks to `superdump` and `james7132` for guidance and help figuring
out stuff

## Future work

- Handling of less and more attributes (eg: animated uv, animated
arbitrary attributes)
- Dynamic pose allocation (so that zero-weighted poses aren't uploaded
to GPU for example, enables much more total poses)
- Better animation API, see #8357

----

## Changelog

- Add morph targets to bevy meshes
- Support up to 64 poses per mesh of individually up to 116508 vertices,
animation currently strictly limited to the position, normal and tangent
attributes.
	- Load a morph target using `Mesh::set_morph_targets` 
- Add `VisitMorphTargets` and `VisitMorphAttributes` traits to
`bevy_render`, this allows defining morph targets (a fairly complex and
nested data structure) through iterators (ie: single copy instead of
passing around buffers), see documentation of those traits for details
- Add `MorphWeights` component exported by `bevy_render`
- `MorphWeights` control mesh's morph target weights, blending between
various poses defined as morph targets.
- `MorphWeights` are directly inherited by direct children (single level
of hierarchy) of an entity. This allows controlling several mesh
primitives through a unique entity _as per GLTF spec_.
- Add `MorphTargetNames` component, naming each indices of loaded morph
targets.
- Load morph targets weights and buffers in `bevy_gltf` 
- handle morph targets animations in `bevy_animation` (previously, it
was a `warn!` log)
- Add the `MorphStressTest.gltf` asset for morph targets testing, taken
from the glTF samples repo, CC0.
- Add morph target manipulation to `scene_viewer`
- Separate the animation code in `scene_viewer` from the rest of the
code, reducing `#[cfg(feature)]` noise
- Add the `morph_targets.rs` example to show off how to manipulate morph
targets, loading `MorpStressTest.gltf`

## Migration Guide

- (very specialized, unlikely to be touched by 3rd parties)
- `MeshPipeline` now has a single `mesh_layouts` field rather than
separate `mesh_layout` and `skinned_mesh_layout` fields. You should
handle all possible mesh bind group layouts in your implementation
- You should also handle properly the new `MORPH_TARGETS` shader def and
mesh pipeline key. A new function is exposed to make this easier:
`setup_moprh_and_skinning_defs`
- The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are
now accessed through the `get` method.

[1]: https://en.wikipedia.org/wiki/Morph_target_animation
[2]:
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets

---------

Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-22 20:00:01 +00:00
Edgar Geier
f18f28874a
Allow tuples and single plugins in add_plugins, deprecate add_plugin (#8097)
# Objective

- Better consistency with `add_systems`.
- Deprecating `add_plugin` in favor of a more powerful `add_plugins`.
- Allow passing `Plugin` to `add_plugins`.
- Allow passing tuples to `add_plugins`.

## Solution

- `App::add_plugins` now takes an `impl Plugins` parameter.
- `App::add_plugin` is deprecated.
- `Plugins` is a new sealed trait that is only implemented for `Plugin`,
`PluginGroup` and tuples over `Plugins`.
- All examples, benchmarks and tests are changed to use `add_plugins`,
using tuples where appropriate.

---

## Changelog

### Changed

- `App::add_plugins` now accepts all types that implement `Plugins`,
which is implemented for:
  - Types that implement `Plugin`.
  - Types that implement `PluginGroup`.
  - Tuples (up to 16 elements) over types that implement `Plugins`.
- Deprecated `App::add_plugin` in favor of `App::add_plugins`.

## Migration Guide

- Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`.

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-21 20:51:03 +00:00
Alice Cecile
cbd4abf0fc
Rename apply_system_buffers to apply_deferred (#8726)
# Objective

- `apply_system_buffers` is an unhelpful name: it introduces a new
internal-only concept
- this is particularly rough for beginners as reasoning about how
commands work is a critical stumbling block

## Solution

- rename `apply_system_buffers` to the more descriptive `apply_deferred`
- rename related fields, arguments and methods in the internals fo
bevy_ecs for consistency
- update the docs


## Changelog

`apply_system_buffers` has been renamed to `apply_deferred`, to more
clearly communicate its intent and relation to `Deferred` system
parameters like `Commands`.

## Migration Guide

- `apply_system_buffers` has been renamed to `apply_deferred`
- the `apply_system_buffers` method on the `System` trait has been
renamed to `apply_deferred`
- the `is_apply_system_buffers` function has been replaced by
`is_apply_deferred`
- `Executor::set_apply_final_buffers` is now
`Executor::set_apply_final_deferred`
- `Schedule::apply_system_buffers` is now `Schedule::apply_deferred`

---------

Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
2023-06-02 14:04:13 +00:00
François
71842c5ac9
Webgpu support (#8336)
# Objective

- Support WebGPU
- alternative to #5027 that doesn't need any async / await
- fixes #8315 
- Surprise fix #7318

## Solution

### For async renderer initialisation 

- Update the plugin lifecycle:
  - app builds the plugin
    - calls `plugin.build`
    - registers the plugin
  - app starts the event loop
- event loop waits for `ready` of all registered plugins in the same
order
    - returns `true` by default
- then call all `finish` then all `cleanup` in the same order as
registered
  - then execute the schedule

In the case of the renderer, to avoid anything async:
- building the renderer plugin creates a detached task that will send
back the initialised renderer through a mutex in a resource
- `ready` will wait for the renderer to be present in the resource
- `finish` will take that renderer and place it in the expected
resources by other plugins
- other plugins (that expect the renderer to be available) `finish` are
called and they are able to set up their pipelines
- `cleanup` is called, only custom one is still for pipeline rendering

### For WebGPU support

- update the `build-wasm-example` script to support passing `--api
webgpu` that will build the example with WebGPU support
- feature for webgl2 was always enabled when building for wasm. it's now
in the default feature list and enabled on all platforms, so check for
this feature must also check that the target_arch is `wasm32`

---

## Migration Guide

- `Plugin::setup` has been renamed `Plugin::cleanup`
- `Plugin::finish` has been added, and plugins adding pipelines should
do it in this function instead of `Plugin::build`
```rust
// Before
impl Plugin for MyPlugin {
    fn build(&self, app: &mut App) {
        app.insert_resource::<MyResource>
            .add_systems(Update, my_system);

        let render_app = match app.get_sub_app_mut(RenderApp) {
            Ok(render_app) => render_app,
            Err(_) => return,
        };

        render_app
            .init_resource::<RenderResourceNeedingDevice>()
            .init_resource::<OtherRenderResource>();
    }
}

// After
impl Plugin for MyPlugin {
    fn build(&self, app: &mut App) {
        app.insert_resource::<MyResource>
            .add_systems(Update, my_system);
    
        let render_app = match app.get_sub_app_mut(RenderApp) {
            Ok(render_app) => render_app,
            Err(_) => return,
        };
    
        render_app
            .init_resource::<OtherRenderResource>();
    }

    fn finish(&self, app: &mut App) {
        let render_app = match app.get_sub_app_mut(RenderApp) {
            Ok(render_app) => render_app,
            Err(_) => return,
        };
    
        render_app
            .init_resource::<RenderResourceNeedingDevice>();
    }
}
```
2023-05-04 22:07:57 +00:00
Wybe Westra
abf12f3b3b
Fixed several missing links in docs. (#8117)
Links in the api docs are nice. I noticed that there were several places
where structs / functions and other things were referenced in the docs,
but weren't linked. I added the links where possible / logical.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
2023-04-23 17:28:36 +00:00
JoJoJet
3ead10a3e0
Suppress the clippy::type_complexity lint (#8313)
# Objective

The clippy lint `type_complexity` is known not to play well with bevy.
It frequently triggers when writing complex queries, and taking the
lint's advice of using a type alias almost always just obfuscates the
code with no benefit. Because of this, this lint is currently ignored in
CI, but unfortunately it still shows up when viewing bevy code in an
IDE.

As someone who's made a fair amount of pull requests to this repo, I
will say that this issue has been a consistent thorn in my side. Since
bevy code is filled with spurious, ignorable warnings, it can be very
difficult to spot the *real* warnings that must be fixed -- most of the
time I just ignore all warnings, only to later find out that one of them
was real after I'm done when CI runs.

## Solution

Suppress this lint in all bevy crates. This was previously attempted in
#7050, but the review process ended up making it more complicated than
it needs to be and landed on a subpar solution.

The discussion in https://github.com/rust-lang/rust-clippy/pull/10571
explores some better long-term solutions to this problem. Since there is
no timeline on when these solutions may land, we should resolve this
issue in the meantime by locally suppressing these lints.

### Unresolved issues

Currently, these lints are not suppressed in our examples, since that
would require suppressing the lint in every single source file. They are
still ignored in CI.
2023-04-06 21:27:36 +00:00
Trevor Lovell
464d35aef5
docs: update docs and comments that still refer to stages (#8156)
# Objective
Documentation should no longer be using pre-stageless terminology to
avoid confusion.

## Solution
- update all docs referring to stages to instead refer to sets/schedules
where appropriate
- also mention `apply_system_buffers` for anything system-buffer-related
that previously referred to buffers being applied "at the end of a
stage"
2023-03-27 21:50:21 +00:00
Carter Anderson
aefe1f0739
Schedule-First: the new and improved add_systems (#8079)
Co-authored-by: Mike <mike.hsu@gmail.com>
2023-03-18 01:45:34 +00:00
JoJoJet
fd1af7c8b8
Replace multiple calls to add_system with add_systems (#8001) 2023-03-10 18:15:22 +00:00
Rob Parrett
b39f83640f Fix some typos (#7763)
# Objective

Stumbled on a typo and went on a typo hunt.

## Solution

Fix em
2023-02-20 22:56:57 +00:00
Niklas Eicker
0bce78439b Cleanup system sets called labels (#7678)
# Objective

We have a few old system labels that are now system sets but are still named or documented as labels. Documentation also generally mentioned system labels in some places.


## Solution

- Clean up naming and documentation regarding system sets

## Migration Guide

`PrepareAssetLabel` is now called `PrepareAssetSet`
2023-02-14 21:46:07 +00:00
Mike
cd447fb4e6 Cleanup render schedule (#7589)
# Objective

- Fixes https://github.com/bevyengine/bevy/issues/7531

## Solution

- Add systems to prepare set
- Also remove a unnecessary apply_systems_buffers from ExtractCommands set.
2023-02-10 03:32:54 +00:00
张林伟
aa4170d9a4 Rename schedule v3 to schedule (#7519)
# Objective

- Follow up of https://github.com/bevyengine/bevy/pull/7267

## Solution

- Rename schedule_v3 to schedule
- Suppress "module inception" lint
2023-02-06 18:44:40 +00:00
Alice Cecile
206c7ce219 Migrate engine to Schedule v3 (#7267)
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.

# Objective

- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45

## Solution

- [x]  Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests

## Changelog

### Added

- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`

### Removed

- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.

### Changed

- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
-  `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. 
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.

## Migration Guide

- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage`  enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
  - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
  - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
  - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with 
  - `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`

## TODO

- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
  - [x] unbreak directional lights
  - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
  - [x] game menu example shows loading screen and menu simultaneously
  - [x] display settings menu is a blank screen
  - [x] `without_winit` example panics
- [x] ensure all tests pass
  - [x] SubApp doc test fails
  - [x] runs_spawn_local tasks fails
  - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)

## Points of Difficulty and Controversy

**Reviewers, please give feedback on these and look closely**

1.  Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.

## Future Work (ideally before 0.10)

- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
2023-02-06 02:04:50 +00:00
Elabajaba
bfd1d4b0a7 Wgpu 0.15 (#7356)
# Objective

Update Bevy to wgpu 0.15.

## Changelog

- Update to wgpu 0.15, wgpu-hal 0.15.1, and naga 0.11
- Users can now use the [DirectX Shader Compiler](https://github.com/microsoft/DirectXShaderCompiler) (DXC) on Windows with DX12 for faster shader compilation and ShaderModel 6.0+ support (requires `dxcompiler.dll` and `dxil.dll`, which are included in DXC downloads from [here](https://github.com/microsoft/DirectXShaderCompiler/releases/latest))

## Migration Guide

### WGSL Top-Level `let` is now `const`

All top level constants are now declared with `const`, catching up with the wgsl spec.

`let` is no longer allowed at the global scope, only within functions.

```diff
-let SOME_CONSTANT = 12.0;
+const SOME_CONSTANT = 12.0;
```

#### `TextureDescriptor` and `SurfaceConfiguration` now requires a `view_formats` field

The new `view_formats` field in the `TextureDescriptor` is used to specify a list of formats the texture can be re-interpreted to in a texture view. Currently only changing srgb-ness is allowed (ex. `Rgba8Unorm` <=> `Rgba8UnormSrgb`). You should set `view_formats` to `&[]` (empty) unless you have a specific reason not to.

#### The DirectX Shader Compiler (DXC) is now supported on DX12

DXC is now the default shader compiler when using the DX12 backend. DXC is Microsoft's replacement for their legacy FXC compiler, and is faster, less buggy, and allows for modern shader features to be used (ShaderModel 6.0+). DXC requires `dxcompiler.dll` and `dxil.dll` to be available, otherwise it will log a warning and fall back to FXC.

You can get `dxcompiler.dll` and `dxil.dll` by downloading the latest release from [Microsoft's DirectXShaderCompiler github repo](https://github.com/microsoft/DirectXShaderCompiler/releases/latest) and copying them into your project's root directory. These must be included when you distribute your Bevy game/app/etc if you plan on supporting the DX12 backend and are using DXC.

`WgpuSettings` now has a `dx12_shader_compiler` field which can be used to choose between either FXC or DXC (if you pass None for the paths for DXC, it will check for the .dlls in the working directory).
2023-01-29 20:27:30 +00:00
Daniel Chia
c3a46822e1 Cascaded shadow maps. (#7064)
Co-authored-by: Robert Swain <robert.swain@gmail.com>

# Objective

Implements cascaded shadow maps for directional lights, which produces better quality shadows without needing excessively large shadow maps.

Fixes #3629

Before
![image](https://user-images.githubusercontent.com/1222141/210061203-bbd965a4-8d11-4cec-9a88-67fc59d0819f.png)

After
![image](https://user-images.githubusercontent.com/1222141/210061334-2ff15334-e6d7-4a31-9314-f34a7805cac6.png)


## Solution

Rather than rendering a single shadow map for directional light, the view frustum is divided into a series of cascades, each of which gets its own shadow map. The correct cascade is then sampled for shadow determination.

---

## Changelog

Directional lights now use cascaded shadow maps for improved shadow quality.


## Migration Guide

You no longer have to manually specify a `shadow_projection` for a directional light, and these settings should be removed. If customization of how cascaded shadow maps work is desired, modify the `CascadeShadowConfig` component instead.
2023-01-25 12:35:39 +00:00
James Liu
958a898b4a Remove App::add_sub_app (#7290)
# Objective
Fixes #7286. Both `App::add_sub_app` and `App::insert_sub_app` are rather redundant. Before 0.10 is shipped, one of them should be removed.

## Solution
Remove `App::add_sub_app` to prefer `App::insert_sub_app`.

Also hid away `SubApp::extract` since that can be a footgun if someone mutates it for whatever reason. Willing to revert this change if there are objections.

Perhaps we should make `SubApp: Deref<Target=App>`? Might change if we decide to move `!Send` resources into it.

---

## Changelog
Added: `SubApp::new`
Removed: `App::add_sub_app`

## Migration Guide
`App::add_sub_app` has been removed in favor of `App::insert_sub_app`. Use `SubApp::new` and insert it via `App::add_sub_app`

Old:

```rust
let mut sub_app = App::new()
// Build subapp here
app.add_sub_app(MySubAppLabel, sub_app);
```

New:

```rust
let mut sub_app = App::new()
// Build subapp here
app.insert_sub_app(MySubAppLabel, SubApp::new(sub_app, extract_fn));
```
2023-01-24 21:24:25 +00:00
Mike
2027af4c54 Pipelined Rendering (#6503)
# Objective

- Implement pipelined rendering
- Fixes #5082
- Fixes #4718

## User Facing Description

Bevy now implements piplelined rendering! Pipelined rendering allows the app logic and rendering logic to run on different threads leading to large gains in performance.

![image](https://user-images.githubusercontent.com/2180432/202049871-3c00b801-58ab-448f-93fd-471e30aba55f.png)
*tracy capture of many_foxes example*

To use pipelined rendering, you just need to add the `PipelinedRenderingPlugin`. If you're using `DefaultPlugins` then it will automatically be added for you on all platforms except wasm. Bevy does not currently support multithreading on wasm which is needed for this feature to work. If you aren't using `DefaultPlugins` you can add the plugin manually.

```rust
use bevy::prelude::*;
use bevy::render::pipelined_rendering::PipelinedRenderingPlugin;

fn main() {
    App::new()
        // whatever other plugins you need
        .add_plugin(RenderPlugin)
        // needs to be added after RenderPlugin
        .add_plugin(PipelinedRenderingPlugin)
        .run();
}
```

If for some reason pipelined rendering needs to be removed. You can also disable the plugin the normal way.

```rust
use bevy::prelude::*;
use bevy::render::pipelined_rendering::PipelinedRenderingPlugin;

fn main() {
    App::new.add_plugins(DefaultPlugins.build().disable::<PipelinedRenderingPlugin>());
}
```

### A setup function was added to plugins

A optional plugin lifecycle function was added to the `Plugin trait`. This function is called after all plugins have been built, but before the app runner is called. This allows for some final setup to be done. In the case of pipelined rendering, the function removes the sub app from the main app and sends it to the render thread.

```rust
struct MyPlugin;
impl Plugin for MyPlugin {
    fn build(&self, app: &mut App) {
        
    }
    
    // optional function
    fn setup(&self, app: &mut App) {
        // do some final setup before runner is called
    }
}
```

### A Stage for Frame Pacing

In the `RenderExtractApp` there is a stage labelled `BeforeIoAfterRenderStart` that systems can be added to.  The specific use case for this stage is for a frame pacing system that can delay the start of main app processing in render bound apps to reduce input latency i.e. "frame pacing". This is not currently built into bevy, but exists as `bevy`

```text
|-------------------------------------------------------------------|
|         | BeforeIoAfterRenderStart | winit events | main schedule |
| extract |---------------------------------------------------------|
|         | extract commands | rendering schedule                   |
|-------------------------------------------------------------------|
```

### Small API additions

* `Schedule::remove_stage`
* `App::insert_sub_app`
* `App::remove_sub_app` 
* `TaskPool::scope_with_executor`

## Problems and Solutions

### Moving render app to another thread

Most of the hard bits for this were done with the render redo. This PR just sends the render app back and forth through channels which seems to work ok. I originally experimented with using a scope to run the render task. It was cuter, but that approach didn't allow render to start before i/o processing. So I switched to using channels. There is much complexity in the coordination that needs to be done, but it's worth it. By moving rendering during i/o processing the frame times should be much more consistent in render bound apps. See https://github.com/bevyengine/bevy/issues/4691.

### Unsoundness with Sending World with NonSend resources

Dropping !Send things on threads other than the thread they were spawned on is considered unsound. The render world doesn't have any nonsend resources. So if we tell the users to "pretty please don't spawn nonsend resource on the render world", we can avoid this problem.

More seriously there is this https://github.com/bevyengine/bevy/pull/6534 pr, which patches the unsoundness by aborting the app if a nonsend resource is dropped on the wrong thread. ~~That PR should probably be merged before this one.~~ For a longer term solution we have this discussion going https://github.com/bevyengine/bevy/discussions/6552.

### NonSend Systems in render world

The render world doesn't have any !Send resources, but it does have a non send system. While Window is Send, winit does have some API's that can only be accessed on the main thread. `prepare_windows` in the render schedule thus needs to be scheduled on the main thread. Currently we run nonsend systems by running them on the thread the TaskPool::scope runs on. When we move render to another thread this no longer works.

To fix this, a new `scope_with_executor` method was added that takes a optional `TheadExecutor` that can only be ticked on the thread it was initialized on. The render world then holds a `MainThreadExecutor` resource which can be passed to the scope in the parallel executor that it uses to spawn it's non send systems on. 

### Scopes executors between render and main should not share tasks

Since the render world and the app world share the `ComputeTaskPool`. Because `scope` has executors for the ComputeTaskPool a system from the main world could run on the render thread or a render system could run on the main thread. This can cause performance problems because it can delay a stage from finishing. See https://github.com/bevyengine/bevy/pull/6503#issuecomment-1309791442 for more details.

To avoid this problem, `TaskPool::scope` has been changed to not tick the ComputeTaskPool when it's used by the parallel executor. In the future when we move closer to the 1 thread to 1 logical core model we may want to overprovide threads, because the render and main app threads don't do much when executing the schedule.

## Performance

My machine is Windows 11, AMD Ryzen 5600x, RX 6600

### Examples

#### This PR with pipelining vs Main

> Note that these were run on an older version of main and the performance profile has probably changed due to optimizations

Seeing a perf gain from 29% on many lights to 7% on many sprites.

<html>
<body>
<!--StartFragment--><google-sheets-html-origin>

  | percent |   |   | Diff |   |   | Main |   |   | PR |   |  
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
tracy frame time | mean | median | sigma | mean | median | sigma | mean | median | sigma | mean | median | sigma
many foxes | 27.01% | 27.34% | -47.09% | 1.58 | 1.55 | -1.78 | 5.85 | 5.67 | 3.78 | 4.27 | 4.12 | 5.56
many lights | 29.35% | 29.94% | -10.84% | 3.02 | 3.03 | -0.57 | 10.29 | 10.12 | 5.26 | 7.27 | 7.09 | 5.83
many animated sprites | 13.97% | 15.69% | 14.20% | 3.79 | 4.17 | 1.41 | 27.12 | 26.57 | 9.93 | 23.33 | 22.4 | 8.52
3d scene | 25.79% | 26.78% | 7.46% | 0.49 | 0.49 | 0.15 | 1.9 | 1.83 | 2.01 | 1.41 | 1.34 | 1.86
many cubes | 11.97% | 11.28% | 14.51% | 1.93 | 1.78 | 1.31 | 16.13 | 15.78 | 9.03 | 14.2 | 14 | 7.72
many sprites | 7.14% | 9.42% | -85.42% | 1.72 | 2.23 | -6.15 | 24.09 | 23.68 | 7.2 | 22.37 | 21.45 | 13.35

<!--EndFragment-->
</body>
</html>

#### This PR with pipelining disabled vs Main

Mostly regressions here. I don't think this should be a problem as users that are disabling pipelined rendering are probably running single threaded and not using the parallel executor. The regression is probably mostly due to the switch to use `async_executor::run` instead of `try_tick` and also having one less thread to run systems on. I'll do a writeup on why switching to `run` causes regressions, so we can try to eventually fix it. Using try_tick causes issues when pipeline rendering is enable as seen [here](https://github.com/bevyengine/bevy/pull/6503#issuecomment-1380803518)

<html>
<body>
<!--StartFragment--><google-sheets-html-origin>

  | percent |   |   | Diff |   |   | Main |   |   | PR no pipelining |   |  
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
tracy frame time | mean | median | sigma | mean | median | sigma | mean | median | sigma | mean | median | sigma
many foxes | -3.72% | -4.42% | -1.07% | -0.21 | -0.24 | -0.04 | 5.64 | 5.43 | 3.74 | 5.85 | 5.67 | 3.78
many lights | 0.29% | -0.30% | 4.75% | 0.03 | -0.03 | 0.25 | 10.29 | 10.12 | 5.26 | 10.26 | 10.15 | 5.01
many animated sprites | 0.22% | 1.81% | -2.72% | 0.06 | 0.48 | -0.27 | 27.12 | 26.57 | 9.93 | 27.06 | 26.09 | 10.2
3d scene | -15.79% | -14.75% | -31.34% | -0.3 | -0.27 | -0.63 | 1.9 | 1.83 | 2.01 | 2.2 | 2.1 | 2.64
many cubes | -2.85% | -3.30% | 0.00% | -0.46 | -0.52 | 0 | 16.13 | 15.78 | 9.03 | 16.59 | 16.3 | 9.03
many sprites | 2.49% | 2.41% | 0.69% | 0.6 | 0.57 | 0.05 | 24.09 | 23.68 | 7.2 | 23.49 | 23.11 | 7.15

<!--EndFragment-->
</body>
</html>

### Benchmarks

Mostly the same except empty_systems has got a touch slower. The maybe_pipelining+1 column has the compute task pool with an extra thread over default added. This is because pipelining loses one thread over main to execute systems on, since the main thread no longer runs normal systems.

<details>
<summary>Click Me</summary>

```text
group                                                             main                                         maybe-pipelining+1
-----                                                             -------------------------                ------------------
busy_systems/01x_entities_03_systems                              1.07     30.7±1.32µs        ? ?/sec      1.00     28.6±1.35µs        ? ?/sec
busy_systems/01x_entities_06_systems                              1.10     52.1±1.10µs        ? ?/sec      1.00     47.2±1.08µs        ? ?/sec
busy_systems/01x_entities_09_systems                              1.00     74.6±1.36µs        ? ?/sec      1.00     75.0±1.93µs        ? ?/sec
busy_systems/01x_entities_12_systems                              1.03    100.6±6.68µs        ? ?/sec      1.00     98.0±1.46µs        ? ?/sec
busy_systems/01x_entities_15_systems                              1.11    128.5±3.53µs        ? ?/sec      1.00    115.5±1.02µs        ? ?/sec
busy_systems/02x_entities_03_systems                              1.16     50.4±2.56µs        ? ?/sec      1.00     43.5±3.00µs        ? ?/sec
busy_systems/02x_entities_06_systems                              1.00     87.1±1.27µs        ? ?/sec      1.05     91.5±7.15µs        ? ?/sec
busy_systems/02x_entities_09_systems                              1.04    139.9±6.37µs        ? ?/sec      1.00    134.0±1.06µs        ? ?/sec
busy_systems/02x_entities_12_systems                              1.05    179.2±3.47µs        ? ?/sec      1.00    170.1±3.17µs        ? ?/sec
busy_systems/02x_entities_15_systems                              1.01    219.6±3.75µs        ? ?/sec      1.00    218.1±2.55µs        ? ?/sec
busy_systems/03x_entities_03_systems                              1.10     70.6±2.33µs        ? ?/sec      1.00     64.3±0.69µs        ? ?/sec
busy_systems/03x_entities_06_systems                              1.02    130.2±3.11µs        ? ?/sec      1.00    128.0±1.34µs        ? ?/sec
busy_systems/03x_entities_09_systems                              1.00   195.0±10.11µs        ? ?/sec      1.00    194.8±1.41µs        ? ?/sec
busy_systems/03x_entities_12_systems                              1.01    261.7±4.05µs        ? ?/sec      1.00    259.8±4.11µs        ? ?/sec
busy_systems/03x_entities_15_systems                              1.00    318.0±3.04µs        ? ?/sec      1.06   338.3±20.25µs        ? ?/sec
busy_systems/04x_entities_03_systems                              1.00     82.9±0.63µs        ? ?/sec      1.02     84.3±0.63µs        ? ?/sec
busy_systems/04x_entities_06_systems                              1.01    181.7±3.65µs        ? ?/sec      1.00    179.8±1.76µs        ? ?/sec
busy_systems/04x_entities_09_systems                              1.04    265.0±4.68µs        ? ?/sec      1.00    255.3±1.98µs        ? ?/sec
busy_systems/04x_entities_12_systems                              1.00    335.9±3.00µs        ? ?/sec      1.05   352.6±15.84µs        ? ?/sec
busy_systems/04x_entities_15_systems                              1.00   418.6±10.26µs        ? ?/sec      1.08   450.2±39.58µs        ? ?/sec
busy_systems/05x_entities_03_systems                              1.07    114.3±0.95µs        ? ?/sec      1.00    106.9±1.52µs        ? ?/sec
busy_systems/05x_entities_06_systems                              1.08    229.8±2.90µs        ? ?/sec      1.00    212.3±4.18µs        ? ?/sec
busy_systems/05x_entities_09_systems                              1.03    329.3±1.99µs        ? ?/sec      1.00    319.2±2.43µs        ? ?/sec
busy_systems/05x_entities_12_systems                              1.06    454.7±6.77µs        ? ?/sec      1.00    430.1±3.58µs        ? ?/sec
busy_systems/05x_entities_15_systems                              1.03    554.6±6.15µs        ? ?/sec      1.00   538.4±23.87µs        ? ?/sec
contrived/01x_entities_03_systems                                 1.00     14.0±0.15µs        ? ?/sec      1.08     15.1±0.21µs        ? ?/sec
contrived/01x_entities_06_systems                                 1.04     28.5±0.37µs        ? ?/sec      1.00     27.4±0.44µs        ? ?/sec
contrived/01x_entities_09_systems                                 1.00     41.5±4.38µs        ? ?/sec      1.02     42.2±2.24µs        ? ?/sec
contrived/01x_entities_12_systems                                 1.06     55.9±1.49µs        ? ?/sec      1.00     52.6±1.36µs        ? ?/sec
contrived/01x_entities_15_systems                                 1.02     68.0±2.00µs        ? ?/sec      1.00     66.5±0.78µs        ? ?/sec
contrived/02x_entities_03_systems                                 1.03     25.2±0.38µs        ? ?/sec      1.00     24.6±0.52µs        ? ?/sec
contrived/02x_entities_06_systems                                 1.00     46.3±0.49µs        ? ?/sec      1.04     48.1±4.13µs        ? ?/sec
contrived/02x_entities_09_systems                                 1.02     70.4±0.99µs        ? ?/sec      1.00     68.8±1.04µs        ? ?/sec
contrived/02x_entities_12_systems                                 1.06     96.8±1.49µs        ? ?/sec      1.00     91.5±0.93µs        ? ?/sec
contrived/02x_entities_15_systems                                 1.02    116.2±0.95µs        ? ?/sec      1.00    114.2±1.42µs        ? ?/sec
contrived/03x_entities_03_systems                                 1.00     33.2±0.38µs        ? ?/sec      1.01     33.6±0.45µs        ? ?/sec
contrived/03x_entities_06_systems                                 1.00     62.4±0.73µs        ? ?/sec      1.01     63.3±1.05µs        ? ?/sec
contrived/03x_entities_09_systems                                 1.02     96.4±0.85µs        ? ?/sec      1.00     94.8±3.02µs        ? ?/sec
contrived/03x_entities_12_systems                                 1.01    126.3±4.67µs        ? ?/sec      1.00    125.6±2.27µs        ? ?/sec
contrived/03x_entities_15_systems                                 1.03    160.2±9.37µs        ? ?/sec      1.00    156.0±1.53µs        ? ?/sec
contrived/04x_entities_03_systems                                 1.02     41.4±3.39µs        ? ?/sec      1.00     40.5±0.52µs        ? ?/sec
contrived/04x_entities_06_systems                                 1.00     78.9±1.61µs        ? ?/sec      1.02     80.3±1.06µs        ? ?/sec
contrived/04x_entities_09_systems                                 1.02    121.8±3.97µs        ? ?/sec      1.00    119.2±1.46µs        ? ?/sec
contrived/04x_entities_12_systems                                 1.00    157.8±1.48µs        ? ?/sec      1.01    160.1±1.72µs        ? ?/sec
contrived/04x_entities_15_systems                                 1.00    197.9±1.47µs        ? ?/sec      1.08   214.2±34.61µs        ? ?/sec
contrived/05x_entities_03_systems                                 1.00     49.1±0.33µs        ? ?/sec      1.01     49.7±0.75µs        ? ?/sec
contrived/05x_entities_06_systems                                 1.00     95.0±0.93µs        ? ?/sec      1.00     94.6±0.94µs        ? ?/sec
contrived/05x_entities_09_systems                                 1.01    143.2±1.68µs        ? ?/sec      1.00    142.2±2.00µs        ? ?/sec
contrived/05x_entities_12_systems                                 1.00    191.8±2.03µs        ? ?/sec      1.01    192.7±7.88µs        ? ?/sec
contrived/05x_entities_15_systems                                 1.02    239.7±3.71µs        ? ?/sec      1.00    235.8±4.11µs        ? ?/sec
empty_systems/000_systems                                         1.01     47.8±0.67ns        ? ?/sec      1.00     47.5±2.02ns        ? ?/sec
empty_systems/001_systems                                         1.00  1743.2±126.14ns        ? ?/sec     1.01  1761.1±70.10ns        ? ?/sec
empty_systems/002_systems                                         1.01      2.2±0.04µs        ? ?/sec      1.00      2.2±0.02µs        ? ?/sec
empty_systems/003_systems                                         1.02      2.7±0.09µs        ? ?/sec      1.00      2.7±0.16µs        ? ?/sec
empty_systems/004_systems                                         1.00      3.1±0.11µs        ? ?/sec      1.00      3.1±0.24µs        ? ?/sec
empty_systems/005_systems                                         1.00      3.5±0.05µs        ? ?/sec      1.11      3.9±0.70µs        ? ?/sec
empty_systems/010_systems                                         1.00      5.5±0.12µs        ? ?/sec      1.03      5.7±0.17µs        ? ?/sec
empty_systems/015_systems                                         1.00      7.9±0.19µs        ? ?/sec      1.06      8.4±0.16µs        ? ?/sec
empty_systems/020_systems                                         1.00     10.4±1.25µs        ? ?/sec      1.02     10.6±0.18µs        ? ?/sec
empty_systems/025_systems                                         1.00     12.4±0.39µs        ? ?/sec      1.14     14.1±1.07µs        ? ?/sec
empty_systems/030_systems                                         1.00     15.1±0.39µs        ? ?/sec      1.05     15.8±0.62µs        ? ?/sec
empty_systems/035_systems                                         1.00     16.9±0.47µs        ? ?/sec      1.07     18.0±0.37µs        ? ?/sec
empty_systems/040_systems                                         1.00     19.3±0.41µs        ? ?/sec      1.05     20.3±0.39µs        ? ?/sec
empty_systems/045_systems                                         1.00     22.4±1.67µs        ? ?/sec      1.02     22.9±0.51µs        ? ?/sec
empty_systems/050_systems                                         1.00     24.4±1.67µs        ? ?/sec      1.01     24.7±0.40µs        ? ?/sec
empty_systems/055_systems                                         1.05     28.6±5.27µs        ? ?/sec      1.00     27.2±0.70µs        ? ?/sec
empty_systems/060_systems                                         1.02     29.9±1.64µs        ? ?/sec      1.00     29.3±0.66µs        ? ?/sec
empty_systems/065_systems                                         1.02     32.7±3.15µs        ? ?/sec      1.00     32.1±0.98µs        ? ?/sec
empty_systems/070_systems                                         1.00     33.0±1.42µs        ? ?/sec      1.03     34.1±1.44µs        ? ?/sec
empty_systems/075_systems                                         1.00     34.8±0.89µs        ? ?/sec      1.04     36.2±0.70µs        ? ?/sec
empty_systems/080_systems                                         1.00     37.0±1.82µs        ? ?/sec      1.05     38.7±1.37µs        ? ?/sec
empty_systems/085_systems                                         1.00     38.7±0.76µs        ? ?/sec      1.05     40.8±0.83µs        ? ?/sec
empty_systems/090_systems                                         1.00     41.5±1.09µs        ? ?/sec      1.04     43.2±0.82µs        ? ?/sec
empty_systems/095_systems                                         1.00     43.6±1.10µs        ? ?/sec      1.04     45.2±0.99µs        ? ?/sec
empty_systems/100_systems                                         1.00     46.7±2.27µs        ? ?/sec      1.03     48.1±1.25µs        ? ?/sec
```
</details>

## Migration Guide

### App `runner` and SubApp `extract` functions are now required to be Send 

This was changed to enable pipelined rendering. If this breaks your use case please report it as these new bounds might be able to be relaxed.

## ToDo

* [x] redo benchmarking
* [x] reinvestigate the perf of the try_tick -> run change for task pool scope
2023-01-19 23:45:46 +00:00
Aceeri
ddfafab971 Windows as Entities (#5589)
# Objective

Fix https://github.com/bevyengine/bevy/issues/4530

- Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component.
- Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open)

## Solution

- Move all properties of window descriptor to ~components~ a component.
- Replace `WindowId` with `Entity`.
- ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~
  Check each field individually to see what we need to update, events are still kept for user convenience.

---

## Changelog

- `WindowDescriptor` renamed to `Window`.
    - Width/height consolidated into a `WindowResolution` component.
    - Requesting maximization/minimization is done on the [`Window::state`] field.
- `WindowId` is now `Entity`.

## Migration Guide

- Replace `WindowDescriptor` with `Window`.
    - Change `width` and `height` fields in a `WindowResolution`, either by doing
      ```rust
      WindowResolution::new(width, height) // Explicitly
      // or using From<_> for tuples for convenience
      (1920., 1080.).into()
      ```
- Replace any `WindowCommand` code to just modify the `Window`'s fields directly  and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so:
  ```rust
  let window = commands.spawn(Window { ... }).id(); // open window
  commands.entity(window).despawn(); // close window
  ```

## Unresolved
- ~How do we tell when a window is minimized by a user?~
  ~Currently using the `Resize(0, 0)` as an indicator of minimization.~
  No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized.
  
 ## Future work
 - Move `exit_on_close` functionality out from windowing and into app(?)
 - https://github.com/bevyengine/bevy/issues/5621
 - https://github.com/bevyengine/bevy/issues/7099
 - https://github.com/bevyengine/bevy/issues/7098


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-01-19 00:38:28 +00:00
Daniel Chia
517deda215 Make PipelineCache internally mutable. (#7205)
# Objective

- Allow rendering queue systems to use a `Res<PipelineCache>` even for queueing up new rendering pipelines. This is part of unblocking parallel execution queue systems.

## Solution

- Make `PipelineCache` internally mutable w.r.t to queueing new pipelines. Pipelines are no longer immediately updated into the cache state, but rather queued into a Vec. The Vec of pending new pipelines is then later processed at the same time we actually create the queued pipelines on the GPU device.

---

## Changelog

`PipelineCache` no longer requires mutable access in order to queue render / compute pipelines.

## Migration Guide

* Most usages of `resource_mut::<PipelineCache>` and `ResMut<PipelineCache>` can be changed to `resource::<PipelineCache>` and `Res<PipelineCache>` as long as they don't use any methods requiring mutability - the only public method requiring it is `process_queue`.
2023-01-16 15:41:14 +00:00
Kurt Kühnert
76de9f9407 Improve render phase documentation (#7016)
# Objective

The documentation of the bevy_render crate is still pretty incomplete.
This PR follows up on #6885 and improves the documentation of the `render_phase` module.
This module contains one of our most important rendering abstractions and the current documentation is pretty confusing. This PR tries to clarify what all of these pieces are for and how they work together to form bevy`s modular rendering logic.

## Solution

### Code Reformating
- I have moved the `rangefinder` into the `render_phase` module since it is only used there.
- I have moved the `PhaseItem` (and the `BatchedPhaseItem`) from `render_phase::draw` over to `render_phase::mod`. This does not change the public-facing API since they are reexported anyway, but this change makes the relation between `RenderPhase` and `PhaseItem` clear and easier to discover.

### Documentation
- revised all documentation in the `render_phase` module
- added a module-level explanation of how `RenderPhase`s, `RenderPass`es, `PhaseItem`s, `Draw` functions, and `RenderCommands` relate to each other and how they are used

---

## Changelog

- The `rangefinder` module has been moved into the `render_phase` module.

## Migration Guide

- The `rangefinder` module has been moved into the `render_phase` module.

```rust
//old
use bevy::render::rangefinder::*;

// new
use bevy::render::render_phase::rangefinder::*;
```
2023-01-12 15:11:58 +00:00
Mike
d76b53bf4d Separate Extract from Sub App Schedule (#7046)
# Objective

- This pulls out some of the changes to Plugin setup and sub apps from #6503 to make that PR easier to review.
- Separate the extract stage from running the sub app's schedule to allow for them to be run on separate threads in the future
- Fixes #6990

## Solution

- add a run method to `SubApp` that runs the schedule
- change the name of `sub_app_runner` to extract to make it clear that this function is only for extracting data between the main app and the sub app
- remove the extract stage from the sub app schedule so it can be run separately. This is done by adding a `setup` method to the `Plugin` trait that runs after all plugin build methods run. This is required to allow the extract stage to be removed from the schedule after all the plugins have added their systems to the stage. We will also need the setup method for pipelined rendering to setup the render thread. See e3267965e1/crates/bevy_render/src/pipelined_rendering.rs (L57-L98)

## Changelog

- Separate SubApp Extract stage from running the sub app schedule.

## Migration Guide

### SubApp `runner` has conceptually been changed to an `extract` function.

The `runner` no longer is in charge of running the sub app schedule. It's only concern is now moving data between the main world and the sub app. The `sub_app.app.schedule` is now run for you after the provided function is called.

```rust
// before
fn main() {
    let sub_app = App::empty();
    sub_app.add_stage(MyStage, SystemStage::parallel());
    
    App::new().add_sub_app(MySubApp, sub_app, move |main_world, sub_app| {
        extract(app_world, render_app);
        render_app.app.schedule.run();
    });
}

// after
fn main() {
        let sub_app = App::empty();
    sub_app.add_stage(MyStage, SystemStage::parallel());
    
    App::new().add_sub_app(MySubApp, sub_app, move |main_world, sub_app| {
        extract(app_world, render_app);
        // schedule is automatically called for you after extract is run
    });
}
```
2023-01-09 19:24:54 +00:00
ira
15b19b930c Move 'startup' Resource WgpuSettings into the RenderPlugin (#6946)
# Objective
The `WgpuSettings` resource is only used during plugin build. Move it into the `RenderPlugin` struct.

Changing these settings requires re-initializing the render context, which is currently not supported.
If it is supported in the future it should probably be more explicit than changing a field on a resource, maybe something similar to the `CreateWindow` event.

## Migration Guide
```rust
// Before (0.9)
App::new()
    .insert_resource(WgpuSettings { .. })
    .add_plugins(DefaultPlugins)
// After (0.10)
App::new()
    .add_plugins(DefaultPlugins.set(RenderPlugin {
        wgpu_settings: WgpuSettings { .. },
    }))
```

Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-12-20 16:17:11 +00:00
James Liu
bd615cbf8c Shrink DrawFunctionId (#6944)
# Objective
This includes one part of #4899. The aim is to improve CPU-side rendering performance by reducing the memory footprint and bandwidth required.

## Solution
Shrink `DrawFunctionId` to `u32`. Enforce that `u32 as usize` conversions are always safe by forbidding compilation on 16-bit platforms. This shouldn't be a breaking change since #4736 disabled compilation of `bevy_ecs` on those platforms.

Shrinking `DrawFunctionId` shrinks all of the `PhaseItem` types, which is integral to sort and render phase performance.

Testing against `many_cubes`, the sort phase improved by 22% (174.21us -> 141.76us per frame).

![image](https://user-images.githubusercontent.com/3137680/207345422-a512b4cf-1680-46e0-9973-ea72494ebdfe.png)

The main opaque pass also imrproved by 9% (5.49ms -> 5.03ms)

![image](https://user-images.githubusercontent.com/3137680/207346436-cbee7209-6450-4964-b566-0b64cfa4b4ea.png)

Overall frame time improved by 5% (14.85ms -> 14.09ms)

![image](https://user-images.githubusercontent.com/3137680/207346895-9de8676b-ef37-4cb9-8445-8493f5f90003.png)

There will be a followup PR that likewise shrinks `CachedRenderPipelineId` which should yield similar results on top of these improvements.
2022-12-20 15:40:42 +00:00
James Liu
e954b8573c Lock down access to Entities (#6740)
# Objective
The soundness of the ECS `World` partially relies on the correctness of the state of `Entities` stored within it. We're currently allowing users to (unsafely) mutate it, as well as readily construct it without using a `World`. While this is not strictly unsound so long as users (including `bevy_render`) safely use the APIs, it's a fairly easy path to unsoundness without much of a guard rail.

Addresses #3362 for `bevy_ecs::entity`. Incorporates the changes from #3985.

## Solution
Remove `Entities`'s  `Default` implementation and force access to the type to only be through a properly constructed `World`.

Additional cleanup for other parts of `bevy_ecs::entity`:

 - `Entity::index` and `Entity::generation` are no longer `pub(crate)`, opting to force the rest of bevy_ecs to use the public interface to access these values.
 - `EntityMeta` is no longer `pub` and also not `pub(crate)` to attempt to cut down on updating `generation` without going through an `Entities` API. It's currently inaccessible except via the `pub(crate)` Vec on `Entities`, there was no way for an outside user to use it.
 - Added `Entities::set`, an unsafe `pub(crate)` API for setting the location of an Entity (parallel to `Entities::get`) that replaces the internal case where we need to set the location of an entity when it's been spawned, moved, or despawned.
 - `Entities::alloc_at_without_replacement` is only used in `World::get_or_spawn` within the first party crates, and I cannot find a public use of this API in any ecosystem crate that I've checked (via GitHub search).
 - Attempted to document the few remaining undocumented public APIs in the module.

---

## Changelog
Removed: `Entities`'s `Default` implementation.
Removed: `EntityMeta`
Removed: `Entities::alloc_at_without_replacement` and `AllocAtWithoutReplacement`.

Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: James Liu <contact@jamessliu.com>
2022-11-28 20:39:02 +00:00
Gino Valente
3827316100 bevy_reflect: Register missing reflected types for bevy_render (#6725)
# Objective 

Many types in `bevy_render` implemented `Reflect` but were not registered.

## Solution

Register all types in `bevy_render` that impl `Reflect`.

This also registers additional dependent types (i.e. field types).

> Note: Adding these dependent types would not be needed using something like #5781 😉 

---

## Changelog

- Register missing `bevy_render` types in the `TypeRegistry`:
  - `camera::RenderTarget`
  - `globals::GlobalsUniform`
  - `texture::Image`
  - `view::ComputedVisibility`
  - `view::Visibility`
  - `view::VisibleEntities`
- Register additional dependent types:
  - `view::ComputedVisibilityFlags`
  - `Vec<Entity>`
2022-11-23 00:41:21 +00:00
phuocthanhdo
ed2ea0d417 The update_frame_count system should be placed in CorePlugin (#6676)
# Objective

Latest Release, "bevy 0.9" move the FrameCount updater into RenderPlugin, it leads to user who only run app with Core/Minimal Plugin cannot get the right number of FrameCount, it always return 0.

As for use cases like a server app, we don't want to add render dependencies to the app.

More detail in #6656 

## Solution

- Move the `update_frame_count` into CorePlugin
2022-11-21 13:19:41 +00:00
Alice Cecile
334e09892b Revert "Show prelude re-exports in docs (#6448)" (#6449)
This reverts commit 53d387f340.

# Objective

Reverts #6448. This didn't have the intended effect: we're now getting bevy::prelude shown in the docs again.

Co-authored-by: Alejandro Pascual <alejandro.pascual.pozo@gmail.com>
2022-11-02 20:40:45 +00:00
Alejandro Pascual
53d387f340 Show prelude re-exports in docs (#6448)
# Objective

- Right now re-exports are completely hidden in prelude docs.
- Fixes #6433

## Solution

- We could show the re-exports without inlining their documentation.
2022-11-02 19:35:06 +00:00
Carter Anderson
4d3d3c869e Support arbitrary RenderTarget texture formats (#6380)
# Objective

Currently, Bevy only supports rendering to the current "surface texture format". This means that "render to texture" scenarios must use the exact format the primary window's surface uses, or Bevy will crash. This is even harder than it used to be now that we detect preferred surface formats at runtime instead of using hard coded BevyDefault values.

## Solution

1. Look up and store each window surface's texture format alongside other extracted window information
2. Specialize the upscaling pass on the current `RenderTarget`'s texture format, now that we can cheaply correlate render targets to their current texture format
3. Remove the old `SurfaceTextureFormat` and `AvailableTextureFormats`: these are now redundant with the information stored on each extracted window, and probably should not have been globals in the first place (as in theory each surface could have a different format). 

This means you can now use any texture format you want when rendering to a texture! For example, changing the `render_to_texture` example to use `R16Float` now doesn't crash / properly only stores the red component:
![image](https://user-images.githubusercontent.com/2694663/198140125-c606dd0e-6fdf-4544-b93d-dbbd10dbadd2.png)
2022-10-26 23:12:12 +00:00
Jakob Hellermann
838b318863 separate tonemapping and upscaling passes (#3425)
Attempt to make features like bloom https://github.com/bevyengine/bevy/pull/2876 easier to implement.

**This PR:**
- Moves the tonemapping from `pbr.wgsl` into a separate pass
- also add a separate upscaling pass after the tonemapping which writes to the swap chain (enables resolution-independant rendering and post-processing after tonemapping)
- adds a `hdr` bool to the camera which controls whether the pbr and sprite shaders render into a `Rgba16Float` texture

**Open questions:**
- ~should the 2d graph work the same as the 3d one?~ it is the same now
- ~The current solution is a bit inflexible because while you can add a post processing pass that writes to e.g. the `hdr_texture`, you can't write to a separate `user_postprocess_texture` while reading the `hdr_texture` and tell the tone mapping pass to read from the `user_postprocess_texture` instead. If the tonemapping and upscaling render graph nodes were to take in a `TextureView` instead of the view entity this would almost work, but the bind groups for their respective input textures are already created in the `Queue` render stage in the hardcoded order.~ solved by creating bind groups in render node

**New render graph:**

![render_graph](https://user-images.githubusercontent.com/22177966/147767249-57dd4229-cfab-4ec5-9bf3-dc76dccf8e8b.png)
<details>
<summary>Before</summary>

![render_graph_old](https://user-images.githubusercontent.com/22177966/147284579-c895fdbd-4028-41cf-914c-e1ffef60e44e.png)
</details>

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-10-26 20:13:59 +00:00
François
5622d56be1 Use plugin setup for resource only used at setup time (#6360)
# Objective

- Build on #6336 for more plugin configurations

## Solution

- `LogSettings`, `ImageSettings` and `DefaultTaskPoolOptions` are now plugins settings rather than resources

---

## Changelog

- `LogSettings` plugin settings have been move to `LogPlugin`, `ImageSettings` to `ImagePlugin` and `DefaultTaskPoolOptions` to `CorePlugin`

## Migration Guide

The `LogSettings` settings have been moved from a resource to `LogPlugin` configuration:

```rust
// Old (Bevy 0.8)
app
  .insert_resource(LogSettings {
    level: Level::DEBUG,
    filter: "wgpu=error,bevy_render=info,bevy_ecs=trace".to_string(),
  })
  .add_plugins(DefaultPlugins)

// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(LogPlugin {
    level: Level::DEBUG,
    filter: "wgpu=error,bevy_render=info,bevy_ecs=trace".to_string(),
}))
```


The `ImageSettings` settings have been moved from a resource to `ImagePlugin` configuration:

```rust
// Old (Bevy 0.8)
app
  .insert_resource(ImageSettings::default_nearest())
  .add_plugins(DefaultPlugins)

// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(ImagePlugin::default_nearest()))
```


The `DefaultTaskPoolOptions` settings have been moved from a resource to `CorePlugin::task_pool_options`:

```rust
// Old (Bevy 0.8)
app
  .insert_resource(DefaultTaskPoolOptions::with_num_threads(4))
  .add_plugins(DefaultPlugins)

// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(CorePlugin {
  task_pool_options: TaskPoolOptions::with_num_threads(4),
}))
```
2022-10-25 22:19:34 +00:00
TheRawMeatball
3c13c75036 Optimize rendering slow-down at high entity counts (#5509)
# Objective

- Improve #3953

## Solution

- The very specific circumstances under which the render world is reset meant that the flush_as_invalid function could be replaced with one that had a noop as its init method.
- This removes a double-writing issue leading to greatly increased performance.

Running the reproduction code in the linked issue, this change nearly doubles the framerate.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-10-24 19:24:49 +00:00
VitalyR
c313e21d65 Update wgpu to 0.14.0, naga to 0.10.0, winit to 0.27.4, raw-window-handle to 0.5.0, ndk to 0.7 (#6218)
# Objective

- Update `wgpu` to 0.14.0, `naga` to `0.10.0`, `winit` to 0.27.4, `raw-window-handle` to 0.5.0, `ndk` to 0.7.

## Solution

---

## Changelog

### Changed

- Changed `RawWindowHandleWrapper` to `RawHandleWrapper` which wraps both `RawWindowHandle` and `RawDisplayHandle`, which satisfies the `impl HasRawWindowHandle and HasRawDisplayHandle` that `wgpu` 0.14.0 requires.

- Changed `bevy_window::WindowDescriptor`'s `cursor_locked` to `cursor_grab_mode`, change its type from `bool` to `bevy_window::CursorGrabMode`.

## Migration Guide

- Adjust usage of `bevy_window::WindowDescriptor`'s `cursor_locked` to `cursor_grab_mode`, and adjust its type from `bool` to `bevy_window::CursorGrabMode`.
2022-10-19 17:40:23 +00:00
Rob Parrett
b840ba3eaf Tidy up surface creation in RenderPlugin (#6276)
# Objective

Tidy up a bit
2022-10-17 15:26:39 +00:00
targrub
964b047466 Make raw_window_handle field in Window and ExtractedWindow an Option. (#6114)
# Objective

- Trying to make it possible to do write tests that don't require a raw window handle.
- Fixes https://github.com/bevyengine/bevy/issues/6106.

## Solution

- Make the interface and type changes.  Avoid accessing `None`.
---

## Changelog

- Converted `raw_window_handle` field in both `Window` and `ExtractedWindow` to `Option<RawWindowHandleWrapper>`.
- Revised accessor function `Window::raw_window_handle()` to return `Option<RawWindowHandleWrapper>`.
- Skip conditions in loops that would require a raw window handle (to create a `Surface`, for example).

## Migration Guide

`Window::raw_window_handle()` now returns `Option<RawWindowHandleWrapper>`.


Co-authored-by: targrub <62773321+targrub@users.noreply.github.com>
2022-10-17 14:19:24 +00:00
François
13dcdba05f use bevy default texture format if the surface is not yet available (#6233)
# Objective

- Fix #6231

## Solution

- In case no supported format is found, try to use Bevy default instead of panicking
2022-10-11 12:32:03 +00:00
VitalyR
f5322cd757 get proper texture format after the renderer is initialized, fix #3897 (#5413)
# Objective
There is no Srgb support on some GPU and display protocols with `winit` (for example, Nvidia's GPUs with Wayland). Thus `TextureFormat::bevy_default()` which returns `Rgba8UnormSrgb` or `Bgra8UnormSrgb` will cause panics on such platforms. This patch will resolve this problem. Fix https://github.com/bevyengine/bevy/issues/3897.

## Solution

Make `initialize_renderer` expose `wgpu::Adapter` and `first_available_texture_format`, use the `first_available_texture_format` by default.

## Changelog

* Fixed https://github.com/bevyengine/bevy/issues/3897.
2022-10-10 16:10:05 +00:00
Charles
8073362039 add globals to mesh view bind group (#5409)
# Objective

- It's often really useful to have access to the time when writing shaders.

## Solution

- Add a UnifformBuffer in the mesh view bind group
- This buffer contains the time, delta time and a wrapping frame count

https://user-images.githubusercontent.com/8348954/180130314-97948c2a-2d11-423d-a9c4-fb5c9d1892c7.mp4

---

## Changelog

- Added a `GlobalsUniform` at position 9 of the mesh view bind group

## Notes

The implementation is currently split between bevy_render and bevy_pbr because I was basing my implementation on the `ViewPlugin`. I'm not sure if that's the right way to structure it.

I named this `globals` instead of just time because we could potentially add more things to it.

## References in other engines

- Godot: <https://docs.godotengine.org/en/stable/tutorials/shaders/shader_reference/canvas_item_shader.html#global-built-ins>
    - Global time since startup, in seconds, by default resets to 0 after 3600 seconds
    - Doesn't seem to have anything else
- Unreal: <https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/ExpressionReference/Constant/>
    - Generic time value that updates every frame. Can be paused or scaled.
    - Frame count node, doesn't seem to be an equivalent for shaders: <https://docs.unrealengine.com/4.26/en-US/BlueprintAPI/Utilities/GetFrameCount/>
- Unity: <https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html>
    - time since startup in seconds. No mention of time wrapping. Stored as a `vec4(t/20, t, t*2, t*3)` where `t` is the value in seconds
    - Also has delta time, sin time and cos time
- ShaderToy: <https://www.shadertoy.com/howto>
    - iTime is the time since startup in seconds.
    - iFrameRate
    - iTimeDelta
    - iFrame frame counter

Co-authored-by: Charles <IceSentry@users.noreply.github.com>
2022-09-28 04:20:27 +00:00
Carter Anderson
dc3f801239 Exclusive Systems Now Implement System. Flexible Exclusive System Params (#6083)
# Objective

The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move.

This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns).

## Solution

This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity). 

This means you can remove all cases of `exclusive_system()`:

```rust
// before
commands.add_system(some_system.exclusive_system());
// after
commands.add_system(some_system);
```

I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems:

```rust
fn some_exclusive_system(
    world: &mut World,
    transforms: &mut QueryState<&Transform>,
    state: &mut SystemState<(Res<Time>, Query<&Player>)>,
) {
    for transform in transforms.iter(world) {
        println!("{transform:?}");
    }
    let (time, players) = state.get(world);
    for player in players.iter() {
        println!("{player:?}");
    }
}
```

Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system.

I added some targeted SystemParam `static` constraints, which removed the need for this:
``` rust
fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {}
```

## Related

- #2923
- #3001
- #3946

## Changelog

- `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait.
- `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems
- `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam`
- Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api.

## Migration Guide

Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems:

```rust
// Old (0.8)
app.add_system(some_exclusive_system.exclusive_system());
// New (0.9)
app.add_system(some_exclusive_system);
```

Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis:

```rust
// Old (0.8)
app.add_system(some_system.exclusive_system().at_end());
// New (0.9)
app.add_system(some_system.at_end());
```

Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons:
```rust
// Old (0.8)
fn some_system(world: &mut World) {
  let mut transforms = world.query::<&Transform>();
  for transform in transforms.iter(world) {
  }
}
// New (0.9)
fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) {
  for transform in transforms.iter(world) {
  }
}
```
2022-09-26 23:57:07 +00:00
Nicola Papale
6c5403cf47 Add warning when a hierarchy component is missing (#5590)
# Objective

A common pitfall since 0.8 is the requirement on `ComputedVisibility`
being present on all ancestors of an entity that itself has
`ComputedVisibility`, without which, the entity becomes invisible.

I myself hit the issue and got very confused, and saw a few people hit
it as well, so it makes sense to provide a hint of what to do when such
a situation is encountered.

- Fixes #5849
- Closes #5616
- Closes #2277 
- Closes #5081

## Solution

We now check that all entities with both a `Parent` and a
`ComputedVisibility` component have parents that themselves have a
`ComputedVisibility` component.

Note that the warning is only printed once.

We also add a similar warning to `GlobalTransform`.

This only emits a warning. Because sometimes it could be an intended
behavior.

Alternatives:
- Do nothing and keep repeating to newcomers how to avoid recurring
  pitfalls
- Make the transform and visibility propagation tolerant to missing
  components (#5616)
- Probably archetype invariants, though the current draft would not
  allow detecting that kind of errors

---

## Changelog

- Add a warning when encountering dubious component hierarchy structure


Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2022-09-19 16:12:11 +00:00
JoJoJet
3221e569e0 Remove an outdated workaround for impl Trait (#5659)
# Objective

Rust 1.63 resolved [an issue](https://github.com/rust-lang/rust/issues/83701) that prevents you from combining explicit generic arguments with `impl Trait` arguments.

Now, we no longer need to use dynamic dispatch to work around this.

## Migration Guide

The methods `Schedule::get_stage` and `get_stage_mut` now accept `impl StageLabel` instead of `&dyn StageLabel`.

### Before
```rust
let stage = schedule.get_stage_mut::<SystemStage>(&MyLabel)?;
```

### After
```rust
let stage = schedule.get_stage_mut::<SystemStage>(MyLabel)?;
```
2022-08-16 23:40:24 +00:00
ira
992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
Peter Hebden
90d1dc8820 Add bevy_render::texture::ImageSettings to prelude (#5566)
# Objective

In Bevy 0.8, the default filter mode was changed to linear (#4465). I believe this is a sensible default, but it's also very common to want to use point filtering (e.g. for pixel art games). 

## Solution

I am proposing including `bevy_render::texture::ImageSettings` in the Bevy prelude so it is more ergonomic to change the filtering in such cases.

---

## Changelog

### Added
- Added `bevy_render::texture::ImageSettings` to prelude.
2022-08-04 22:09:52 +00:00
ira
13b4a7daaa Add Projection component to prelude. (#5557)
:)

Co-authored-by: Devil Ira <justthecooldude@gmail.com>
2022-08-04 22:09:50 +00:00
0x182d4454fb211940
fdcffb885f Remove duplicate RenderGraph insertion to render world (#5551)
# Objective

- Remove unnecessary duplicate `init_resource` call for `RenderGraph`.

## Solution

- Remove unnecessary duplicate `init_resource` call for `RenderGraph`.
2022-08-02 12:45:54 +00:00
François
4affc8cd93 add a SpatialBundle with visibility and transform components (#5344)
# Objective

- Help user when they need to add both a `TransformBundle` and a `VisibilityBundle`

## Solution

- Add a `SpatialBundle` adding all components
2022-07-18 23:27:30 +00:00
Rob Parrett
a63d761aa3 Add VisibilityBundle and use it to fix gltfs, scenes, and examples (#5335)
# Objective

Gltfs, and a few examples were broken by #5310. Fix em.

Closes #5334

## Solution

Add `VisibilityBundle` as described here: https://github.com/bevyengine/bevy/issues/5334#issuecomment-1186050778 and sprinkle it around where needed.
2022-07-16 02:47:23 +00:00