This pr uses the `extern crate self as` trick to make proc macros behave
the same way inside and outside bevy.
# Objective
- Removes noise introduced by `crate as` in the whole bevy repo.
- Fixes#17004.
- Hardens proc macro path resolution.
## TODO
- [x] `BevyManifest` needs cleanup.
- [x] Cleanup remaining `crate as`.
- [x] Add proper integration tests to the ci.
## Notes
- `cargo-manifest-proc-macros` is written by me and based/inspired by
the old `BevyManifest` implementation and
[`bkchr/proc-macro-crate`](https://github.com/bkchr/proc-macro-crate).
- What do you think about the new integration test machinery I added to
the `ci`?
More and better integration tests can be added at a later stage.
The goal of these integration tests is to simulate an actual separate
crate that uses bevy. Ideally they would lightly touch all bevy crates.
## Testing
- Needs RA test
- Needs testing from other users
- Others need to run at least `cargo run -p ci integration-test` and
verify that they work.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Didn't remove WgpuWrapper. Not sure if it's needed or not still.
## Testing
- Did you test these changes? If so, how? Example runner
- Are there any parts that need more testing? Web (portable atomics
thingy?), DXC.
## Migration Guide
- Bevy has upgraded to [wgpu
v24](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v2400-2025-01-15).
- When using the DirectX 12 rendering backend, the new priority system
for choosing a shader compiler is as follows:
- If the `WGPU_DX12_COMPILER` environment variable is set at runtime, it
is used
- Else if the new `statically-linked-dxc` feature is enabled, a custom
version of DXC will be statically linked into your app at compile time.
- Else Bevy will look in the app's working directory for
`dxcompiler.dll` and `dxil.dll` at runtime.
- Else if they are missing, Bevy will fall back to FXC (not recommended)
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
The entity disabling / default query filter work added in #17514 and
#13120 is neat, but we don't teach users how it works!
We should fix that before 0.16.
## Solution
Write a simple example to teach the basics of entity disabling!
## Testing
`cargo run --example entity_disabling`
## Showcase

---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Fix#16477.
## Solution
- Remove temporary silence introduced in #16763
- bump version of `notify-debouncer-full` to remove transitive
dependency on `instant` crate.
# Objective
- publish script copy the license files to all subcrates, meaning that
all publish are dirty. this breaks git verification of crates
- the order and list of crates to publish is manually maintained,
leading to error. cargo 1.84 is more strict and the list is currently
wrong
## Solution
- duplicate all the licenses to all crates and remove the
`--allow-dirty` flag
- instead of a manual list of crates, get it from `cargo package
--workspace`
- remove the `--no-verify` flag to... verify more things?
# Objective
Things were breaking post-cs.
## Solution
`specialize_mesh_materials` must run after
`collect_meshes_for_gpu_building`. Therefore, its placement in the
`PrepareAssets` set didn't make sense (also more generally). To fix, we
put this class of system in ~`PrepareResources`~ `QueueMeshes`, although
it potentially could use a more descriptive location. We may want to
review the placement of `check_views_need_specialization` which is also
currently in `PrepareAssets`.
PR #17684 broke occlusion culling because it neglected to set the
indirect parameter offsets for the late mesh preprocessing stage if the
work item buffers were already set. This PR moves the update of those
values to a new function, `init_work_item_buffers`, which is
unconditionally called for every phase every frame.
Note that there's some complexity in order to handle the case in which
occlusion culling was enabled on one frame and disabled on the next, or
vice versa. This was necessary in order to make the occlusion culling
toggle in the `occlusion_culling` example work again.
Right now, we key the cached light change ticks off the `LightEntity`.
This uses the render world entity, which isn't stable between frames.
Thus in practice few shadows are retained from frame to frame. This PR
fixes the issue by keying off the `RetainedViewEntity` instead, which is
designed to be stable from frame to frame.
This PR makes Bevy keep entities in bins from frame to frame if they
haven't changed. This reduces the time spent in `queue_material_meshes`
and related functions to near zero for static geometry. This patch uses
the same change tick technique that #17567 uses to detect when meshes
have changed in such a way as to require re-binning.
In order to quickly find the relevant bin for an entity when that entity
has changed, we introduce a new type of cache, the *bin key cache*. This
cache stores a mapping from main world entity ID to cached bin key, as
well as the tick of the most recent change to the entity. As we iterate
through the visible entities in `queue_material_meshes`, we check the
cache to see whether the entity needs to be re-binned. If it doesn't,
then we mark it as clean in the `valid_cached_entity_bin_keys` bit set.
If it does, then we insert it into the correct bin, and then mark the
entity as clean. At the end, all entities not marked as clean are
removed from the bins.
This patch has a dramatic effect on the rendering performance of most
benchmarks, as it effectively eliminates `queue_material_meshes` from
the profile. Note, however, that it generally simultaneously regresses
`batch_and_prepare_binned_render_phase` by a bit (not by enough to
outweigh the win, however). I believe that's because, before this patch,
`queue_material_meshes` put the bins in the CPU cache for
`batch_and_prepare_binned_render_phase` to use, while with this patch,
`batch_and_prepare_binned_render_phase` must load the bins into the CPU
cache itself.
On Caldera, this reduces the time spent in `queue_material_meshes` from
5+ ms to 0.2ms-0.3ms. Note that benchmarking on that scene is very noisy
right now because of https://github.com/bevyengine/bevy/issues/17535.

# Objective
After #17461, the ease function labels in this example are a bit
cramped, especially in the bottom row.
This adjusts the spacing slightly and centers the labels.
## Solution
- The label is now a child of the plot and they are drawn around the
center of the transform
- Plot size and extents are now constants, and this thing has been
banished:
```rust
i as f32 * 95.0 - 1280.0 / 2.0 + 25.0,
-100.0 - ((j as f32 * 250.0) - 300.0),
0.0,
```
- There's room for expansion in another row, so make that easier by
doing the chunking by row
- Other misc tidying of variable names, sprinkled in a few comments,
etc.
## Before
<img width="1280" alt="Screenshot 2025-02-08 at 7 33 14 AM"
src="https://github.com/user-attachments/assets/0b79c619-d295-4ab1-8cd1-d23c862d06c5"
/>
## After
<img width="1280" alt="Screenshot 2025-02-08 at 7 32 45 AM"
src="https://github.com/user-attachments/assets/656ef695-9aa8-42e9-b867-1718294316bd"
/>
# Objective
The docs of `EaseFunction` don't visualize the different functions,
requiring you to check out the Bevy repo and running the
`easing_function` example.
## Solution
- Add tool to generate suitable svg graphs. This only needs to be re-run
when adding new ease functions.
- works with all themes
- also add missing easing functions to example.
---
## Showcase

---------
Co-authored-by: François Mockers <mockersf@gmail.com>
Right now, meshes aren't grouped together based on the bindless texture
slab when drawing shadows. This manifests itself as flickering in
Bistro. I believe that there are two causes of this:
1. Alpha masked shadows may try to sample from the wrong texture,
causing the alpha mask to appear and disappear.
2. Objects may try to sample from the blank textures that we pad out the
bindless slabs with, causing them to vanish intermittently.
This commit fixes the issue by including the material bind group ID as
part of the shadow batch set key, just as we do for the prepass and main
pass.
# Objective
Fixes#17718
## Solution
Schedule `text_system` before `AssetEvents`.
I guess what was happening here is that glyphs weren't shown because
`text_system` was running before `AssetEevents` and so `prepare_uinodes`
never recieves the the asset modified event about the glyph texture
atlas image.
Fixes#17535
Bevy's approach to handling "entity mapping" during spawning and cloning
needs some work. The addition of
[Relations](https://github.com/bevyengine/bevy/pull/17398) both
[introduced a new "duplicate entities" bug when spawning scenes in the
scene system](#17535) and made the weaknesses of the current mapping
system exceedingly clear:
1. Entity mapping requires _a ton_ of boilerplate (implement or derive
VisitEntities and VisitEntitesMut, then register / reflect MapEntities).
Knowing the incantation is challenging and if you forget to do it in
part or in whole, spawning subtly breaks.
2. Entity mapping a spawned component in scenes incurs unnecessary
overhead: look up ReflectMapEntities, create a _brand new temporary
instance_ of the component using FromReflect, map the entities in that
instance, and then apply that on top of the actual component using
reflection. We can do much better.
Additionally, while our new [Entity cloning
system](https://github.com/bevyengine/bevy/pull/16132) is already pretty
great, it has some areas we can make better:
* It doesn't expose semantic info about the clone (ex: ignore or "clone
empty"), meaning we can't key off of that in places where it would be
useful, such as scene spawning. Rather than duplicating this info across
contexts, I think it makes more sense to add that info to the clone
system, especially given that we'd like to use cloning code in some of
our spawning scenarios.
* EntityCloner is currently built in a way that prioritizes a single
entity clone
* EntityCloner's recursive cloning is built to be done "inside out" in a
parallel context (queue commands that each have a clone of
EntityCloner). By making EntityCloner the orchestrator of the clone we
can remove internal arcs, improve the clarity of the code, make
EntityCloner mutable again, and simplify the builder code.
* EntityCloner does not currently take into account entity mapping. This
is necessary to do true "bullet proof" cloning, would allow us to unify
the per-component scene spawning and cloning UX, and ultimately would
allow us to use EntityCloner in place of raw reflection for scenes like
`Scene(World)` (which would give us a nice performance boost: fewer
archetype moves, less reflection overhead).
## Solution
### Improved Entity Mapping
First, components now have first-class "entity visiting and mapping"
behavior:
```rust
#[derive(Component, Reflect)]
#[reflect(Component)]
struct Inventory {
size: usize,
#[entities]
items: Vec<Entity>,
}
```
Any field with the `#[entities]` annotation will be viewable and
mappable when cloning and spawning scenes.
Compare that to what was required before!
```rust
#[derive(Component, Reflect, VisitEntities, VisitEntitiesMut)]
#[reflect(Component, MapEntities)]
struct Inventory {
#[visit_entities(ignore)]
size: usize,
items: Vec<Entity>,
}
```
Additionally, for relationships `#[entities]` is implied, meaning this
"just works" in scenes and cloning:
```rust
#[derive(Component, Reflect)]
#[relationship(relationship_target = Children)]
#[reflect(Component)]
struct ChildOf(pub Entity);
```
Note that Component _does not_ implement `VisitEntities` directly.
Instead, it has `Component::visit_entities` and
`Component::visit_entities_mut` methods. This is for a few reasons:
1. We cannot implement `VisitEntities for C: Component` because that
would conflict with our impl of VisitEntities for anything that
implements `IntoIterator<Item=Entity>`. Preserving that impl is more
important from a UX perspective.
2. We should not implement `Component: VisitEntities` VisitEntities in
the Component derive, as that would increase the burden of manual
Component trait implementors.
3. Making VisitEntitiesMut directly callable for components would make
it easy to invalidate invariants defined by a component author. By
putting it in the `Component` impl, we can make it harder to call
naturally / unavailable to autocomplete using `fn
visit_entities_mut(this: &mut Self, ...)`.
`ReflectComponent::apply_or_insert` is now
`ReflectComponent::apply_or_insert_mapped`. By moving mapping inside
this impl, we remove the need to go through the reflection system to do
entity mapping, meaning we no longer need to create a clone of the
target component, map the entities in that component, and patch those
values on top. This will make spawning mapped entities _much_ faster
(The default `Component::visit_entities_mut` impl is an inlined empty
function, so it will incur no overhead for unmapped entities).
### The Bug Fix
To solve #17535, spawning code now skips entities with the new
`ComponentCloneBehavior::Ignore` and
`ComponentCloneBehavior::RelationshipTarget` variants (note
RelationshipTarget is a temporary "workaround" variant that allows
scenes to skip these components. This is a temporary workaround that can
be removed as these cases should _really_ be using EntityCloner logic,
which should be done in a followup PR. When that is done,
`ComponentCloneBehavior::RelationshipTarget` can be merged into the
normal `ComponentCloneBehavior::Custom`).
### Improved Cloning
* `Option<ComponentCloneHandler>` has been replaced by
`ComponentCloneBehavior`, which encodes additional intent and context
(ex: `Default`, `Ignore`, `Custom`, `RelationshipTarget` (this last one
is temporary)).
* Global per-world entity cloning configuration has been removed. This
felt overly complicated, increased our API surface, and felt too
generic. Each clone context can have different requirements (ex: what a
user wants in a specific system, what a scene spawner wants, etc). I'd
prefer to see how far context-specific EntityCloners get us first.
* EntityCloner's internals have been reworked to remove Arcs and make it
mutable.
* EntityCloner is now directly stored on EntityClonerBuilder,
simplifying the code somewhat
* EntityCloner's "bundle scratch" pattern has been moved into the new
BundleScratch type, improving its usability and making it usable in
other contexts (such as future cross-world cloning code). Currently this
is still private, but with some higher level safe APIs it could be used
externally for making dynamic bundles
* EntityCloner's recursive cloning behavior has been "externalized". It
is now responsible for orchestrating recursive clones, meaning it no
longer needs to be sharable/clone-able across threads / read-only.
* EntityCloner now does entity mapping during clones, like scenes do.
This gives behavior parity and also makes it more generically useful.
* `RelatonshipTarget::RECURSIVE_SPAWN` is now
`RelationshipTarget::LINKED_SPAWN`, and this field is used when cloning
relationship targets to determine if cloning should happen recursively.
The new `LINKED_SPAWN` term was picked to make it more generically
applicable across spawning and cloning scenarios.
## Next Steps
* I think we should adapt EntityCloner to support cross world cloning. I
think this PR helps set the stage for that by making the internals
slightly more generalized. We could have a CrossWorldEntityCloner that
reuses a lot of this infrastructure.
* Once we support cross world cloning, we should use EntityCloner to
spawn `Scene(World)` scenes. This would yield significant performance
benefits (no archetype moves, less reflection overhead).
---------
Co-authored-by: eugineerd <70062110+eugineerd@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
This is a follow up to #9822, which automatically adds sync points
during the Schedule build process.
However, the implementation in #9822 feels very "special case" to me. As
the number of things we want to do with the `Schedule` grows, we need a
modularized way to manage those behaviors. For example, in one of my
current experiments I want to automatically add systems to apply GPU
pipeline barriers between systems accessing GPU resources.
For dynamic modifications of the schedule, we mostly need these
capabilities:
- Storing custom data on schedule edges
- Storing custom data on schedule nodes
- Modify the schedule graph whenever it builds
These should be enough to allows us to add "hooks" to the schedule build
process for various reasons.
cc @hymm
## Solution
This PR abstracts the process of schedule modification and created a new
trait, `ScheduleBuildPass`. Most of the logics in #9822 were moved to an
implementation of `ScheduleBuildPass`, `AutoInsertApplyDeferredPass`.
Whether a dependency edge should "ignore deferred" is now indicated by
the presence of a marker struct, `IgnoreDeferred`.
This PR has no externally visible effects. However, in a future PR I
propose to change the `before_ignore_deferred` and
`after_ignore_deferred` API into a more general form,
`before_with_options` and `after_with_options`.
```rs
schedule.add_systems(
system.before_with_options(another_system, IgnoreDeferred)
);
schedule.add_systems(
system.before_with_options(another_system, (
IgnoreDeferred,
AnyOtherOption {
key: value
}
))
);
schedule.add_systems(
system.before_with_options(another_system, ())
);
```
# Objective
- Make use of the new `weak_handle!` macro added in
https://github.com/bevyengine/bevy/pull/17384
## Solution
- Migrate bevy from `Handle::weak_from_u128` to the new `weak_handle!`
macro that takes a random UUID
- Deprecate `Handle::weak_from_u128`, since there are no remaining use
cases that can't also be addressed by constructing the type manually
## Testing
- `cargo run -p ci -- test`
---
## Migration Guide
Replace `Handle::weak_from_u128` with `weak_handle!` and a random UUID.
# Objective
There was a bug in the default `Relationship::on_insert` implementation
that caused it to not properly handle entities targeting themselves in
relationships. The relationship component was properly removed, but it
would go on to add itself to its own target component.
## Solution
Added a missing `return` and a couple of tests
(`self_relationship_fails` failed on its second assert prior to this
PR).
## Testing
See above.
# Objective
Progresses #17569. The end goal here is to synchronize component
registration. See the other PR for details for the motivation behind
that.
For this PR specifically, the objective is to decouple `Components` from
`Storages`. What components are registered etc should have nothing to do
with what Storages looks like. Storages should only care about what
entity archetypes have been spawned.
## Solution
Previously, this was used to create sparse sets for relevant components
when those components were registered. Now, we do that when the
component is inserted/spawned.
This PR proposes doing that in `BundleInfo::new`, but there may be a
better place.
## Testing
In theory, this shouldn't have changed any functionality, so no new
tests were created. I'm not aware of any examples that make heavy use of
sparse set components either.
## Migration Guide
- Remove storages from functions where it is no longer needed.
- Note that SparseSets are no longer present for all registered sparse
set components, only those that have been spawned.
---------
Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net>
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
- Fixes#17411
## Solution
- Deprecated `Component::register_component_hooks`
- Added individual methods for each hook which return `None` if the hook
is unused.
## Testing
- CI
---
## Migration Guide
`Component::register_component_hooks` is now deprecated and will be
removed in a future release. When implementing `Component` manually,
also implement the respective hook methods on `Component`.
```rust
// Before
impl Component for Foo {
// snip
fn register_component_hooks(hooks: &mut ComponentHooks) {
hooks.on_add(foo_on_add);
}
}
// After
impl Component for Foo {
// snip
fn on_add() -> Option<ComponentHook> {
Some(foo_on_add)
}
}
```
## Notes
I've chosen to deprecate `Component::register_component_hooks` rather
than outright remove it to ease the migration guide. While it is in a
state of deprecation, it must be used by
`Components::register_component_internal` to ensure users who haven't
migrated to the new hook definition scheme aren't left behind. For users
of the new scheme, a default implementation of
`Component::register_component_hooks` is provided which forwards the new
individual hook implementations.
Personally, I think this is a cleaner API to work with, and would allow
the documentation for hooks to exist on the respective `Component`
methods (e.g., documentation for `OnAdd` can exist on
`Component::on_add`). Ideally, `Component::on_add` would be the hook
itself rather than a getter for the hook, but it is the only way to
early-out for a no-op hook, which is important for performance.
## Migration Guide
`Component::register_component_hooks` has been deprecated. If you are
manually implementing the `Component` trait and registering hooks there,
use the individual methods such as `on_add` instead for increased
clarity.
# Objective
- A common bevy pattern is to pre-allocate a weak `Handle` with a
static, random ID and fill it during `Plugin::build` via
`load_internal_asset!`
- This requires generating a random 128-bit number that is interpreted
as a UUID. This is much less convenient than generating a UUID directly,
and also, strictly speaking, error prone, since it often results in an
invalid UUIDv4 – they have to follow the pattern
`xxxxxxxx-xxxx-4xxx-xxxx-xxxxxxxxxxxx`, where `x` is a random nibble (in
practice this doesn't matter, since the UUID is just interpreted as a
bag of bytes).
## Solution
- Add a `weak_handle!` macro that internally calls
[`uuid::uuid!`](https://docs.rs/uuid/1.12.0/uuid/macro.uuid.html) to
parse a UUID from a string literal.
- Now any random UUID generation tool can be used to generate an asset
ID, such as `uuidgen` or entering "uuid" in DuckDuckGo.
Previously:
```rust
const SHADER: Handle<Shader> = Handle::weak_from_u128(314685653797097581405914117016993910609);
```
After this PR:
```rust
const SHADER: Handle<Shader> = weak_handle!("1347c9b7-c46a-48e7-b7b8-023a354b7cac");
```
Note that I did not yet migrate any of the existing uses. I can do that
if desired, but want to have some feedback first to avoid wasted effort.
## Testing
Tested via the included doctest.
# Objective
Basic `TextShadow` support.
## Solution
New `TextShadow` component with `offset` and `color` fields. Just insert
it on a `Text` node to add a shadow.
New system `extract_text_shadows` handles rendering.
It's not "real" shadows just the text redrawn with an offset and a
different colour. Blur-radius support will need changes to the shaders
and be a lot more complicated, whereas this still looks okay and took a
couple of minutes to implement.
I added the `TextShadow` component to `bevy_ui` rather than `bevy_text`
because it only supports the UI atm.
We can add a `Text2d` version in a followup but getting the same effect
in `Text2d` is trivial even without official support.
---
## Showcase
<img width="122" alt="text_shadow"
src="https://github.com/user-attachments/assets/0333d167-c507-4262-b93b-b6d39e2cf3a4"
/>
<img width="136" alt="g"
src="https://github.com/user-attachments/assets/9b01d5d9-55c9-4af7-9360-a7b04f55944d"
/>
# Objective
Fixes#17662
## Solution
Moved `Item` and `fetch` from `WorldQuery` to `QueryData`, and adjusted
their implementations accordingly.
Currently, documentation related to `fetch` is written under
`WorldQuery`. It would be more appropriate to move it to the `QueryData`
documentation for clarity.
I am not very experienced with making contributions. If there are any
mistakes or areas for improvement, I would appreciate any suggestions
you may have.
## Migration Guide
The `WorldQuery::Item` type and `WorldQuery::fetch` method have been
moved to `QueryData`, as they were not useful for `QueryFilter` types.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
The feature gates for the `UiChildren` and `UiRootNodes` system params
make the unconstructable `GhostNode` `PhantomData` trick redundant.
## Solution
Remove the `GhostNode::new` method and change `GhostNode` into a unit
struct.
## Testing
```cargo run --example ghost_nodes```
still works
# Objective
Simplify and expand the API for `QueryState`.
`QueryState` has a lot of methods that mirror those on `Query`. These
are then multiplied by variants that take `&World`, `&mut World`, and
`UnsafeWorldCell`. In addition, many of them have `_manual` variants
that take `&QueryState` and avoid calling `update_archetypes()`. Not all
of the combinations exist, however, so some operations are not possible.
## Solution
Introduce methods to get a `Query` from a `QueryState`. That will reduce
duplication between the types, and ensure that the full `Query` API is
always available for `QueryState`.
Introduce methods on `Query` that consume the query to return types with
the full `'w` lifetime. This avoids issues with borrowing where things
like `query_state.query(&world).get(entity)` don't work because they
borrow from the temporary `Query`.
Finally, implement `Copy` for read-only `Query`s. `get_inner` and
`iter_inner` currently take `&self`, so changing them to consume `self`
would be a breaking change. By making `Query: Copy`, they can consume a
copy of `self` and continue to work.
The consuming methods also let us simplify the implementation of methods
on `Query`, by doing `fn foo(&self) { self.as_readonly().foo_inner() }`
and `fn foo_mut(&mut self) { self.reborrow().foo_inner() }`. That
structure makes it more difficult to accidentally extend lifetimes,
since the safe `as_readonly()` and `reborrow()` methods shrink them
appropriately. The optimizer is able to see that they are both identity
functions and inline them, so there should be no performance cost.
Note that this change would conflict with #15848. If `QueryState` is
stored as a `Cow`, then the consuming methods cannot be implemented, and
`Copy` cannot be implemented.
## Future Work
The next step is to mark the methods on `QueryState` as `#[deprecated]`,
and move the implementations into `Query`.
## Migration Guide
`Query::to_readonly` has been renamed to `Query::as_readonly`.
# Cold Specialization
## Objective
An ongoing part of our quest to retain everything in the render world,
cold-specialization aims to cache pipeline specialization so that
pipeline IDs can be recomputed only when necessary, rather than every
frame. This approach reduces redundant work in stable scenes, while
still accommodating scenarios in which materials, views, or visibility
might change, as well as unlocking future optimization work like
retaining render bins.
## Solution
Queue systems are split into a specialization system and queue system,
the former of which only runs when necessary to compute a new pipeline
id. Pipelines are invalidated using a combination of change detection
and ECS ticks.
### The difficulty with change detection
Detecting “what changed” can be tricky because pipeline specialization
depends not only on the entity’s components (e.g., mesh, material, etc.)
but also on which view (camera) it is rendering in. In other words, the
cache key for a given pipeline id is a view entity/render entity pair.
As such, it's not sufficient simply to react to change detection in
order to specialize -- an entity could currently be out of view or could
be rendered in the future in camera that is currently disabled or hasn't
spawned yet.
### Why ticks?
Ticks allow us to ensure correctness by allowing us to compare the last
time a view or entity was updated compared to the cached pipeline id.
This ensures that even if an entity was out of view or has never been
seen in a given camera before we can still correctly determine whether
it needs to be re-specialized or not.
## Testing
TODO: Tested a bunch of different examples, need to test more.
## Migration Guide
TODO
- `AssetEvents` has been moved into the `PostUpdate` schedule.
---------
Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
# Objective
Follow-up to #17549 and #16547.
A large part of `Vec`s usefulness is behind its ability to be sliced,
like sorting f.e., so we want the same to be possible for
`UniqueEntityVec`.
## Solution
Add a `UniqueEntitySlice` type. It is a wrapper around `[T]`, and itself
a DST.
Because `mem::swap` has a `Sized` bound, DSTs cannot be swapped, and we
can freely hand out mutable subslices without worrying about the
uniqueness invariant of the backing collection!
`UniqueEntityVec` and the relevant `UniqueEntityIter`s now have methods
and trait impls that return `UniqueEntitySlice`s.
`UniqueEntitySlice` itself can deref into normal slices, which means we
can avoid implementing the vast majority of immutable slice methods.
Most of the remaining methods:
- split a slice/collection in further unique subsections/slices
- reorder the slice: `sort`, `rotate_*`, `swap`
- construct/deconstruct/convert pointer-like types: `Box`, `Arc`, `Rc`,
`Cow`
- are comparison trait impls
As this PR is already larger than I'd like, we leave several things to
follow-ups:
- `UniqueEntityArray` and the related slice methods that would return it
- denoted by "chunk", "array_*" for iterators
- Methods that return iterators with `UniqueEntitySlice` as their item
- `windows`, `chunks` and `split` families
- All methods that are capable of actively mutating individual elements.
While they could be offered unsafely, subslicing makes their safety
contract weird enough to warrant its own discussion.
- `fill_with`, `swap_with_slice`, `iter_mut`, `split_first/last_mut`,
`select_nth_unstable_*`
Note that `Arc`, `Rc` and `Cow` are not fundamental types, so even if
they contain `UniqueEntitySlice`, we cannot write direct trait impls for
them.
On top of that, `Cow` is not a receiver (like `self: Arc<Self>` is) so
we cannot write inherent methods for it either.
We were calling `clear()` on the work item buffer table, which caused us
to deallocate all the CPU side buffers. This patch changes the logic to
instead just clear the buffers individually, but leave their backing
stores. This has two consequences:
1. To effectively retain work item buffers from frame to frame, we need
to key them off `RetainedViewEntity` values and not the render world
`Entity`, which is transient. This PR changes those buffers accordingly.
2. We need to clean up work item buffers that belong to views that went
away. Amusingly enough, we actually have a system,
`delete_old_work_item_buffers`, that tries to do this already, but it
wasn't doing anything because the `clear_batched_gpu_instance_buffers`
system already handled that. This patch actually makes the
`delete_old_work_item_buffers` system useful, by removing the clearing
behavior from `clear_batched_gpu_instance_buffers` and instead making
`delete_old_work_item_buffers` delete buffers corresponding to
nonexistent views.
On Bistro, this PR improves the performance of
`batch_and_prepare_binned_render_phase` from 61.2 us to 47.8 us, a 28%
speedup.

This patch fixes a bug whereby we're re-extracting every mesh every
frame. It's a regression from PR #17413. The code in question has
actually been in the tree with this bug for quite a while; it's that
just the code didn't actually run unless the renderer considered the
previous view transforms necessary. Occlusion culling expanded the set
of circumstances under which Bevy computes the previous view transforms,
causing this bug to appear more often.
This patch fixes the issue by checking to see if the previous transform
of a mesh actually differs from the current transform before copying the
current transform to the previous transform.
# Objective
- Fixes CI failure due to `uuid` 1.13 using the new version of
`getrandom` which requires using a new API to work on Wasm.
## Solution
- Based on [`uuid` 1.13 release
notes](https://github.com/uuid-rs/uuid/releases/tag/1.13.0) I've enabled
the `js` feature on `wasm32`. This will need to be revisited once #17499
is up for review
- Updated minimum `uuid` version to 1.13.1, which fixes a separate issue
with `target_feature = atomics` on `wasm`.
## Testing
- `cargo check --target wasm32-unknown-unknown`
# Objective
Fix text 2d. Fixes https://github.com/bevyengine/bevy/issues/17670
## Solution
Evidently there's a 1:N extraction going on here that requires using the
render entity rather than main entity.
## Testing
Text 2d example
Data for the other batches is only accessed by the GPU, not the CPU, so
it's a waste of time and memory to store information relating to those
other batches.
On Bistro, this reduces time spent in
`batch_and_prepare_binned_render_phase` from 85.9 us to 61.2 us, a 40%
speedup.

# Objective
While working on #17649, I found the docs for `WorldQuery` and the
related traits frustratingly vague.
## Solution
Clarify them and add some more tangible advice.
Also fix a copy-pasted typo in related comments.
---------
Co-authored-by: James O'Brien <james.obrien@drafly.net>
# Objective
Allow mapping `Mut` to another value while returning a custom error on
failure.
## Solution
Added `try_map_unchanged` to `Mut` which returns a `Result` instead of
`Option` .
# Objective
- When obtaining an axis from the transform and putting that into
`Transform::rotate_axis` or `Transform::rotate_axis_local`, floating
point errors could accumulate exponentially, resulting in denormalized
rotation.
- This is an alternative to and closes#17604, due to lack of consent
around this in the [discord
discussion](https://discord.com/channels/691052431525675048/1203087353850364004/1334232710658392227)
- Closes#16480
## Solution
- Add a warning of this issue and a recommendation to normalize to the
API docs.
- Add a runtime warning that checks for denormalized axis in debug mode,
with a reference to the API docs.
# Objective
Prevent unsound uses of `DeferredWorld` as a `SystemParam`. It is
currently unsound because it does not check for existing access, and
because it incorrectly registers filtered access.
## Solution
Have `DeferredWorld` panic if a previous parameter has conflicting
access.
Have `DeferredWorld` update `archetype_component_access` so that the
multi-threaded executor sees the access.
Fix `FilteredAccessSet::read_all()` and `write_all()` to correctly add a
`FilteredAccess` with no filter so that `Query` is able to detect the
conflicts.
Remove redundant `read_all()` call, since `write_all()` already declares
read access.
Remove unnecessary `set_has_deferred()` call, since `<DeferredWorld as
SystemParam>::apply_deferred()` does nothing. Previously we were
inserting unnecessary `apply_deferred` systems in the schedule.
## Testing
Added unit tests for systems where `DeferredWorld` conflicts with a
`Query` in the same system.
# Objective
- Most of the `*MeshBuilder` classes are not implementing `Reflect`
## Solution
- Implementing `Reflect` for all `*MeshBuilder` were is possible.
- Make sure all `*MeshBuilder` implements `Default`.
- Adding new `MeshBuildersPlugin` that registers all `*MeshBuilder`
types.
## Testing
- `cargo run -p ci`
- Tested some examples like `3d_scene` just in case something was
broken.
# Objective
- Fix the atmosphere LUT parameterization in the aerial -view and
sky-view LUTs
- Correct the light accumulation according to a ray-marched reference
- Avoid negative values of the sun disk illuminance when the sun disk is
below the horizon
## Solution
- Adding a Newton's method iteration to `fast_sqrt` function
- Switched to using `fast_acos_4` for better precision of the sun angle
towards the horizon (view mu angle = 0)
- Simplified the function for mapping to and from the Sky View UV
coordinates by removing an if statement and correctly apply the method
proposed by the [Hillarie
paper](https://sebh.github.io/publications/egsr2020.pdf) detailed in
section 5.3 and 5.4.
- Replaced the `ray_dir_ws.y` term with a shadow factor in the
`sample_sun_illuminance` function that correctly approximates the sun
disk occluded by the earth from any view point
## Testing
- Ran the atmosphere and SSAO examples to make sure the shaders still
compile and run as expected.
---
## Showcase
<img width="1151" alt="showcase-img"
src="https://github.com/user-attachments/assets/de875533-42bd-41f9-9fd0-d7cc57d6e51c"
/>
---------
Co-authored-by: Emerson Coskey <emerson@coskey.dev>
# Objective
The method `World::as_unsafe_world_cell_readonly` is used to create an
`UnsafeWorldCell` which is only allowed to access world data immutably.
This can be tricky to use, as the data that an `UnsafeWorldCell` is
allowed to access exists only in documentation (you could think of it as
a "doc-time abstraction" rather than a "compile-time" abstraction). It's
quite easy to forget where a particular instance came from and attempt
to use it for mutable access, leading to instant, silent undefined
behavior.
## Solution
Add a debug-mode only flag to `UnsafeWorldCell` which tracks whether or
not the instance can be used to access world data mutably. This should
catch basic improper usages of `as_unsafe_world_cell_readonly`.
## Future work
There are a few ways that you can bypass the runtime checks introduced
by this PR:
* Any world accesses done via `UnsafeWorldCell::storages` are completely
invisible to these runtime checks. Unfortunately, `storages` constitutes
most of the world accesses used in the engine itself, so this PR will
mostly benefit downstream users of bevy.
* It's possible to call `get_resource_by_id`, and then convert the
returned `Ptr` to a `PtrMut` by calling `assert_unique`. In the future
we'll probably want to add a debug-mode only flag to `Ptr` which tracks
whether or not it can be upgraded to a `PtrMut`. I didn't include this
change in this PR as those types are currently defined using macros
which makes it a bit tricky to modify their definitions.
* Any data accesses done through a mutable `UnsafeWorldCell` are
completely unchecked, meaning it's possible to unsoundly create multiple
mutable references to a single component, for example. In the future we
may want to store an `Access<>` set inside of the world's `Storages` to
add granular debug-mode runtime checks.
That said, I'd consider this PR to be a good first step towards adding
full runtime checks to `UnsafeWorldCell`.
## Testing
Added a few tests that basic invalid mutable world access result in a
panic.
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
Co-authored-by: Alice I Cecile <alice.i.cecile@gmail.com>
# Objective
Our
[`TextSpan`](https://docs.rs/bevy/latest/bevy/prelude/struct.TextSpan.html)
docs include a code example that does not actually "work." The code
silently does not render anything, and the `Text*Writer` helpers fail.
This seems to be by design, because we can't use `Text` or `Text2d` from
`bevy_ui` or `bevy_sprite` within docs in `bevy_text`. (Correct me if I
am wrong)
I have seen multiple users confused by these docs.
Also fixes#16794
## Solution
Remove the code example from `TextSpan`, and instead encourage users to
seek docs on `Text` or `Text2d`.
Add examples with nested `TextSpan`s in those areas.
Bumps [crate-ci/typos](https://github.com/crate-ci/typos) from 1.29.4 to
1.29.5.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/crate-ci/typos/releases">crate-ci/typos's
releases</a>.</em></p>
<blockquote>
<h2>v1.29.5</h2>
<h2>[1.29.5] - 2025-01-30</h2>
<h3>Internal</h3>
<ul>
<li>Update a dependency</li>
</ul>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/crate-ci/typos/blob/master/CHANGELOG.md">crate-ci/typos's
changelog</a>.</em></p>
<blockquote>
<h2>[1.29.5] - 2025-01-30</h2>
<h3>Internal</h3>
<ul>
<li>Update a dependency</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="11ca4583f2"><code>11ca458</code></a>
chore: Release</li>
<li><a
href="99fd37f157"><code>99fd37f</code></a>
docs: Update changelog</li>
<li><a
href="4f604f6eff"><code>4f604f6</code></a>
Merge pull request <a
href="https://redirect.github.com/crate-ci/typos/issues/1220">#1220</a>
from epage/w7</li>
<li><a
href="ba04a1a0fd"><code>ba04a1a</code></a>
perf: Remove ErrMode overhead</li>
<li><a
href="60452b5a81"><code>60452b5</code></a>
chore: Update to Winnow 0.7</li>
<li><a
href="4c22f194b5"><code>4c22f19</code></a>
refactor: Migrate from Parser to ModalParser</li>
<li><a
href="7830eb8730"><code>7830eb8</code></a>
refactor: Resolve deprecations</li>
<li><a
href="07f1292e29"><code>07f1292</code></a>
chore: Upgrade to Winnow 0.6.26</li>
<li><a
href="3683264986"><code>3683264</code></a>
chore(deps): Update Rust Stable to v1.84 (<a
href="https://redirect.github.com/crate-ci/typos/issues/1216">#1216</a>)</li>
<li><a
href="2ed38e07fc"><code>2ed38e0</code></a>
chore(deps): Update Rust crate bstr to v1.11.3 (<a
href="https://redirect.github.com/crate-ci/typos/issues/1202">#1202</a>)</li>
<li>See full diff in <a
href="https://github.com/crate-ci/typos/compare/v1.29.4...v1.29.5">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
# Objective
```
cargo test --package bevy_ecs --lib --all-features
```
fails to compile, with output like
> error[E0433]: failed to resolve: could not find `Serialize` in `serde`
> --> crates/bevy_ecs/src/entity/index_set.rs:14:69
> |
> 14 | #[cfg_attr(feature = "serialize", derive(serde::Deserialize,
serde::Serialize))]
> | ^^^^^^^^^ could not find `Serialize` in `serde`
> |
> note: found an item that was configured out
> -->
/home/alice/.cargo/registry/src/index.crates.io-6f17d22bba15001f/serde-1.0.217/src/lib.rs:343:37
> |
> 343 | pub use serde_derive::{Deserialize, Serialize};
> | ^^^^^^^^^
> note: the item is gated behind the `serde_derive` feature
> -->
/home/alice/.cargo/registry/src/index.crates.io-6f17d22bba15001f/serde-1.0.217/src/lib.rs:341:7
> |
> 341 | #[cfg(feature = "serde_derive")]
> | ^^^^^^^^^^^^^^^^^^^^^^^^
## Solution
Add the required feature flags and get bevy_ecs compiling standalone
corrctly.
## Testing
The command above now compiles succesfully. Note that several system
stepping tests are failing, and were not being tested in CI. That's a
different PR's problem though.
# Objective
Currently, `prepare_sprite_image_bind_group` spawns sprite batches onto
an individual representative entity of the batch. This poses significant
problems for multi-camera setups, since an entity may appear in multiple
phase instances.
## Solution
Instead, move batches into a resource that is keyed off the view and the
representative entity. Long term we should switch to mesh2d and use the
existing BinnedRenderPhase functionality rather than naively queueing
into transparent and doing our own ad-hoc batching logic.
Fixes#16867, #17351
## Testing
Tested repros in above issues.
# Objective
We have default query filters now, but there is no first-party marker
for entity disabling yet
Fixes#17458
## Solution
Add the marker, cool recursive features and/or potential hook changes
should be follow up work
## Testing
Added a unit test to check that the new marker is enabled by default
# Objective
Expose accessor functions to the `ObserverDescriptor`, so that users can
use the `Observer` component to inspect what the observer is watching.
This would be useful for me, I don't think there's any reason to hide
these.