# Objective
Fixes https://github.com/bevyengine/bevy/issues/17111
## Solution
Move `#![warn(clippy::allow_attributes,
clippy::allow_attributes_without_reason)]` to the workspace `Cargo.toml`
## Testing
Lots of CI testing, and local testing too.
---------
Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
# Objective
- Bevy 0.15 added support for custom cursor images in
https://github.com/bevyengine/bevy/pull/14284.
- However, to do animated cursors using the initial support shipped in
0.15 means you'd have to animate the `Handle<Image>`: You can't use a
`TextureAtlas` like you can with sprites and UI images.
- For my use case, my cursors are spritesheets. To animate them, I'd
have to break them down into multiple `Image` assets, but that seems
less than ideal.
## Solution
- Allow users to specify a `TextureAtlas` field when creating a custom
cursor image.
- To create parity with Bevy's `TextureAtlas` support on `Sprite`s and
`ImageNode`s, this also allows users to specify `rect`, `flip_x` and
`flip_y`. In fact, for my own use case, I need to `flip_y`.
## Testing
- I added unit tests for `calculate_effective_rect` and
`extract_and_transform_rgba_pixels`.
- I added a brand new example for custom cursor images. It has controls
to toggle fields on and off. I opted to add a new example because the
existing cursor example (`window_settings`) would be far too messy for
showcasing these custom cursor features (I did start down that path but
decided to stop and make a brand new example).
- The new example uses a [Kenny cursor icon] sprite sheet. I included
the licence even though it's not required (and it's CC0).
- I decided to make the example just loop through all cursor icons for
its animation even though it's not a _realistic_ in-game animation
sequence.
- I ran the PNG through https://tinypng.com. Looks like it's about 35KB.
- I'm open to adjusting the example spritesheet if required, but if it's
fine as is, great.
[Kenny cursor icon]: https://kenney-assets.itch.io/crosshair-pack
---
## Showcase
https://github.com/user-attachments/assets/8f6be8d7-d1d4-42f9-b769-ef8532367749
## Migration Guide
The `CustomCursor::Image` enum variant has some new fields. Update your
code to set them.
Before:
```rust
CustomCursor::Image {
handle: asset_server.load("branding/icon.png"),
hotspot: (128, 128),
}
```
After:
```rust
CustomCursor::Image {
handle: asset_server.load("branding/icon.png"),
texture_atlas: None,
flip_x: false,
flip_y: false,
rect: None,
hotspot: (128, 128),
}
```
## References
- Feature request [originally raised in Discord].
[originally raised in Discord]:
https://discord.com/channels/691052431525675048/692572690833473578/1319836362219847681
# Objective
Building upon https://github.com/bevyengine/bevy/pull/17191, improve the
`animated_mesh` example by removing code, adding comments, and making
the example more c&p'able.
## Solution
- Split the setup function in two to clarify what the example is
demonstrating.
- `setup_mesh_and_animation` is the demonstration.
- `setup_camera_and_environment` just sets up the example app.
- Changed the animation playing to use `AnimationPlayer` directly
instead of creating `AnimationTransitions`.
- This appears sufficient when only playing a single animation.
- Added a comment pointing users to an example of multiple animations.
- Changed the animation to be the run cycle.
- I think it got accidentally changed to the idle in
[#17191](https://github.com/bevyengine/bevy/pull/17191), so this is
reverting back to the original.
- Note that we can improve it to select the animation by name if
[#16529](https://github.com/bevyengine/bevy/pull/16529) lands.
- Renamed `FOX_PATH` to a more neutral `GLTF_PATH`.
- Updated the example descriptions to mention the fox.
- This adds a little character and hints that the example involves
character animation.
- Removed a seemingly redundant `AnimationGraphHandle` component.
- Removed an unnecessary `clone()`.
- Added various comments.
## Notes
- A draft of this PR was discussed on Discord:
https://discord.com/channels/691052431525675048/1326910663972618302/1326920498663133348
- There was discord discussion on whether a component is "inserted
onto", "inserted into" or "added to" an entity.
- "Added to" is most common in code and docs, and seems best to me. But
it awkwardly differs from the name of `EntityCommands::insert`.
- This PR prefers "added to".
- I plan to follow up this PR with similar changes to the
`animated_mesh_control` and `animated_mesh_events` examples.
- But I could roll them into this PR if requested.
## Testing
`cargo run --example animated_mesh`
---------
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
Gamepad / directional navigation needs an example, for both teaching and
testing purposes.
## Solution
- Add a simple grid-based example.
- Fix an intermittent panic caused by a race condition with bevy_a11y
- Clean up small issues noticed in bevy_input_focus

## To do: this PR
- [x] figure out why "enter" isn't doing anything
- [x] change button color on interaction rather than printing
- [x] add on-screen directions
- [x] move to an asymmetric grid to catch bugs
- [x] ~~fix colors not resetting on button press~~ lol this is mostly
just a problem with hacking `Interaction` for this
- [x] swap to using observers + bubbling, rather than `Interaction`
## To do: future work
- when I increase the button size, such that there is no line break, the
text on the buttons is no longer centered :( EDIT: this is
https://github.com/bevyengine/bevy/issues/16783
- add gamepad stick navigation
- add tools to find the nearest populated quadrant to make diagonal
inputs work
- add a `add_edges` method to `DirectionalNavigationMap`
- add a `add_grid` method to `DirectionalNavigationMap`
- make the example's layout more complex and realistic
- add tools to automatically generate this list
- add button shake on failed navigation rather than printing an error
- make Pressed events easier to mock: default fields, PointerId::Focus
## Testing
`cargo run --example directional_navigation`
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
Many instances of `clippy::too_many_arguments` linting happen to be on
systems - functions which we don't call manually, and thus there's not
much reason to worry about the argument count.
## Solution
Allow `clippy::too_many_arguments` globally, and remove all lint
attributes related to it.
Fixes#17192.
Replaces "animated_fox" with "animated_mesh".
I considered a few different names - should it say "skinned_mesh" to be
precise? Should it mention gltf? But "animated_mesh" seems intuitive and
keeps it short.
## Testing
- Ran all three examples (Windows 10).
# Objective
The debug features (`DebugPickingPlugin`) from `bevy_mod_picking` were
not upstreamed with the rest of the core changes, this PR reintroduces
it for usage inside `bevy_dev_tools`
## Solution
Vast majority of this code is taken as-is from `bevy_mod_picking` aside
from changes to ensure compilation and code style, as such @aevyrie was
added as the co-author for this change.
### Main changes
* `multiselection` support - the relevant code was explicitly not
included in the process of upstreaming the rest of the package, so it
also has been omitted here.
* `bevy_egui` support - the old package had a preference for using
`bevy_egui` instead of `bevy_ui` if possible, I couldn't see a way to
support this in a core crate, so this has been removed.
Relevant code has been added to the `bevy_dev_tools` crate instead of
`bevy_picking` as it is a better fit and requires a dependency on
`bevy_ui` for drawing debug elements.
### Minor changes
* Changed the debug text size from `60` to `12` as the former was so
large as to be unreadable in the new example.
## Testing
* `cargo run -p ci`
* Added a new example in `dev_tools/picking_debug` and visually verified
the in-window results and the console messages
---------
Co-authored-by: Aevyrie <aevyrie@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Our `animated_fox` example used to be a bare-bones example of how to
spawn an animated gltf and play a single animation.
I think that's a valuable example, and the current `animated_fox`
example is doing way too much. Users who are trying to understand how
our animation system are presented with an enormous amount of
information that may not be immediately relevant.
Over the past few releases, I've been migrating a simple app of mine
where the only animation I need is a single gltf that starts playing a
single animation when it is loaded. It has been a slight struggle to
wade through changes to the animation system to figure out the minimal
amount of things required to accomplish this.
Somewhat motivated by this [recent reddit
thread](https://www.reddit.com/r/rust/comments/1ht93vl/comment/m5c0nc9/?utm_source=share&utm_medium=mweb3x&utm_name=mweb3xcss&utm_term=1)
where Bevy and animation got a mention.
## Solution
- Split `animated_fox` into three separate examples
- `animated_fox` - Loads and immediately plays a single animation
- `animated_fox_control` - Shows how to control animations
- `animated_fox_events` - Shows fancy particles when the fox's feet hit
the ground
- Some minor drive-by tidying of these examples
I have created this PR after playing around with the idea and liking how
it turned out, but the duplication isn't totally ideal and there's some
slight overlap with other examples and inconsistencies:
- `animation_events` is simplified and not specific to "loaded animated
scenes" and seems valuable on its own
- `animation_graph` also uses a fox
I am happy to close this if there's no consensus that it's a good idea /
step forward for these examples.
## Testing
`cargo run --example animated_fox`
`cargo run --example animated_fox_control`
`cargo run --example animated_fox_events`
Bump version after release
This PR has been auto-generated
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
RIght now it's not possible to opt out of sprite or ui picking at the
feature level without jumping through some hoops.
If you add the `bevy_sprite` feature, you get
`bevy_sprite_picking_backend`.
If you add the `bevy_ui` feature, you get `bevy_ui_picking_backend`
To get `bevy_sprite` without picking, I think you would have to do
something like this, which seems **very** annoying.
```toml
[dependencies]
bevy = { version = "0.15", default-features = false, features = [
# ... omitted
# "bevy_sprite",
# "bevy_ui", # this also brings in bevy_sprite
# "bevy_text", # this also brings in bevy_sprite
"bevy_render",
"bevy_core_pipeline",
"bevy_color",
] }
bevy_internal = { version = "0.15", default-features = false, features = [
"bevy_sprite",
"bevy_ui",
"bevy_text"
] }
```
## Solution
- Remove `bevy_sprite_picking_backend` from the `bevy_sprite` feature.
- Remove `bevy_ui_picking_backend` from the `bevy_ui` feature.
These are still in Bevy's `default-plugins`.
## Testing
I did some basic testing in a minimal project based on the
`sprite_picking` example to verify that "picking stuff" didn't get
included with `bevy_sprite`.
I would appreciate help testing. I am just unraveling these features and
think that this is correct, but I am not 100% sure.
## Migration Guide
`bevy_sprite_picking_backend` is no longer included by default when
using the `bevy_sprite` feature. If you are using Bevy without default
features and relied on sprite picking, add this feature to your
`Cargo.toml`.
`bevy_ui_picking_backend` is no longer included by default when using
the `bevy_ui` feature. If you are using Bevy without default features
and relied on sprite picking, add this feature to your `Cargo.toml`.
## Additional info
It looks like we attempted to fix this earlier in #16469, but the fix
was incomplete?
# Objective
Improve DAG building for virtual geometry
## Solution
- Use METIS to group triangles into meshlets which lets us minimize
locked vertices which improves simplification, instead of using meshopt
which prioritizes culling efficiency. Also some other minor tweaks.
- Currently most meshlets have 126 triangles, and not 128. Fixing this
might involve calling METIS recursively ourselves to manually bisect the
graph, not sure. Not going to attempt to fix this in this PR.
## Testing
- Did you test these changes? If so, how?
- Tested on bunny.glb and cliff.glb
- Are there any parts that need more testing?
- No
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Download the new bunny asset, run the meshlet example.
---
## Showcase
New

Old

---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/16556
- Closes https://github.com/bevyengine/bevy/issues/11807
## Solution
- Simplify custom projections by using a single source of truth -
`Projection`, removing all existing generic systems and types.
- Existing perspective and orthographic structs are no longer components
- I could dissolve these to simplify further, but keeping them around
was the fast way to implement this.
- Instead of generics, introduce a third variant, with a trait object.
- Do an object safety dance with an intermediate trait to allow cloning
boxed camera projections. This is a normal rust polymorphism papercut.
You can do this with a crate but a manual impl is short and sweet.
## Testing
- Added a custom projection example
---
## Showcase
- Custom projections and projection handling has been simplified.
- Projection systems are no longer generic, with the potential for many
different projection components on the same camera.
- Instead `Projection` is now the single source of truth for camera
projections, and is the only projection component.
- Custom projections are still supported, and can be constructed with
`Projection::custom()`.
## Migration Guide
- `PerspectiveProjection` and `OrthographicProjection` are no longer
components. Use `Projection` instead.
- Custom projections should no longer be inserted as a component.
Instead, simply set the custom projection as a value of `Projection`
with `Projection::custom()`.
# Objective
- As stated in the related issue, this PR is to better align the feature
flag name with what it actually does and the plans for the future.
- Fixes#16852
## Solution
- Simple find / replace
## Testing
- Local run of `cargo run -p ci`
## Migration Guide
The `track_change_detection` feature flag has been renamed to
`track_location` to better reflect its extended capabilities.
# Objective
Make it easier to test for `Text2d` performance regressions.
Related to #16972
## Solution
Add a new `stress_test`, based on `many_sprites` and other existing
stress tests.
The `many-glyphs` option is inspired by
https://github.com/bevyengine/bevy/issues/16901#issuecomment-2558572382.
## Testing
```bash
cargo run --release --example many_text2d -- --help
cargo run --release --example many_text2d
cargo run --release --example many_text2d -- --many_glyphs
```
etc
# Objective
- Fixes#16563
- Make sure bevy_image is available when needed
## Solution
- Add a new feature for `bevy_image`
- Also enable the `bevy_image` feature in `bevy_internal` for all
features that use `bevy_image` themselves
# Objective
- Our benchmarks and `compile_fail` tests lag behind the rest of the
engine because they are not in the Cargo workspace, so not checked by
CI.
- Fixes#16801, please see it for further context!
## Solution
- Add benchmarks and `compile_fail` tests to the Cargo workspace.
- Fix any leftover formatting issues and documentation.
## Testing
- I think CI should catch most things!
## Questions
<details>
<summary>Outdated issue I was having with function reflection being
optional</summary>
The `reflection_types` example is failing in Rust-Analyzer for me, but
not a normal check.
```rust
error[E0004]: non-exhaustive patterns: `ReflectRef::Function(_)` not covered
--> examples/reflection/reflection_types.rs:81:11
|
81 | match value.reflect_ref() {
| ^^^^^^^^^^^^^^^^^^^ pattern `ReflectRef::Function(_)` not covered
|
note: `ReflectRef<'_>` defined here
--> /Users/bdeep/dev/bevy/bevy/crates/bevy_reflect/src/kind.rs:178:1
|
178 | pub enum ReflectRef<'a> {
| ^^^^^^^^^^^^^^^^^^^^^^^
...
188 | Function(&'a dyn Function),
| -------- not covered
= note: the matched value is of type `ReflectRef<'_>`
help: ensure that all possible cases are being handled by adding a match arm with a wildcard pattern or an explicit pattern as shown
|
126 ~ ReflectRef::Opaque(_) => {},
127 + ReflectRef::Function(_) => todo!()
|
```
I think it is because the following line is feature-gated:
cc0f6a8db4/examples/reflection/reflection_types.rs (L117-L122)
My theory for why this is happening is because the benchmarks enabled
`bevy_reflect`'s `function` feature, which gets merged with the rest of
the features when RA checks the workspace, but the `#[cfg(...)]` gate in
the example isn't detecting it:
cc0f6a8db4/benches/Cargo.toml (L19)
Any thoughts on how to fix this? It's not blocking, since the example
still compiles as normal, but it's just RA and the command `cargo check
--workspace --all-targets` appears to fail.
</summary>
# Objective
Expand `track_change_detection` feature to also track entity spawns and
despawns. Use this to create better error messages.
# Solution
Adds `Entities::entity_get_spawned_or_despawned_by` as well as `{all
entity reference types}::spawned_by`.
This also removes the deprecated `get_many_entities_mut` & co (and
therefore can't land in 0.15) because we don't yet have no Polonius.
## Testing
Added a test that checks that the locations get updated and these
updates are ordered correctly vs hooks & observers.
---
## Showcase
Access location:
```rust
let mut world = World::new();
let entity = world.spawn_empty().id();
println!("spawned by: {}", world.entity(entity).spawned_by());
```
```
spawned by: src/main.rs:5:24
```
Error message (with `track_change_detection`):
```rust
world.despawn(entity);
world.entity(entity);
```
```
thread 'main' panicked at src/main.rs:11:11:
Entity 0v1#4294967296 was despawned by src/main.rs:10:11
```
and without:
```
thread 'main' panicked at src/main.rs:11:11:
Entity 0v1#4294967296 does not exist (enable `track_change_detection` feature for more details)
```
Similar error messages now also exists for `Query::get`,
`World::entity_mut`, `EntityCommands` creation and everything that
causes `B0003`, e.g.
```
error[B0003]: Could not insert a bundle (of type `MaterialMeshBundle<StandardMaterial>`) for entity Entity { index: 7, generation: 1 }, which was despawned by src/main.rs:10:11. See: https://bevyengine.org/learn/errors/#b0003
```
---------
Co-authored-by: kurk070ff <108901106+kurk070ff@users.noreply.github.com>
Co-authored-by: Freya Pines <freya@MacBookAir.lan>
Co-authored-by: Freya Pines <freya@Freyas-MacBook-Air.local>
Co-authored-by: Matty Weatherley <weatherleymatthew@gmail.com>
# Objective
This PR continues the work of `bevy_input_focus` by adding a pluggable
tab navigation framework.
As part of this work, `FocusKeyboardEvent` now propagates to the window
after exhausting all ancestors.
## Testing
Unit tests and manual tests.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
This PR adds support for *mixed lighting* to Bevy, whereby some parts of
the scene are lightmapped, while others take part in real-time lighting.
(Here *real-time lighting* means lighting at runtime via the PBR shader,
as opposed to precomputed light using lightmaps.) It does so by adding a
new field, `affects_lightmapped_meshes` to `IrradianceVolume` and
`AmbientLight`, and a corresponding field
`affects_lightmapped_mesh_diffuse` to `DirectionalLight`, `PointLight`,
`SpotLight`, and `EnvironmentMapLight`. By default, this value is set to
true; when set to false, the light contributes nothing to the diffuse
irradiance component to meshes with lightmaps.
Note that specular light is unaffected. This is because the correct way
to bake specular lighting is *directional lightmaps*, which we have no
support for yet.
There are two general ways I expect this field to be used:
1. When diffuse indirect light is baked into lightmaps, irradiance
volumes and reflection probes shouldn't contribute any diffuse light to
the static geometry that has a lightmap. That's because the baking tool
should have already accounted for it, and in a higher-quality fashion,
as lightmaps typically offer a higher effective texture resolution than
the light probe does.
2. When direct diffuse light is baked into a lightmap, punctual lights
shouldn't contribute any diffuse light to static geometry with a
lightmap, to avoid double-counting. It may seem odd to bake *direct*
light into a lightmap, as opposed to indirect light. But there is a use
case: in a scene with many lights, avoiding light leaks requires shadow
mapping, which quickly becomes prohibitive when many lights are
involved. Baking lightmaps allows light leaks to be eliminated on static
geometry.
A new example, `mixed_lighting`, has been added. It demonstrates a sofa
(model from the [glTF Sample Assets]) that has been lightmapped offline
using [Bakery]. It has four modes:
1. In *baked* mode, all objects are locked in place, and all the diffuse
direct and indirect light has been calculated ahead of time. Note that
the bottom of the sphere has a red tint from the sofa, illustrating that
the baking tool captured indirect light for it.
2. In *mixed direct* mode, lightmaps capturing diffuse direct and
indirect light have been pre-calculated for the static objects, but the
dynamic sphere has real-time lighting. Note that, because the diffuse
lighting has been entirely pre-calculated for the scenery, the dynamic
sphere casts no shadow. In a real app, you would typically use real-time
lighting for the most important light so that dynamic objects can shadow
the scenery and relegate baked lighting to the less important lights for
which shadows aren't as important. Also note that there is no red tint
on the sphere, because there is no global illumination applied to it. In
an actual game, you could fix this problem by supplementing the
lightmapped objects with an irradiance volume.
3. In *mixed indirect* mode, all direct light is calculated in
real-time, and the static objects have pre-calculated indirect lighting.
This corresponds to the mode that most applications are expected to use.
Because direct light on the scenery is computed dynamically, shadows are
fully supported. As in mixed direct mode, there is no global
illumination on the sphere; in a real application, irradiance volumes
could be used to supplement the lightmaps.
4. In *real-time* mode, no lightmaps are used at all, and all punctual
lights are rendered in real-time. No global illumination exists.
In the example, you can click around to move the sphere, unless you're
in baked mode, in which case the sphere must be locked in place to be
lit correctly.
## Showcase
Baked mode:

Mixed direct mode:

Mixed indirect mode (default):

Real-time mode:

## Migration guide
* The `AmbientLight` resource, the `IrradianceVolume` component, and the
`EnvironmentMapLight` component now have `affects_lightmapped_meshes`
fields. If you don't need to use that field (for example, if you aren't
using lightmaps), you can safely set the field to true.
* `DirectionalLight`, `PointLight`, and `SpotLight` now have
`affects_lightmapped_mesh_diffuse` fields. If you don't need to use that
field (for example, if you aren't using lightmaps), you can safely set
the field to true.
[glTF Sample Assets]:
https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main
[Bakery]:
https://geom.io/bakery/wiki/index.php?title=Bakery_-_GPU_Lightmapper
# Objective
We were waiting for 1.83 to address most of these, due to a bug with
`missing_docs` and `expect`. Relates to, but does not entirely complete,
#15059.
## Solution
- Upgrade to 1.83
- Switch `allow(missing_docs)` to `expect(missing_docs)`
- Remove a few now-unused `allow`s along the way, or convert to `expect`
# Objective
Draw the UI debug overlay using the UI renderer.
Significantly simpler and easier to use than
`bevy_dev_tools::ui_debug_overlay` which uses `bevy_gizmos`.
* Supports multiple windows and UI rendered to texture.
* Draws rounded debug rects for rounded UI nodes.
Fixes#16666
## Solution
Removed the `ui_debug_overlay` module from `bevy_dev_tools`.
Added a `bevy_ui_debug` feature gate.
Draw the UI debug overlay using the UI renderer.
Adds a new module `bevy_ui::render::debug_overlay`.
The debug overlay extraction function queries for the existing UI layout
and then adds a border around each UI node with `u32::MAX / 2` added to
each stack index so it's drawn on top.
There is a `UiDebugOptions` resource that can be used to enable or
disable the debug overlay and set the line width.
## Testing
The `testbed_ui` example has been changed to use the new debug overlay:
```
cargo run --example testbed_ui --features bevy_ui_debug
```
Press Space to toggle the debug overlay on and off.
---
## Showcase
<img width="961" alt="testbed-ui-new-debug"
src="https://github.com/user-attachments/assets/e9523d18-39ae-46a8-adbe-7d3f3ab8e951">
## Migration Guide
The `ui_debug_overlay` module has been removed from `bevy_dev_tools`.
There is a new debug overlay implemented using the `bevy_ui` renderer.
To use it, enable the `bevy_ui_debug` feature and set the `enable` field
of the `UiDebugOptions` resource to `true`.
# Objective
We currently have no benchmarks for large worlds with many entities,
components and systems.
Having a benchmark for a world with many components is especially useful
for the performance improvements needed for relations. This is also a
response to this [comment from
cart](https://github.com/bevyengine/bevy/pull/14385#issuecomment-2311292546).
> I'd like both a small bevy_ecs-scoped executor benchmark that
generates thousands of components used by hundreds of systems.
## Solution
I use dynamic components and components to construct a benchmark with
2000 components, 4000 systems, and 10000 entities.
## Some notes
- ~I use a lot of random entities, which creates unpredictable
performance, I should use a seeded PRNG.~
- Not entirely sure if everything is ran concurrently currently. And
there are many conflicts, meaning there's probably a lot of
first-come-first-serve going on. Not entirely sure if these benchmarks
are very reproducible.
- Maybe add some more safety comments
- Also component_reads_and_writes() is about to be deprecated #16339,
but there's no other way to currently do what I'm trying to do.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Updates the requirements on
[thiserror](https://github.com/dtolnay/thiserror) to permit the latest
version.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/dtolnay/thiserror/releases">thiserror's
releases</a>.</em></p>
<blockquote>
<h2>2.0.3</h2>
<ul>
<li>Support the same Path field being repeated in both Debug and Display
representation in error message (<a
href="https://redirect.github.com/dtolnay/thiserror/issues/383">#383</a>)</li>
<li>Improve error message when a format trait used in error message is
not implemented by some field (<a
href="https://redirect.github.com/dtolnay/thiserror/issues/384">#384</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="15fd26e476"><code>15fd26e</code></a>
Release 2.0.3</li>
<li><a
href="7046023130"><code>7046023</code></a>
Simplify how has_bonus_display is accumulated</li>
<li><a
href="9cc1d0b251"><code>9cc1d0b</code></a>
Merge pull request <a
href="https://redirect.github.com/dtolnay/thiserror/issues/384">#384</a>
from dtolnay/nowrap</li>
<li><a
href="1d040f358a"><code>1d040f3</code></a>
Use Var wrapper only for Pointer formatting</li>
<li><a
href="6a6132d79b"><code>6a6132d</code></a>
Extend no-display ui test to cover another fmt trait</li>
<li><a
href="a061beb9dc"><code>a061beb</code></a>
Merge pull request <a
href="https://redirect.github.com/dtolnay/thiserror/issues/383">#383</a>
from dtolnay/both</li>
<li><a
href="63882935be"><code>6388293</code></a>
Support Display and Debug of same path in error message</li>
<li><a
href="dc0359eeec"><code>dc0359e</code></a>
Defer binding_value construction</li>
<li><a
href="520343e37d"><code>520343e</code></a>
Add test of Debug and Display of paths</li>
<li><a
href="49be39dee1"><code>49be39d</code></a>
Release 2.0.2</li>
<li>Additional commits viewable in <a
href="https://github.com/dtolnay/thiserror/compare/1.0.0...2.0.3">compare
view</a></li>
</ul>
</details>
<br />
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
# Objective
Error handling in bevy is hard. See for reference
https://github.com/bevyengine/bevy/issues/11562,
https://github.com/bevyengine/bevy/issues/10874 and
https://github.com/bevyengine/bevy/issues/12660. The goal of this PR is
to make it better, by allowing users to optionally return `Result` from
systems as outlined by Cart in
<https://github.com/bevyengine/bevy/issues/14275#issuecomment-2223708314>.
## Solution
This PR introduces a new `ScheuleSystem` type to represent systems that
can be added to schedules. Instances of this type contain either an
infallible `BoxedSystem<(), ()>` or a fallible `BoxedSystem<(),
Result>`. `ScheuleSystem` implements `System<In = (), Out = Result>` and
replaces all uses of `BoxedSystem` in schedules. The async executor now
receives a result after executing a system, which for infallible systems
is always `Ok(())`. Currently it ignores this result, but more useful
error handling could also be implemented.
Aliases for `Error` and `Result` have been added to the `bevy_ecs`
prelude, as well as const `OK` which new users may find more friendly
than `Ok(())`.
## Testing
- Currently there are not actual semantics changes that really require
new tests, but I added a basic one just to make sure we don't break
stuff in the future.
- The behavior of existing systems is totally unchanged, including
logging.
- All of the existing systems tests pass, and I have not noticed
anything strange while playing with the examples
## Showcase
The following minimal example prints "hello world" once, then completes.
```rust
use bevy::prelude::*;
fn main() {
App::new().add_systems(Update, hello_world_system).run();
}
fn hello_world_system() -> Result {
println!("hello world");
Err("string")?;
println!("goodbye world");
OK
}
```
## Migration Guide
This change should be pretty much non-breaking, except for users who
have implemented their own custom executors. Those users should use
`ScheduleSystem` in place of `BoxedSystem<(), ()>` and import the
`System` trait where needed. They can choose to do whatever they wish
with the result.
## Current Work
+ [x] Fix tests & doc comments
+ [x] Write more tests
+ [x] Add examples
+ [X] Draft release notes
## Draft Release Notes
As of this release, systems can now return results.
First a bit of background: Bevy has hisotrically expected systems to
return the empty type `()`. While this makes sense in the context of the
ecs, it's at odds with how error handling is typically done in rust:
returning `Result::Error` to indicate failure, and using the
short-circuiting `?` operator to propagate that error up the call stack
to where it can be properly handled. Users of functional languages will
tell you this is called "monadic error handling".
Not being able to return `Results` from systems left bevy users with a
quandry. They could add custom error handling logic to every system, or
manually pipe every system into an error handler, or perhaps sidestep
the issue with some combination of fallible assignents, logging, macros,
and early returns. Often, users would just litter their systems with
unwraps and possible panics.
While any one of these approaches might be fine for a particular user,
each of them has their own drawbacks, and none makes good use of the
language. Serious issues could also arrise when two different crates
used by the same project made different choices about error handling.
Now, by returning results, systems can defer error handling to the
application itself. It looks like this:
```rust
// Previous, handling internally
app.add_systems(my_system)
fn my_system(window: Query<&Window>) {
let Ok(window) = query.get_single() else {
return;
};
// ... do something to the window here
}
// Previous, handling externally
app.add_systems(my_system.pipe(my_error_handler))
fn my_system(window: Query<&Window>) -> Result<(), impl Error> {
let window = query.get_single()?;
// ... do something to the window here
Ok(())
}
// Previous, panicking
app.add_systems(my_system)
fn my_system(window: Query<&Window>) {
let window = query.single();
// ... do something to the window here
}
// Now
app.add_systems(my_system)
fn my_system(window: Query<&Window>) -> Result {
let window = query.get_single()?;
// ... do something to the window here
Ok(())
}
```
There are currently some limitations. Systems must either return `()` or
`Result<(), Box<dyn Error + Send + Sync + 'static>>`, with no
in-between. Results are also ignored by default, and though implementing
a custom handler is possible, it involves writing your own custom ecs
executor (which is *not* recomended).
Systems should return errors when they cannot perform their normal
behavior. In turn, errors returned to the executor while running the
schedule will (eventually) be treated as unexpected. Users and library
authors should prefer to return errors for anything that disrupts the
normal expected behavior of a system, and should only handle expected
cases internally.
We have big plans for improving error handling further:
+ Allowing users to change the error handling logic of the default
executors.
+ Adding source tracking and optional backtraces to errors.
+ Possibly adding tracing-levels (Error/Warn/Info/Debug/Trace) to
errors.
+ Generally making the default error logging more helpful and
inteligent.
+ Adding monadic system combininators for fallible systems.
+ Possibly removing all panicking variants from our api.
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
- Required by #16622 due to differing implementations of `System` by
`FunctionSystem` and `ExclusiveFunctionSystem`.
- Optimize the memory usage of instances of `apply_deferred` in system
schedules.
## Solution
By changing `apply_deferred` from being an ordinary system that ends up
as an `ExclusiveFunctionSystem`, and instead into a ZST struct that
implements `System` manually, we save ~320 bytes per instance of
`apply_deferred` in any schedule.
## Testing
- All current tests pass.
---
## Migration Guide
- If you were previously calling the special `apply_deferred` system via
`apply_deferred(world)`, don't.
# Objective
- Fixes#16208
## Solution
- Added an associated type to `Component`, `Mutability`, which flags
whether a component is mutable, or immutable. If `Mutability= Mutable`,
the component is mutable. If `Mutability= Immutable`, the component is
immutable.
- Updated `derive_component` to default to mutable unless an
`#[component(immutable)]` attribute is added.
- Updated `ReflectComponent` to check if a component is mutable and, if
not, panic when attempting to mutate.
## Testing
- CI
- `immutable_components` example.
---
## Showcase
Users can now mark a component as `#[component(immutable)]` to prevent
safe mutation of a component while it is attached to an entity:
```rust
#[derive(Component)]
#[component(immutable)]
struct Foo {
// ...
}
```
This prevents creating an exclusive reference to the component while it
is attached to an entity. This is particularly powerful when combined
with component hooks, as you can now fully track a component's value,
ensuring whatever invariants you desire are upheld. Before this would be
done my making a component private, and manually creating a `QueryData`
implementation which only permitted read access.
<details>
<summary>Using immutable components as an index</summary>
```rust
/// This is an example of a component like [`Name`](bevy::prelude::Name), but immutable.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Component)]
#[component(
immutable,
on_insert = on_insert_name,
on_replace = on_replace_name,
)]
pub struct Name(pub &'static str);
/// This index allows for O(1) lookups of an [`Entity`] by its [`Name`].
#[derive(Resource, Default)]
struct NameIndex {
name_to_entity: HashMap<Name, Entity>,
}
impl NameIndex {
fn get_entity(&self, name: &'static str) -> Option<Entity> {
self.name_to_entity.get(&Name(name)).copied()
}
}
fn on_insert_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) {
let Some(&name) = world.entity(entity).get::<Name>() else {
unreachable!()
};
let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
return;
};
index.name_to_entity.insert(name, entity);
}
fn on_replace_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) {
let Some(&name) = world.entity(entity).get::<Name>() else {
unreachable!()
};
let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
return;
};
index.name_to_entity.remove(&name);
}
// Setup our name index
world.init_resource::<NameIndex>();
// Spawn some entities!
let alyssa = world.spawn(Name("Alyssa")).id();
let javier = world.spawn(Name("Javier")).id();
// Check our index
let index = world.resource::<NameIndex>();
assert_eq!(index.get_entity("Alyssa"), Some(alyssa));
assert_eq!(index.get_entity("Javier"), Some(javier));
// Changing the name of an entity is also fully capture by our index
world.entity_mut(javier).insert(Name("Steven"));
// Javier changed their name to Steven
let steven = javier;
// Check our index
let index = world.resource::<NameIndex>();
assert_eq!(index.get_entity("Javier"), None);
assert_eq!(index.get_entity("Steven"), Some(steven));
```
</details>
Additionally, users can use `Component<Mutability = ...>` in trait
bounds to enforce that a component _is_ mutable or _is_ immutable. When
using `Component` as a trait bound without specifying `Mutability`, any
component is applicable. However, methods which only work on mutable or
immutable components are unavailable, since the compiler must be
pessimistic about the type.
## Migration Guide
- When implementing `Component` manually, you must now provide a type
for `Mutability`. The type `Mutable` provides equivalent behaviour to
earlier versions of `Component`:
```rust
impl Component for Foo {
type Mutability = Mutable;
// ...
}
```
- When working with generic components, you may need to specify that
your generic parameter implements `Component<Mutability = Mutable>`
rather than `Component` if you require mutable access to said component.
- The entity entry API has had to have some changes made to minimise
friction when working with immutable components. Methods which
previously returned a `Mut<T>` will now typically return an
`OccupiedEntry<T>` instead, requiring you to add an `into_mut()` to get
the `Mut<T>` item again.
## Draft Release Notes
Components can now be made immutable while stored within the ECS.
Components are the fundamental unit of data within an ECS, and Bevy
provides a number of ways to work with them that align with Rust's rules
around ownership and borrowing. One part of this is hooks, which allow
for defining custom behavior at key points in a component's lifecycle,
such as addition and removal. However, there is currently no way to
respond to _mutation_ of a component using hooks. The reasons for this
are quite technical, but to summarize, their addition poses a
significant challenge to Bevy's core promises around performance.
Without mutation hooks, it's relatively trivial to modify a component in
such a way that breaks invariants it intends to uphold. For example, you
can use `core::mem::swap` to swap the components of two entities,
bypassing the insertion and removal hooks.
This means the only way to react to this modification is via change
detection in a system, which then begs the question of what happens
_between_ that alteration and the next run of that system?
Alternatively, you could make your component private to prevent
mutation, but now you need to provide commands and a custom `QueryData`
implementation to allow users to interact with your component at all.
Immutable components solve this problem by preventing the creation of an
exclusive reference to the component entirely. Without an exclusive
reference, the only way to modify an immutable component is via removal
or replacement, which is fully captured by component hooks. To make a
component immutable, simply add `#[component(immutable)]`:
```rust
#[derive(Component)]
#[component(immutable)]
struct Foo {
// ...
}
```
When implementing `Component` manually, there is an associated type
`Mutability` which controls this behavior:
```rust
impl Component for Foo {
type Mutability = Mutable;
// ...
}
```
Note that this means when working with generic components, you may need
to specify that a component is mutable to gain access to certain
methods:
```rust
// Before
fn bar<C: Component>() {
// ...
}
// After
fn bar<C: Component<Mutability = Mutable>>() {
// ...
}
```
With this new tool, creating index components, or caching data on an
entity should be more user friendly, allowing libraries to provide APIs
relying on components and hooks to uphold their invariants.
## Notes
- ~~I've done my best to implement this feature, but I'm not happy with
how reflection has turned out. If any reflection SMEs know a way to
improve this situation I'd greatly appreciate it.~~ There is an
outstanding issue around the fallibility of mutable methods on
`ReflectComponent`, but the DX is largely unchanged from `main` now.
- I've attempted to prevent all safe mutable access to a component that
does not implement `Component<Mutability = Mutable>`, but there may
still be some methods I have missed. Please indicate so and I will
address them, as they are bugs.
- Unsafe is an escape hatch I am _not_ attempting to prevent. Whatever
you do with unsafe is between you and your compiler.
- I am marking this PR as ready, but I suspect it will undergo fairly
major revisions based on SME feedback.
- I've marked this PR as _Uncontroversial_ based on the feature, not the
implementation.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
Co-authored-by: Nuutti Kotivuori <naked@iki.fi>
This patch adds the infrastructure necessary for Bevy to support
*bindless resources*, by adding a new `#[bindless]` attribute to
`AsBindGroup`.
Classically, only a single texture (or sampler, or buffer) can be
attached to each shader binding. This means that switching materials
requires breaking a batch and issuing a new drawcall, even if the mesh
is otherwise identical. This adds significant overhead not only in the
driver but also in `wgpu`, as switching bind groups increases the amount
of validation work that `wgpu` must do.
*Bindless resources* are the typical solution to this problem. Instead
of switching bindings between each texture, the renderer instead
supplies a large *array* of all textures in the scene up front, and the
material contains an index into that array. This pattern is repeated for
buffers and samplers as well. The renderer now no longer needs to switch
binding descriptor sets while drawing the scene.
Unfortunately, as things currently stand, this approach won't quite work
for Bevy. Two aspects of `wgpu` conspire to make this ideal approach
unacceptably slow:
1. In the DX12 backend, all binding arrays (bindless resources) must
have a constant size declared in the shader, and all textures in an
array must be bound to actual textures. Changing the size requires a
recompile.
2. Changing even one texture incurs revalidation of all textures, a
process that takes time that's linear in the total size of the binding
array.
This means that declaring a large array of textures big enough to
encompass the entire scene is presently unacceptably slow. For example,
if you declare 4096 textures, then `wgpu` will have to revalidate all
4096 textures if even a single one changes. This process can take
multiple frames.
To work around this problem, this PR groups bindless resources into
small *slabs* and maintains a free list for each. The size of each slab
for the bindless arrays associated with a material is specified via the
`#[bindless(N)]` attribute. For instance, consider the following
declaration:
```rust
#[derive(AsBindGroup)]
#[bindless(16)]
struct MyMaterial {
#[buffer(0)]
color: Vec4,
#[texture(1)]
#[sampler(2)]
diffuse: Handle<Image>,
}
```
The `#[bindless(N)]` attribute specifies that, if bindless arrays are
supported on the current platform, each resource becomes a binding array
of N instances of that resource. So, for `MyMaterial` above, the `color`
attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`,
the `diffuse` texture is exposed to the shader as
`binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is
exposed to the shader as `binding_array<sampler, 16>`. Inside the
material's vertex and fragment shaders, the applicable index is
available via the `material_bind_group_slot` field of the `Mesh`
structure. So, for instance, you can access the current color like so:
```wgsl
// `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted
// to `storage` in bindless mode.
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
...
}
```
Note that portable shader code can't guarantee that the current platform
supports bindless textures. Indeed, bindless mode is only available in
Vulkan and DX12. The `BINDLESS` shader definition is available for your
use to determine whether you're on a bindless platform or not. Thus a
portable version of the shader above would look like:
```wgsl
#ifdef BINDLESS
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
#else // BINDLESS
@group(2) @binding(0) var<uniform> material_color: Color;
#endif // BINDLESS
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
#ifdef BINDLESS
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
#else // BINDLESS
let color = material_color;
#endif // BINDLESS
...
}
```
Importantly, this PR *doesn't* update `StandardMaterial` to be bindless.
So, for example, `scene_viewer` will currently not run any faster. I
intend to update `StandardMaterial` to use bindless mode in a follow-up
patch.
A new example, `shaders/shader_material_bindless`, has been added to
demonstrate how to use this new feature.
Here's a Tracy profile of `submit_graph_commands` of this patch and an
additional patch (not submitted yet) that makes `StandardMaterial` use
bindless. Red is those patches; yellow is `main`. The scene was Bistro
Exterior with a hack that forces all textures to opaque. You can see a
1.47x mean speedup.

## Migration Guide
* `RenderAssets::prepare_asset` now takes an `AssetId` parameter.
* Bin keys now have Bevy-specific material bind group indices instead of
`wgpu` material bind group IDs, as part of the bindless change. Use the
new `MaterialBindGroupAllocator` to map from bind group index to bind
group ID.
# Objective
- Fixes#16469.
## Solution
- Make the picking backend features not enabled by default in each
sub-crate.
- Make features in `bevy_internal` to set the backend features
- Make the root `bevy` crate set the features by default.
## Testing
- The mesh and sprite picking examples still work correctly.
# Objective
- Fixes#16152
## Solution
- Put `bevy_window` and `bevy_a11y` behind the `bevy_window` feature.
they were the only difference
- Add `ScheduleRunnerPlugin` to the `DefaultPlugins` when `bevy_window`
is disabled
- Remove `HeadlessPlugins`
- Update the `headless` example
# Objective
PCSS still has some fundamental issues (#16155). We should resolve them
before "releasing" the feature.
## Solution
1. Rename the already-optional `pbr_pcss` cargo feature to
`experimental_pbr_pcss` to better communicate its state to developers.
2. Adjust the description of the `experimental_pbr_pcss` cargo feature
to better communicate its state to developers.
3. Gate PCSS-related light component fields behind that cargo feature,
to prevent surfacing them to developers by default.
# Objective
_If I understand it correctly_, we were checking mesh visibility, as
well as re-rendering point and spot light shadow maps for each view.
This makes it so that M views and N lights produce M x N complexity.
This PR aims to fix that, as well as introduce a stress test for this
specific scenario.
## Solution
- Keep track of what lights have already had mesh visibility calculated
and do not calculate it again;
- Reuse shadow depth textures and attachments across all views, and only
render shadow maps for the _first_ time a light is encountered on a
view;
- Directional lights remain unaltered, since their shadow map cascades
are view-dependent;
- Add a new `many_cameras_lights` stress test example to verify the
solution
## Showcase
110% speed up on the stress test
83% reduction of memory usage in stress test
### Before (5.35 FPS on stress test)
<img width="1392" alt="Screenshot 2024-09-11 at 12 25 57"
src="https://github.com/user-attachments/assets/136b0785-e9a4-44df-9a22-f99cc465e126">
### After (11.34 FPS on stress test)
<img width="1392" alt="Screenshot 2024-09-11 at 12 24 35"
src="https://github.com/user-attachments/assets/b8dd858f-5e19-467f-8344-2b46ca039630">
## Testing
- Did you test these changes? If so, how?
- On my game project where I have two cameras, and many shadow casting
lights I managed to get pretty much double the FPS.
- Also included a stress test, see the comparison above
- Are there any parts that need more testing?
- Yes, I would like help verifying that this fix is indeed correct, and
that we were really re-rendering the shadow maps by mistake and it's
indeed okay to not do that
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run the `many_cameras_lights` example
- On the `main` branch, cherry pick the commit with the example (`git
cherry-pick --no-commit 1ed4ace01`) and run it
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- macOS
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Fixes#16235
## Solution
- Both Bevy and AccessKit export a `Node` struct, to reduce confusion
Bevy will no longer re-export `AccessKit` from `bevy_a11y`
## Testing
- Tested locally
## Migration Guide
```diff
# main.rs
-- use bevy_a11y::{
-- accesskit::{Node, Rect, Role},
-- AccessibilityNode,
-- };
++ use bevy_a11y::AccessibilityNode;
++ use accesskit::{Node, Rect, Role};
# Cargo.toml
++ accesskit = "0.17"
```
- Users will need to add `accesskit = "0.17"` to the dependencies
section of their `Cargo.toml` file and update their `accesskit` use
statements to come directly from the external crate instead of
`bevy_a11y`.
- Make sure to keep the versions of `accesskit` aligned with the
versions Bevy uses.
# Objective
- Choose LOD based on normal simplification error in addition to
position error
- Update meshoptimizer to 0.22, which has a bunch of simplifier
improvements
## Testing
- Did you test these changes? If so, how?
- Visualize normals, and compare LOD changes before and after. Normals
no longer visibly change as the LOD cut changes.
- Are there any parts that need more testing?
- No
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run the meshlet example in this PR and on main and move around to
change the LOD cut. Before running each example, in
meshlet_mesh_material.wgsl, replace `let color = vec3(rand_f(&rng),
rand_f(&rng), rand_f(&rng));` with `let color =
(vertex_output.world_normal + 1.0) / 2.0;`. Make sure to download the
appropriate bunny asset for each branch!
# Objective
Make the following functions `const` that will be useful to define
colors as constants.
- `Color::srgb_from_array`
- `Color::srgba_u8`
- `Color::srgb_u8`
The last two require Rust 1.82.0.
## Solution
- Make them `const`
- Change MSRV to 1.82.0
## Testing
I tested bevy_color only. My machine does not have enough RAM capacity
to test the whole bevy.
`cargo test -p bevy_color`
The two additional linear texture samplers that PCSS added caused us to
blow past the limit on Apple Silicon macOS and WebGL. To fix the issue,
this commit adds a `--feature pbr_pcss` feature gate that disables PCSS
if not present.
Closes#15345.
Closes#15525.
Closes#15821.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Take a bunch more improvements from @zeux's nanite.cpp code.
* Use position-only vertices (discard other attributes) to determine
meshlet connectivity for grouping
* Rather than using the lock borders flag when simplifying meshlet
groups, provide the locked vertices ourselves. The lock borders flag
locks the entire border of the meshlet group, but really we only want to
lock the edges between meshlet groups - outwards facing edges are fine
to unlock. This gives a really significant increase to the DAG quality.
* Add back stuck meshlets (group has only a single meshlet,
simplification failed) to the simplification queue to allow them to get
used later on and have another attempt at simplifying
* Target 8 meshlets per group instead of 4 (second biggest improvement
after manual locks)
* Provide a seed to metis for deterministic meshlet building
* Misc other improvements
We can remove the usage of unsafe after the next upstream meshopt
release, but for now we need to use the ffi function directly. I'll do
another round of improvements later, mainly attribute-aware
simplification and using spatial weights for meshlet grouping.
Need to merge https://github.com/bevyengine/bevy/pull/15846 first.
# Objective
Bevy seems to want to standardize on "American English" spellings. Not
sure if this is laid out anywhere in writing, but see also #15947.
While perusing the docs for `typos`, I noticed that it has a `locale`
config option and tried it out.
## Solution
Switch to `en-us` locale in the `typos` config and run `typos -w`
## Migration Guide
The following methods or fields have been renamed from `*dependants*` to
`*dependents*`.
- `ProcessorAssetInfo::dependants`
- `ProcessorAssetInfos::add_dependant`
- `ProcessorAssetInfos::non_existent_dependants`
- `AssetInfo::dependants_waiting_on_load`
- `AssetInfo::dependants_waiting_on_recursive_dep_load`
- `AssetInfos::loader_dependants`
- `AssetInfos::remove_dependants_and_labels`
# Objective
- Progress towards #15918
- Add tests for 3d
## Solution
- Add tests that cover lights, bloom, gltf and animation
- Removed examples `contributors` and `load_gltf` as they don't
contribute additional checks to CI
## Testing
- `CI_TESTING_CONFIG=.github/example-run/testbed_3d.ron cargo run
--example testbed_3d --features "bevy_ci_testing"`
Resolves#15968. Since this feature never worked, and enabling it in the
`image` crate requires system dependencies, we've decided that it's best
to just remove it and let other plugin crates offer support for it as
needed.
## Migration Guide
AVIF images are no longer supported. They never really worked, and
require system dependencies (libdav1d) to work correctly, so, it's
better to simply offer this support via an unofficial plugin instead as
needed. The corresponding types have been removed from Bevy to account
for this.
# Objective
As discussed in #15341, ghost nodes are a contentious and experimental
feature. In the interest of enabling ecosystem experimentation, we've
decided to keep them in Bevy 0.15.
That said, we don't use them internally, and don't expect third-party
crates to support them. If the experimentation returns a negative result
(they aren't very useful, an alternative design is preferred etc) they
will be removed.
We should clearly communicate this status to users, and make sure that
users don't use ghost nodes in their projects without a very clear
understanding of what they're getting themselves into.
## Solution
To make life easy for users (and Bevy), `GhostNode` and all associated
helpers remain public and are always available.
However, actually constructing these requires enabling a feature flag
that's clearly marked as experimental. To do so, I've added a
meaningless private field.
When the feature flag is enabled, our constructs (`new` and `default`)
can be used. I've added a `new` constructor, which should be preferred
over `Default::default` as that can be readily deprecated, allowing us
to prompt users to swap over to the much nicer `GhostNode` syntax once
this is a unit struct again.
Full credit: this was mostly @cart's design: I'm just implementing it!
## Testing
I've run the ghost_nodes example and it fails to compile without the
feature flag. With the feature flag, it works fine :)
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
- Make progress for #15918
- Start with 2d
## Solution
- Remove screenshots for existing examples as they're not deterministic
- Create new "testbed" example category, with a 2d one to start
## Testing
- Run `CI_TESTING_CONFIG=.github/example-run/testbed_2d.ron cargo run
--example testbed_2d --features "bevy_ci_testing"`
- ???
- Check the screenshots
# Objective
Limited implementation of the CSS property `overflow-clip-margin`
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow-clip-margin
Allows you to control the visible area for clipped content when using
overfllow-clip, -hidden, or -scroll and expand it with a margin.
Based on #15442Fixes#15468
## Solution
Adds a new field to Style: `overflow_clip_margin: OverflowClipMargin`.
The field is ignored unless overflow-clip, -hidden or -scroll is set on
at least one axis.
`OverflowClipMargin` has these associated constructor functions:
```
pub const fn content_box() -> Self;
pub const fn padding_box() -> Self;
pub const fn border_box() -> Self;
```
You can also use the method `with_margin` to increases the size of the
visible area:
```
commands
.spawn(NodeBundle {
style: Style {
width: Val::Px(100.),
height: Val::Px(100.),
padding: UiRect::all(Val::Px(20.)),
border: UiRect::all(Val::Px(5.)),
overflow: Overflow::clip(),
overflow_clip_margin: OverflowClipMargin::border_box().with_margin(25.),
..Default::default()
},
border_color: Color::BLACK.into(),
background_color: GRAY.into(),
..Default::default()
})
```
`with_margin` expects a length in logical pixels, negative values are
clamped to zero.
## Notes
* To keep this PR as simple as possible I omitted responsive margin
values support. This could be added in a follow up if we want it.
* CSS also supports a `margin-box` option but we don't have access to
the margin values in `Node` so it's probably not feasible to implement
atm.
## Testing
```cargo run --example overflow_clip_margin```
<img width="396" alt="overflow-clip-margin" src="https://github.com/user-attachments/assets/07b51cd6-a565-4451-87a0-fa079429b04b">
## Migration Guide
Style has a new field `OverflowClipMargin`. It allows users to set the visible area for clipped content when using overflow-clip, -hidden, or -scroll and expand it with a margin.
There are three associated constructor functions `content_box`, `padding_box` and `border_box`:
* `content_box`: elements painted outside of the content box area (the innermost part of the node excluding the padding and border) of the node are clipped. This is the new default behaviour.
* `padding_box`: elements painted outside outside of the padding area of the node are clipped.
* `border_box`: elements painted outside of the bounds of the node are clipped. This matches the behaviour from Bevy 0.14.
There is also a `with_margin` method that increases the size of the visible area by the given number in logical pixels, negative margin values are clamped to zero.
`OverflowClipMargin` is ignored unless overflow-clip, -hidden or -scroll is also set on at least one axis of the UI node.
---------
Co-authored-by: UkoeHB <37489173+UkoeHB@users.noreply.github.com>