Commit Graph

1648 Commits

Author SHA1 Message Date
Chris Russell
d0550f58ae
Remove 's lifetime from WorldQuery::Fetch (#19720)
# Objective

Unblock #18162.

#15396 added the `'s` lifetime to `QueryData::Item` to make it possible
for query items to borrow from the state. The state isn't passed
directly to `QueryData::fetch()`, so it also added the `'s` lifetime to
`WorldQuery::Fetch` so that we can pass the borrows through there.

Unfortunately, having `WorldQuery::Fetch` borrow from the state makes it
impossible to have owned state, because we store the state and the
`Fetch` in the same `struct` during iteration.

## Solution

Undo the change to add the `'s` lifetime to `WorldQuery::Fetch`.

Instead, add a `&'s Self::State` parameter to `QueryData::fetch()` and
`QueryFilter::filter_fetch()` so that borrows from the state can be
passed directly to query items.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Emerson Coskey <emerson@coskey.dev>
2025-06-19 00:58:21 +00:00
atlv
2915a3b903
rename GlobalTransform::compute_matrix to to_matrix (#19643)
# Objective

- compute_matrix doesn't compute anything, it just puts an Affine3A into
a Mat4. the name is inaccurate

## Solution

- rename it to conform with to_isometry (which, ironically, does compute
a decomposition which is rather expensive)

## Testing

- Its a rename. If it compiles, its good to go

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-06-17 18:37:26 +00:00
Chris Russell
f7e112a3c9
Let query items borrow from query state to avoid needing to clone (#15396)
# Objective

Improve the performance of `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.

`FilteredEntityRef` needs an `Access<ComponentId>` to determine what
components it can access. There is one stored in the query state, but
query items cannot borrow from the state, so it has to `clone()` the
access for each row. Cloning the access involves memory allocations and
can be expensive.


## Solution

Let query items borrow from their query state.  

Add an `'s` lifetime to `WorldQuery::Item` and `WorldQuery::Fetch`,
similar to the one in `SystemParam`, and provide `&'s Self::State` to
the fetch so that it can borrow from the state.

Unfortunately, there are a few cases where we currently return query
items from temporary query states: the sorted iteration methods create a
temporary state to query the sort keys, and the
`EntityRef::components<Q>()` methods create a temporary state for their
query.

To allow these to continue to work with most `QueryData`
implementations, introduce a new subtrait `ReleaseStateQueryData` that
converts a `QueryItem<'w, 's>` to `QueryItem<'w, 'static>`, and is
implemented for everything except `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.

`#[derive(QueryData)]` will generate `ReleaseStateQueryData`
implementations that apply when all of the subqueries implement
`ReleaseStateQueryData`.

This PR does not actually change the implementation of
`FilteredEntity(Ref|Mut)` or `Entity(Ref|Mut)Except`! That will be done
as a follow-up PR so that the changes are easier to review. I have
pushed the changes as chescock/bevy#5.

## Testing

I ran performance traces of many_foxes, both against main and against
chescock/bevy#5, both including #15282. These changes do appear to make
generalized animation a bit faster:

(Red is main, yellow is chescock/bevy#5)

![image](https://github.com/user-attachments/assets/de900117-0c6a-431d-ab62-c013834f97a9)


## Migration Guide

The `WorldQuery::Item` and `WorldQuery::Fetch` associated types and the
`QueryItem` and `ROQueryItem` type aliases now have an additional
lifetime parameter corresponding to the `'s` lifetime in `Query`. Manual
implementations of `WorldQuery` will need to update the method
signatures to include the new lifetimes. Other uses of the types will
need to be updated to include a lifetime parameter, although it can
usually be passed as `'_`. In particular, `ROQueryItem` is used when
implementing `RenderCommand`.

Before: 

```rust
fn render<'w>(
    item: &P,
    view: ROQueryItem<'w, Self::ViewQuery>,
    entity: Option<ROQueryItem<'w, Self::ItemQuery>>,
    param: SystemParamItem<'w, '_, Self::Param>,
    pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```

After: 

```rust
fn render<'w>(
    item: &P,
    view: ROQueryItem<'w, '_, Self::ViewQuery>,
    entity: Option<ROQueryItem<'w, '_, Self::ItemQuery>>,
    param: SystemParamItem<'w, '_, Self::Param>,
    pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```

---

Methods on `QueryState` that take `&mut self` may now result in
conflicting borrows if the query items capture the lifetime of the
mutable reference. This affects `get()`, `iter()`, and others. To fix
the errors, first call `QueryState::update_archetypes()`, and then
replace a call `state.foo(world, param)` with
`state.query_manual(world).foo_inner(param)`. Alternately, you may be
able to restructure the code to call `state.query(world)` once and then
make multiple calls using the `Query`.

Before:
```rust
let mut state: QueryState<_, _> = ...;
let d1 = state.get(world, e1);
let d2 = state.get(world, e2); // Error: cannot borrow `state` as mutable more than once at a time
println!("{d1:?}");
println!("{d2:?}");
```

After: 
```rust
let mut state: QueryState<_, _> = ...;

state.update_archetypes(world);
let d1 = state.get_manual(world, e1);
let d2 = state.get_manual(world, e2);
// OR
state.update_archetypes(world);
let d1 = state.query(world).get_inner(e1);
let d2 = state.query(world).get_inner(e2);
// OR
let query = state.query(world);
let d1 = query.get_inner(e1);
let d1 = query.get_inner(e2);

println!("{d1:?}");
println!("{d2:?}");
```
2025-06-16 21:05:41 +00:00
Joona Aalto
38c3423693
Event Split: Event, EntityEvent, and BufferedEvent (#19647)
# Objective

Closes #19564.

The current `Event` trait looks like this:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The `Event` trait is used by both buffered events
(`EventReader`/`EventWriter`) and observer events. If they are observer
events, they can optionally be targeted at specific `Entity`s or
`ComponentId`s, and can even be propagated to other entities.

However, there has long been a desire to split the trait semantically
for a variety of reasons, see #14843, #14272, and #16031 for discussion.
Some reasons include:

- It's very uncommon to use a single event type as both a buffered event
and targeted observer event. They are used differently and tend to have
distinct semantics.
- A common footgun is using buffered events with observers or event
readers with observer events, as there is no type-level error that
prevents this kind of misuse.
- #19440 made `Trigger::target` return an `Option<Entity>`. This
*seriously* hurts ergonomics for the general case of entity observers,
as you need to `.unwrap()` each time. If we could statically determine
whether the event is expected to have an entity target, this would be
unnecessary.

There's really two main ways that we can categorize events: push vs.
pull (i.e. "observer event" vs. "buffered event") and global vs.
targeted:

|              | Push            | Pull                        |
| ------------ | --------------- | --------------------------- |
| **Global**   | Global observer | `EventReader`/`EventWriter` |
| **Targeted** | Entity observer | -                           |

There are many ways to approach this, each with their tradeoffs.
Ultimately, we kind of want to split events both ways:

- A type-level distinction between observer events and buffered events,
to prevent people from using the wrong kind of event in APIs
- A statically designated entity target for observer events to avoid
accidentally using untargeted events for targeted APIs

This PR achieves these goals by splitting event traits into `Event`,
`EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait
implemented by all events.

## `Event`, `EntityEvent`, and `BufferedEvent`

`Event` is now a very simple trait shared by all events.

```rust
pub trait Event: Send + Sync + 'static {
    // Required for observer APIs
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

You can call `trigger` for *any* event, and use a global observer for
listening to the event.

```rust
#[derive(Event)]
struct Speak {
    message: String,
}

// ...

app.add_observer(|trigger: On<Speak>| {
    println!("{}", trigger.message);
});

// ...

commands.trigger(Speak {
    message: "Y'all like these reworked events?".to_string(),
});
```

To allow an event to be targeted at entities and even propagated
further, you can additionally implement the `EntityEvent` trait:

```rust
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This lets you call `trigger_targets`, and to use targeted observer APIs
like `EntityCommands::observe`:

```rust
#[derive(Event, EntityEvent)]
#[entity_event(traversal = &'static ChildOf, auto_propagate)]
struct Damage {
    amount: f32,
}

// ...

let enemy = commands.spawn((Enemy, Health(100.0))).id();

// Spawn some armor as a child of the enemy entity.
// When the armor takes damage, it will bubble the event up to the enemy.
let armor_piece = commands
    .spawn((ArmorPiece, Health(25.0), ChildOf(enemy)))
    .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| {
        // Note: `On::target` only exists because this is an `EntityEvent`.
        let mut health = query.get(trigger.target()).unwrap();
        health.0 -= trigger.amount();
    });

commands.trigger_targets(Damage { amount: 10.0 }, armor_piece);
```

> [!NOTE]
> You *can* still also trigger an `EntityEvent` without targets using
`trigger`. We probably *could* make this an either-or thing, but I'm not
sure that's actually desirable.

To allow an event to be used with the buffered API, you can implement
`BufferedEvent`:

```rust
pub trait BufferedEvent: Event {}
```

The event can then be used with `EventReader`/`EventWriter`:

```rust
#[derive(Event, BufferedEvent)]
struct Message(String);

fn write_hello(mut writer: EventWriter<Message>) {
    writer.write(Message("I hope these examples are alright".to_string()));
}

fn read_messages(mut reader: EventReader<Message>) {
    // Process all buffered events of type `Message`.
    for Message(message) in reader.read() {
        println!("{message}");
    }
}
```

In summary:

- Need a basic event you can trigger and observe? Derive `Event`!
- Need the event to be targeted at an entity? Derive `EntityEvent`!
- Need the event to be buffered and support the
`EventReader`/`EventWriter` API? Derive `BufferedEvent`!

## Alternatives

I'll now cover some of the alternative approaches I have considered and
briefly explored. I made this section collapsible since it ended up
being quite long :P

<details>

<summary>Expand this to see alternatives</summary>

### 1. Unified `Event` Trait

One option is not to have *three* separate traits (`Event`,
`EntityEvent`, `BufferedEvent`), and to instead just use associated
constants on `Event` to determine whether an event supports targeting
and buffering or not:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    const BUFFERED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

Methods can then use bounds like `where E: Event<TARGETED = true>` or
`where E: Event<BUFFERED = true>` to limit APIs to specific kinds of
events.

This would keep everything under one `Event` trait, but I don't think
it's necessarily a good idea. It makes APIs harder to read, and docs
can't easily refer to specific types of events. You can also create
weird invariants: what if you specify `TARGETED = false`, but have
`Traversal` and/or `AUTO_PROPAGATE` enabled?

### 2. `Event` and `Trigger`

Another option is to only split the traits between buffered events and
observer events, since that is the main thing people have been asking
for, and they have the largest API difference.

If we did this, I think we would need to make the terms *clearly*
separate. We can't really use `Event` and `BufferedEvent` as the names,
since it would be strange that `BufferedEvent` doesn't implement
`Event`. Something like `ObserverEvent` and `BufferedEvent` could work,
but it'd be more verbose.

For this approach, I would instead keep `Event` for the current
`EventReader`/`EventWriter` API, and call the observer event a
`Trigger`, since the "trigger" terminology is already used in the
observer context within Bevy (both as a noun and a verb). This is also
what a long [bikeshed on
Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791)
seemed to land on at the end of last year.

```rust
// For `EventReader`/`EventWriter`
pub trait Event: Send + Sync + 'static {}

// For observers
pub trait Trigger: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The problem is that "event" is just a really good term for something
that "happens". Observers are rapidly becoming the more prominent API,
so it'd be weird to give them the `Trigger` name and leave the good
`Event` name for the less common API.

So, even though a split like this seems neat on the surface, I think it
ultimately wouldn't really work. We want to keep the `Event` name for
observer events, and there is no good alternative for the buffered
variant. (`Message` was suggested, but saying stuff like "sends a
collision message" is weird.)

### 3. `GlobalEvent` + `TargetedEvent`

What if instead of focusing on the buffered vs. observed split, we
*only* make a distinction between global and targeted events?

```rust
// A shared event trait to allow global observers to work
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For buffered events and non-targeted observer events
pub trait GlobalEvent: Event {}

// For targeted observer events
pub trait TargetedEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is actually the first approach I implemented, and it has the neat
characteristic that you can only use non-targeted APIs like `trigger`
with a `GlobalEvent` and targeted APIs like `trigger_targets` with a
`TargetedEvent`. You have full control over whether the entity should or
should not have a target, as they are fully distinct at the type-level.

However, there's a few problems:

- There is no type-level indication of whether a `GlobalEvent` supports
buffered events or just non-targeted observer events
- An `Event` on its own does literally nothing, it's just a shared trait
required to make global observers accept both non-targeted and targeted
events
- If an event is both a `GlobalEvent` and `TargetedEvent`, global
observers again have ambiguity on whether an event has a target or not,
undermining some of the benefits
- The names are not ideal

### 4. `Event` and `EntityEvent`

We can fix some of the problems of Alternative 3 by accepting that
targeted events can also be used in non-targeted contexts, and simply
having the `Event` and `EntityEvent` traits:

```rust
// For buffered events and non-targeted observer events
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For targeted observer events
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is essentially identical to this PR, just without a dedicated
`BufferedEvent`. The remaining major "problem" is that there is still
zero type-level indication of whether an `Event` event *actually*
supports the buffered API. This leads us to the solution proposed in
this PR, using `Event`, `EntityEvent`, and `BufferedEvent`.

</details>

## Conclusion

The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR
aims to solve all the common problems with Bevy's current event model
while keeping the "weirdness" factor minimal. It splits in terms of both
the push vs. pull *and* global vs. targeted aspects, while maintaining a
shared concept for an "event".

### Why I Like This

- The term "event" remains as a single concept for all the different
kinds of events in Bevy.
- Despite all event types being "events", they use fundamentally
different APIs. Instead of assuming that you can use an event type with
any pattern (when only one is typically supported), you explicitly opt
in to each one with dedicated traits.
- Using separate traits for each type of event helps with documentation
and clearer function signatures.
- I can safely make assumptions on expected usage.
- If I see that an event is an `EntityEvent`, I can assume that I can
use `observe` on it and get targeted events.
- If I see that an event is a `BufferedEvent`, I can assume that I can
use `EventReader` to read events.
- If I see both `EntityEvent` and `BufferedEvent`, I can assume that
both APIs are supported.

In summary: This allows for a unified concept for events, while limiting
the different ways to use them with opt-in traits. No more guess-work
involved when using APIs.

### Problems?

- Because `BufferedEvent` implements `Event` (for more consistent
semantics etc.), you can still use all buffered events for non-targeted
observers. I think this is fine/good. The important part is that if you
see that an event implements `BufferedEvent`, you know that the
`EventReader`/`EventWriter` API should be supported. Whether it *also*
supports other APIs is secondary.
- I currently only support `trigger_targets` for an `EntityEvent`.
However, you can technically target components too, without targeting
any entities. I consider that such a niche and advanced use case that
it's not a huge problem to only support it for `EntityEvent`s, but we
could also split `trigger_targets` into `trigger_entities` and
`trigger_components` if we wanted to (or implement components as
entities :P).
- You can still trigger an `EntityEvent` *without* targets. I consider
this correct, since `Event` implements the non-targeted behavior, and
it'd be weird if implementing another trait *removed* behavior. However,
it does mean that global observers for entity events can technically
return `Entity::PLACEHOLDER` again (since I got rid of the
`Option<Entity>` added in #19440 for ergonomics). I think that's enough
of an edge case that it's not a huge problem, but it is worth keeping in
mind.
- ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type
currently duplicates the `Event` implementation, so you instead need to
manually implement one of them.~~ Changed to always requiring `Event` to
be derived.

## Related Work

There are plans to implement multi-event support for observers,
especially for UI contexts. [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)
API looked like this:

```rust
// Truncated for brevity
trigger: Trigger<(
    OnAdd<Pressed>,
    OnRemove<Pressed>,
    OnAdd<InteractionDisabled>,
    OnRemove<InteractionDisabled>,
    OnInsert<Hovered>,
)>,
```

I believe this shouldn't be in conflict with this PR. If anything, this
PR might *help* achieve the multi-event pattern for entity observers
with fewer footguns: by statically enforcing that all of these events
are `EntityEvent`s in the context of `EntityCommands::observe`, we can
avoid misuse or weird cases where *some* events inside the trigger are
targeted while others are not.
2025-06-15 16:46:34 +00:00
Chris Russell
bb4ea9c28b
Stop storing access for all systems (#19477)
# Objective

Reduce memory usage by storing fewer copies of
`FilteredAccessSet<ComponentId>`.

Currently, the `System` trait exposes the `component_access_set` for the
system, which is used by the multi-threaded executor to determine which
systems can run concurrently. But because it is available on the trait,
it needs to be stored for *every* system, even ones that are not run by
the executor! In particular, it is never needed for observers, or for
the inner systems in a `PipeSystem` or `CombinatorSystem`.


## Solution

Instead of exposing the access from a method on `System`, return it from
`System::initialize`. Since it is still needed during scheduling, store
the access alongside the boxed system in the schedule.

That's not quite enough for systems built using `SystemParamBuilder`s,
though. Those calculate the access in `SystemParamBuilder::build`, which
happens earlier than `System::initialize`. To handle those, we separate
`SystemParam::init_state` into `init_state`, which creates the state
value, and `init_access`, which calculates the access. This lets
`System::initialize` call `init_access` on a state that was provided by
the builder.

An additional benefit of that separation is that it removes the need to
duplicate access checks between `SystemParamBuilder::build` and
`SystemParam::init_state`.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-06-13 17:56:09 +00:00
Erick Z
8203e5c4e0
Fixing running ci locally in MacOS (#19619)
# Objective

- Running `cargo run --package ci` in MacOS does not currently work in
`main`.
- It shows a `error: this lint expectation is unfulfilled`.
- Fixes #19583

## Solution

- Remove an unnecessary `#[expect(clippy::large_enum_variant)]` on a
function.

## Testing

- `cargo run --package ci`: 👍
2025-06-13 14:51:28 +00:00
JMS55
bab31e3777
Initial raytraced lighting progress (bevy_solari) (#19058)
# Bevy Solari 
<img
src="https://github.com/user-attachments/assets/94061fc8-01cf-4208-b72a-8eecad610d76"
width="100" />

## Preface
- See release notes.
- Please talk to me in #rendering-dev on discord or open a github
discussion if you have questions about the long term plan, and keep
discussion in this PR limited to the contents of the PR :)

## Connections
- Works towards #639, #16408.
- Spawned https://github.com/bevyengine/bevy/issues/18993.
- Need to fix RT stuff in naga_oil first
https://github.com/bevyengine/naga_oil/pull/116.

## This PR

After nearly two years, I've revived the raytraced lighting effort I
first started in https://github.com/bevyengine/bevy/pull/10000.

Unlike that PR, which has realtime techniques, I've limited this PR to:
* `RaytracingScenePlugin` - BLAS and TLAS building, geometry and texture
binding, sampling functions.
* `PathtracingPlugin` - A non-realtime path tracer intended to serve as
a testbed and reference.

## What's implemented?

![image](https://github.com/user-attachments/assets/06522007-c205-46eb-8178-823f19917def)

* BLAS building on mesh load
* Emissive lights
* Directional lights with soft shadows
* Diffuse (lambert, not Bevy's diffuse BRDF) and emissive materials
* A reference path tracer with:
  * Antialiasing
  * Direct light sampling (next event estimation) with 0/1 MIS weights
  * Importance-sampled BRDF bounces
  * Russian roulette 

## What's _not_ implemented?
* Anything realtime, including a real-time denoiser
* Integration with Bevy's rasterized gbuffer
* Specular materials
* Non-opaque geometry
* Any sort of CPU or GPU optimizations
* BLAS compaction, proper bindless, and further RT APIs are things that
we need wgpu to add
* PointLights, SpotLights, or skyboxes / environment lighting 
* Support for materials other than StandardMaterial (and only a subset
of properties are supported)
* Skinned/morphed or otherwise animating/deformed meshes
* Mipmaps
* Adaptive self-intersection ray bias
* A good way for developers to detect whether the user's GPU supports RT
or not, and fallback to baked lighting.
* Documentation and actual finalized APIs (literally everything is
subject to change)

## End-user Usage
* Have a GPU that supports RT with inline ray queries
* Add `SolariPlugin` to your app
* Ensure any `Mesh` asset you want to use for raytracing has
`enable_raytracing: true` (defaults to true), and that it uses the
standard uncompressed position/normal/uv_0/tangent vertex attribute set,
triangle list topology, and 32-bit indices.
* If you don't want to build a BLAS and use the mesh for RT, set
enable_raytracing to false.
* Add the `RaytracingMesh3d` component to your entity (separate from
`Mesh3d` or `MeshletMesh3d`).

## Testing

- Did you test these changes? If so, how? 
  - Ran the solari example.
- Are there any parts that need more testing?
  - Other test scenes probably. Normal mapping would be good to test.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
  - See the solari.rs example for how to setup raytracing.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
  - Windows 11, NVIDIA RTX 3080.

---------

Co-authored-by: atlv <email@atlasdostal.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2025-06-12 21:26:10 +00:00
Joona Aalto
e5dc177b4b
Rename Trigger to On (#19596)
# Objective

Currently, the observer API looks like this:

```rust
app.add_observer(|trigger: Trigger<Explode>| {
    info!("Entity {} exploded!", trigger.target());
});
```

Future plans for observers also include "multi-event observers" with a
trigger that looks like this (see [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)):

```rust
trigger: Trigger<(
    OnAdd<Pressed>,
    OnRemove<Pressed>,
    OnAdd<InteractionDisabled>,
    OnRemove<InteractionDisabled>,
    OnInsert<Hovered>,
)>,
```

In scenarios like this, there is a lot of repetition of `On`. These are
expected to be very high-traffic APIs especially in UI contexts, so
ergonomics and readability are critical.

By renaming `Trigger` to `On`, we can make these APIs read more cleanly
and get rid of the repetition:

```rust
app.add_observer(|trigger: On<Explode>| {
    info!("Entity {} exploded!", trigger.target());
});
```

```rust
trigger: On<(
    Add<Pressed>,
    Remove<Pressed>,
    Add<InteractionDisabled>,
    Remove<InteractionDisabled>,
    Insert<Hovered>,
)>,
```

Names like `On<Add<Pressed>>` emphasize the actual event listener nature
more than `Trigger<OnAdd<Pressed>>`, and look cleaner. This *also* frees
up the `Trigger` name if we want to use it for the observer event type,
splitting them out from buffered events (bikeshedding this is out of
scope for this PR though).

For prior art:
[`bevy_eventlistener`](https://github.com/aevyrie/bevy_eventlistener)
used
[`On`](https://docs.rs/bevy_eventlistener/latest/bevy_eventlistener/event_listener/struct.On.html)
for its event listener type. Though in our case, the observer is the
event listener, and `On` is just a type containing information about the
triggered event.

## Solution

Steal from `bevy_event_listener` by @aevyrie and use `On`.

- Rename `Trigger` to `On`
- Rename `OnAdd` to `Add`
- Rename `OnInsert` to `Insert`
- Rename `OnReplace` to `Replace`
- Rename `OnRemove` to `Remove`
- Rename `OnDespawn` to `Despawn`

## Discussion

### Naming Conflicts??

Using a name like `Add` might initially feel like a very bad idea, since
it risks conflict with `core::ops::Add`. However, I don't expect this to
be a big problem in practice.

- You rarely need to actually implement the `Add` trait, especially in
modules that would use the Bevy ECS.
- In the rare cases where you *do* get a conflict, it is very easy to
fix by just disambiguating, for example using `ops::Add`.
- The `Add` event is a struct while the `Add` trait is a trait (duh), so
the compiler error should be very obvious.

For the record, renaming `OnAdd` to `Add`, I got exactly *zero* errors
or conflicts within Bevy itself. But this is of course not entirely
representative of actual projects *using* Bevy.

You might then wonder, why not use `Added`? This would conflict with the
`Added` query filter, so it wouldn't work. Additionally, the current
naming convention for observer events does not use past tense.

### Documentation

This does make documentation slightly more awkward when referring to
`On` or its methods. Previous docs often referred to `Trigger::target`
or "sends a `Trigger`" (which is... a bit strange anyway), which would
now be `On::target` and "sends an observer `Event`".

You can see the diff in this PR to see some of the effects. I think it
should be fine though, we may just need to reword more documentation to
read better.
2025-06-12 18:22:33 +00:00
Alice Cecile
030edbf3fe
Rename bevy_ecs::world::Entry to ComponentEntry (#19517)
# Objective

As discussed in #19285, some of our names conflict. `Entry` in bevy_ecs
is one of those overly general names.

## Solution

Rename this type (and the related types) to `ComponentEntry`.

---------

Co-authored-by: urben1680 <55257931+urben1680@users.noreply.github.com>
2025-06-10 01:12:40 +00:00
Alice Cecile
6ddd0f16a8
Component lifecycle reorganization and documentation (#19543)
# Objective

I set out with one simple goal: clearly document the differences between
each of the component lifecycle events via module docs.

Unfortunately, no such module existed: the various lifecycle code was
scattered to the wind.
Without a unified module, it's very hard to discover the related types,
and there's nowhere good to put my shiny new documentation.

## Solution

1. Unify the assorted types into a single
`bevy_ecs::component_lifecycle` module.
2. Write docs.
3. Write a migration guide.

## Testing

Thanks CI!

## Follow-up

1. The lifecycle event names are pretty confusing, especially
`OnReplace`. We should consider renaming those. No bikeshedding in my PR
though!
2. Observers need real module docs too :(
3. Any additional functional changes should be done elsewhere; this is a
simple docs and re-org PR.

---------

Co-authored-by: theotherphil <phil.j.ellison@gmail.com>
2025-06-10 00:59:16 +00:00
JMS55
476e644a7d
Add extra buffer usages field to MeshAllocator (#19546)
Split off from https://github.com/bevyengine/bevy/pull/19058
2025-06-09 20:03:57 +00:00
SpecificProtagonist
437c4d5b25
Minor clear color doc improvements (#19514) 2025-06-09 19:56:58 +00:00
Eagster
064e5e48b4
Remove entity placeholder from observers (#19440)
# Objective

`Entity::PLACEHOLDER` acts as a magic number that will *probably* never
really exist, but it certainly could. And, `Entity` has a niche, so the
only reason to use `PLACEHOLDER` is as an alternative to `MaybeUninit`
that trades safety risks for logic risks.

As a result, bevy has generally advised against using `PLACEHOLDER`, but
we still use if for a lot internally. This pr starts removing internal
uses of it, starting from observers.

## Solution

Change all trigger target related types from `Entity` to
`Option<Entity>`

Small migration guide to come.

## Testing

CI

## Future Work

This turned a lot of code from 

```rust
trigger.target()
```

to 

```rust
trigger.target().unwrap()
```

The extra panic is no worse than before; it's just earlier than
panicking after passing the placeholder to something else.

But this is kinda annoying. 

I would like to add a `TriggerMode` or something to `Event` that would
restrict what kinds of targets can be used for that event. Many events
like `Removed` etc, are always triggered with a target. We can make
those have a way to assume Some, etc. But I wanted to save that for a
future pr.
2025-06-09 19:37:56 +00:00
JMS55
bf8868b7b7
Require naga_oil 0.17.1 (#19550)
Split off from https://github.com/bevyengine/bevy/pull/19058

The patch should've been picked up anyways, but now it's required.
2025-06-09 04:54:29 +00:00
JMS55
16440be327
Add CameraMainTextureUsages helper method (#19549)
Split off from https://github.com/bevyengine/bevy/pull/19058
2025-06-09 04:54:14 +00:00
JMS55
ec307bcb9f
Add more wgpu helpers/types (#19548)
Split off from https://github.com/bevyengine/bevy/pull/19058
2025-06-09 04:54:02 +00:00
Carter Anderson
7e9d6d852b
bevyengine.org -> bevy.org (#19503)
We have acquired [bevy.org](https://bevy.org) and the migration has
finished! Meaning we can now update all of the references in this repo.
2025-06-05 23:09:28 +00:00
JMS55
8255e6cda9
Make TAA non-experimental, fixes (#18349)
The first 4 commits are designed to be reviewed independently.

- Mark TAA non-experimental now that motion vectors are written for
skinned and morphed meshes, along with skyboxes, and add it to
DefaultPlugins
- Adjust halton sequence to match what DLSS is going to use, doesn't
really affect anything, but may as well
- Make MipBias a required component on TAA instead of inserting it in
the render world
- Remove MipBias, TemporalJitter, RenderLayers, etc from the render
world if they're removed from the main world (fixes a retained render
world bug)
- Remove TAA components from the render world properly if
TemporalAntiAliasing is removed from the main world (fixes a retained
render world bug)
- extract_taa_settings() now has to query over `Option<&mut
TemporalAntiAliasing>`, which will match every single camera, in order
to cover cameras that had TemporalAntiAliasing removed this frame. This
kind of sucks, but I can't think of anything better.
- We probably have the same bug with every other rendering feature
component we have.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-06-02 16:04:08 +00:00
ickshonpe
43b8fbda93
Unrequire VisibilityClass from Node (#17918)
# Objective

The UI doesn't use `ViewVisibility` so it doesn't do anything.

## Solution

Remove it.
2025-05-31 08:18:01 +00:00
Chris Russell
571b3ba475
Remove ArchetypeComponentId and archetype_component_access (#19143)
# Objective

Remove `ArchetypeComponentId` and `archetype_component_access`.
Following #16885, they are no longer used by the engine, so we can stop
spending time calculating them or space storing them.

## Solution

Remove `ArchetypeComponentId` and everything that touches it.  

The `System::update_archetype_component_access` method no longer needs
to update `archetype_component_access`. We do still need to update query
caches, but we no longer need to do so *before* running the system. We'd
have to touch every caller anyway if we gave the method a better name,
so just remove `System::update_archetype_component_access` and
`SystemParam::new_archetype` entirely, and update the query cache in
`Query::get_param`.

The `Single` and `Populated` params also need their query caches updated
in `SystemParam::validate_param`, so change `validate_param` to take
`&mut Self::State` instead of `&Self::State`.
2025-05-27 19:04:32 +00:00
atlv
2946de4573
doc(render): fix incorrectly transposed view matrix docs (#19317)
# Objective

- Mend incorrect docs

## Solution

- Mend them
- add example use
- clarify column major

## Testing

- No code changes
2025-05-27 04:58:58 +00:00
atlv
1732c2253b
refactor(render): move WgpuWrapper into bevy_utils (#19303)
# Objective

- A step towards splitting out bevy_camera from bevy_render

## Solution

- Move a shim type into bevy_utils to avoid a dependency cycle
- Manually expand Deref/DerefMut to avoid having a bevy_derive
dependency so early in the dep tree

## Testing

- It compiles
2025-05-27 03:43:49 +00:00
andriyDev
8db7b6e122
Remove Shader weak_handles from bevy_render. (#19362)
# Objective

- Related to #19024

## Solution

- Use the new `load_shader_library` macro for the shader libraries and
`embedded_asset`/`load_embedded_asset` for the "shader binaries" in
bevy_render.

## Testing

- `animate_shader` example still works

P.S. I don't think this needs a migration guide. Technically users could
be using the `pub` weak handles, but there's no actual good use for
them, so omitting it seems fine. Alternatively, we could mix this in
with the migration guide notes for #19137.
2025-05-26 20:20:25 +00:00
theotherphil
07c9d1acce
Clarify RenderLayers docs (#19241)
# Objective

Clarify `RenderLayers` docs, to fix
https://github.com/bevyengine/bevy/issues/18874

## Solution

-

## Testing

-
2025-05-26 19:52:22 +00:00
Emerson Coskey
7ab00ca185
Split Camera.hdr out into a new component (#18873)
# Objective

- Simplify `Camera` initialization
- allow effects to require HDR

## Solution

- Split out `Camera.hdr` into a marker `Hdr` component

## Testing

- ran `bloom_3d` example

---

## Showcase

```rs
// before
commands.spawn((
  Camera3d
  Camera {
    hdr: true
    ..Default::default()
  }
))

// after
commands.spawn((Camera3d, Hdr));

// other rendering components can require that the camera enables hdr!
// currently implemented for Bloom, AutoExposure, and Atmosphere.
#[require(Hdr)]
pub struct Bloom;
```
2025-05-26 19:24:45 +00:00
IceSentry
85284cbb90
Move trigger_screenshots to finish() (#19204)
# Objective

- The tigger_screenshots system gets added in `.build()` but relies on a
resource that is only inserted in `.finish()`
- This isn't a bug for most users, but when doing headless mode testing
it can technically work without ever calling `.finish()` and did work
before bevy 0.15 but while migrating my work codebase I had an issue of
test failing because of this

## Solution

- Move the trigger_screenshots system to `.finish()`

## Testing

- I ran the screenshot example and it worked as expected
2025-05-26 18:07:17 +00:00
Griffin
d79efada3b
Optional explicit compressed image format support (#19190)
# Objective

- Allow compressed image formats to be used with `ImagePlugin` and
`GltfPlugin` in cases where there is no `RenderDevice` resource. (For
example, when using a custom render backend)

## Solution

- Define a `CompressedImageFormatSupport` component that allows the user
to explicitly determine which formats are supported.

~~Not sure if this is the best solution. Alternatively, I considered
initializing CompressedImageFormatSupport from render device features
separately, it would need to run after the render device is initialized
but before `ImagePlugin` and `GltfPlugin` finish. Not sure where the
best place for that to happen would be.~~

Update: decided on going with @greeble-dev solution: defining the
`CompressedImageFormatSupport` resource in `bevy_image`, but letting
`bevy_render` register the resource value.
2025-05-26 18:00:33 +00:00
Tim
4924cf5828
Remove upcasting methods + Cleanup interned label code (#18984)
Hiya!

# Objective

- Remove upcasting methods that are no longer necessary since Rust 1.86.
- Cleanup the interned label code.
 
## Notes
- I didn't try to remove the upcasting methods from `bevy_reflect`, as
there appears to be some complexity related to remote type reflection.
- There are likely some other upcasting methods floating around.

## Testing
I ran the `breakout` example to check that the hashing/eq
implementations of the labels are still correct.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-05-26 15:38:12 +00:00
Ben Frankel
3d9fc5ca10
Register some types (#19361)
# Objective

Fill in some `Reflect` and `app.register_type` gaps.

I only really wanted `GlobalZIndex` but figured I'd fill in a few others
as well.
2025-05-26 02:30:07 +00:00
atlv
45ba5b9f03
refactor(render): cleanup add_import_to_composer (#19269)
# Objective

- Reduce nesting

## Solution

- Refactor

## Testing

- `bevy run --example=3d_scene web --open`
2025-05-18 06:30:38 +00:00
atlv
eed1dc428b
fix(render): transitive shader imports now work consistently on web (#19266)
# Objective

- transitive shader imports sometimes fail to load silently and return
Ok
- Fixes #19226

## Solution

- Don't return Ok, return the appropriate error code which will retry
the load later when the dependencies load

## Testing

- `bevy run --example=3d_scene web --open`


Note: this is was theoretically a problem before the hot reloading PR,
but probably extremely unlikely to occur.
2025-05-17 19:03:47 +00:00
atlv
139515278c
Use embedded_asset to load PBR shaders (#19137)
# Objective

- Get in-engine shader hot reloading working

## Solution

- Adopt #12009
- Cut back on everything possible to land an MVP: we only hot-reload PBR
in deferred shading mode. This is to minimize the diff and avoid merge
hell. The rest shall come in followups.

## Testing

- `cargo run --example pbr --features="embedded_watcher"` and edit some
pbr shader code
2025-05-16 05:47:34 +00:00
atlv
415ffa5028
clippy: expect large variants and other small fixes (#19222)
# Objective

- Fix CI

## Solution

- Expect new lint
- See #19220

## Testing

- cargo clippy
2025-05-15 22:29:59 +00:00
Joona Aalto
7b1c9f192e
Adopt consistent FooSystems naming convention for system sets (#18900)
# Objective

Fixes a part of #14274.

Bevy has an incredibly inconsistent naming convention for its system
sets, both internally and across the ecosystem.

<img alt="System sets in Bevy"
src="https://github.com/user-attachments/assets/d16e2027-793f-4ba4-9cc9-e780b14a5a1b"
width="450" />

*Names of public system set types in Bevy*

Most Bevy types use a naming of `FooSystem` or just `Foo`, but there are
also a few `FooSystems` and `FooSet` types. In ecosystem crates on the
other hand, `FooSet` is perhaps the most commonly used name in general.
Conventions being so wildly inconsistent can make it harder for users to
pick names for their own types, to search for system sets on docs.rs, or
to even discern which types *are* system sets.

To reign in the inconsistency a bit and help unify the ecosystem, it
would be good to establish a common recommended naming convention for
system sets in Bevy itself, similar to how plugins are commonly suffixed
with `Plugin` (ex: `TimePlugin`). By adopting a consistent naming
convention in first-party Bevy, we can softly nudge ecosystem crates to
follow suit (for types where it makes sense to do so).

Choosing a naming convention is also relevant now, as the [`bevy_cli`
recently adopted
lints](https://github.com/TheBevyFlock/bevy_cli/pull/345) to enforce
naming for plugins and system sets, and the recommended naming used for
system sets is still a bit open.

## Which Name To Use?

Now the contentious part: what naming convention should we actually
adopt?

This was discussed on the Bevy Discord at the end of last year, starting
[here](<https://discord.com/channels/691052431525675048/692572690833473578/1310659954683936789>).
`FooSet` and `FooSystems` were the clear favorites, with `FooSet` very
narrowly winning an unofficial poll. However, it seems to me like the
consensus was broadly moving towards `FooSystems` at the end and after
the poll, with Cart
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311140204974706708))
and later Alice
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311092530732859533))
and also me being in favor of it.

Let's do a quick pros and cons list! Of course these are just what I
thought of, so take it with a grain of salt.

`FooSet`:

- Pro: Nice and short!
- Pro: Used by many ecosystem crates.
- Pro: The `Set` suffix comes directly from the trait name `SystemSet`.
- Pro: Pairs nicely with existing APIs like `in_set` and
`configure_sets`.
- Con: `Set` by itself doesn't actually indicate that it's related to
systems *at all*, apart from the implemented trait. A set of what?
- Con: Is `FooSet` a set of `Foo`s or a system set related to `Foo`? Ex:
`ContactSet`, `MeshSet`, `EnemySet`...

`FooSystems`:

- Pro: Very clearly indicates that the type represents a collection of
systems. The actual core concept, system(s), is in the name.
- Pro: Parallels nicely with `FooPlugins` for plugin groups.
- Pro: Low risk of conflicts with other names or misunderstandings about
what the type is.
- Pro: In most cases, reads *very* nicely and clearly. Ex:
`PhysicsSystems` and `AnimationSystems` as opposed to `PhysicsSet` and
`AnimationSet`.
- Pro: Easy to search for on docs.rs.
- Con: Usually results in longer names.
- Con: Not yet as widely used.

Really the big problem with `FooSet` is that it doesn't actually
describe what it is. It describes what *kind of thing* it is (a set of
something), but not *what it is a set of*, unless you know the type or
check its docs or implemented traits. `FooSystems` on the other hand is
much more self-descriptive in this regard, at the cost of being a bit
longer to type.

Ultimately, in some ways it comes down to preference and how you think
of system sets. Personally, I was originally in favor of `FooSet`, but
have been increasingly on the side of `FooSystems`, especially after
seeing what the new names would actually look like in Avian and now
Bevy. I prefer it because it usually reads better, is much more clearly
related to groups of systems than `FooSet`, and overall *feels* more
correct and natural to me in the long term.

For these reasons, and because Alice and Cart also seemed to share a
preference for it when it was previously being discussed, I propose that
we adopt a `FooSystems` naming convention where applicable.

## Solution

Rename Bevy's system set types to use a consistent `FooSet` naming where
applicable.

- `AccessibilitySystem` → `AccessibilitySystems`
- `GizmoRenderSystem` → `GizmoRenderSystems`
- `PickSet` → `PickingSystems`
- `RunFixedMainLoopSystem` → `RunFixedMainLoopSystems`
- `TransformSystem` → `TransformSystems`
- `RemoteSet` → `RemoteSystems`
- `RenderSet` → `RenderSystems`
- `SpriteSystem` → `SpriteSystems`
- `StateTransitionSteps` → `StateTransitionSystems`
- `RenderUiSystem` → `RenderUiSystems`
- `UiSystem` → `UiSystems`
- `Animation` → `AnimationSystems`
- `AssetEvents` → `AssetEventSystems`
- `TrackAssets` → `AssetTrackingSystems`
- `UpdateGizmoMeshes` → `GizmoMeshSystems`
- `InputSystem` → `InputSystems`
- `InputFocusSet` → `InputFocusSystems`
- `ExtractMaterialsSet` → `MaterialExtractionSystems`
- `ExtractMeshesSet` → `MeshExtractionSystems`
- `RumbleSystem` → `RumbleSystems`
- `CameraUpdateSystem` → `CameraUpdateSystems`
- `ExtractAssetsSet` → `AssetExtractionSystems`
- `Update2dText` → `Text2dUpdateSystems`
- `TimeSystem` → `TimeSystems`
- `AudioPlaySet` → `AudioPlaybackSystems`
- `SendEvents` → `EventSenderSystems`
- `EventUpdates` → `EventUpdateSystems`

A lot of the names got slightly longer, but they are also a lot more
consistent, and in my opinion the majority of them read much better. For
a few of the names I took the liberty of rewording things a bit;
definitely open to any further naming improvements.

There are still also cases where the `FooSystems` naming doesn't really
make sense, and those I left alone. This primarily includes system sets
like `Interned<dyn SystemSet>`, `EnterSchedules<S>`, `ExitSchedules<S>`,
or `TransitionSchedules<S>`, where the type has some special purpose and
semantics.

## Todo

- [x] Should I keep all the old names as deprecated type aliases? I can
do this, but to avoid wasting work I'd prefer to first reach consensus
on whether these renames are even desired.
- [x] Migration guide
- [x] Release notes
2025-05-06 15:18:03 +00:00
Tim Overbeek
60cdefd128
Derive clone_behavior for Components (#18811)
Allow Derive(Component) to specify a clone_behavior

```rust
#[derive(Component)]
#[component(clone_behavior = Ignore)]
MyComponent;
```
2025-05-06 00:32:59 +00:00
andriyDev
798e1c5498
Move initializing the ScreenshotToScreenPipeline to the ScreenshotPlugin. (#18524)
# Objective

- Minor cleanup.
- This seems to have been introduced in #8336. There is no discussion
about it I can see, there's no comment explaining why this is here and
not in `ScreenshotPlugin`. This seems to have just been misplaced.

## Solution

- Move this to the ScreenshotPlugin!

## Testing

- The screenshot example still works at least on desktop.
2025-05-05 23:56:22 +00:00
Rob Parrett
831fe305e4
Update ktx2 to 0.4.0 (#19073)
# Objective

Adopted #19065
Closes #19065

Updates the requirements on [ktx2](https://github.com/BVE-Reborn/ktx2)
to permit the latest version.
- [Release notes](https://github.com/BVE-Reborn/ktx2/releases)
-
[Changelog](https://github.com/BVE-Reborn/ktx2/blob/trunk/CHANGELOG.md)
- [Commits](https://github.com/BVE-Reborn/ktx2/compare/v0.3.0...v0.4.0)

# Overview

- Some renames
- A `u8` became `NonZero<u8>`
- Some methods return a new `Level` struct with a `data` member instead
of raw level data.

# Testing

- Passed CI locally
- Ran several examples which utilize `ktx2` files: `scrolling_fog`,
`mixed_lighting`, `skybox`, `lightmaps`.

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-05-05 16:42:36 +00:00
charlotte
6eaa6a6a03
Revert attempt to fix memory leak (#18845)
This reverts commit a9b0b4e7f7.
2025-04-15 01:57:53 +00:00
charlotte
a9b0b4e7f7
Mark render assets as modified when removed from the asset server (#18814)
# Objective

Fixes #18808

## Solution

When an asset emits a removed event, mark it as modified in the render
world to ensure any appropriate bookkeeping runs as necessary.
2025-04-11 23:18:26 +00:00
Carter Anderson
e9a0ef49f9
Rename bevy_platform_support to bevy_platform (#18813)
# Objective

The goal of `bevy_platform_support` is to provide a set of platform
agnostic APIs, alongside platform-specific functionality. This is a high
traffic crate (providing things like HashMap and Instant). Especially in
light of https://github.com/bevyengine/bevy/discussions/18799, it
deserves a friendlier / shorter name.

Given that it hasn't had a full release yet, getting this change in
before Bevy 0.16 makes sense.

## Solution

- Rename `bevy_platform_support` to `bevy_platform`.
2025-04-11 23:13:28 +00:00
charlotte
24baf324d6
Allowlist mali drivers for gpu preprocessing support. (#18769)
Fixes #17591

Looking at the arm downloads page, "r48p0" is a version number that
increments, where rXX is the major version and pX seems to be a patch
version. Take the conservative approach here that we know gpu
preprocessing is working on at least version 48 and presumably higher.
The assumption here is that the driver_info string will be reported
similarly on non-pixel devices.
2025-04-11 00:03:54 +00:00
Carter Anderson
2944f5e79d
Ignore RenderEntity during entity clones (#18798)
# Objective

Fixes #18795

## Solution

Ignore RenderEntity during entity clones
2025-04-10 20:46:34 +00:00
charlotte
f75078676b
Initialize pre-processing pipelines only when culling is enabled. (#18759)
Better fix for #18463 that still allows enabling mesh preprocessing on
webgpu.

Fixes #18463
2025-04-09 21:31:29 +00:00
Brian Reavis
bc259fad04
Fix get_render_pipeline_state / get_compute_pipeline_state panic (#18752)
This fixes a panic that occurs if one calls
`PipelineCache::get_render_pipeline_state(id)` or
`PipelineCache::get_compute_pipeline_state(id)` with a queued pipeline
id that has not yet been processed by `PipelineCache::process_queue()`.

```
thread 'Compute Task Pool (0)' panicked at [...]/bevy/crates/bevy_render/src/render_resource/pipeline_cache.rs:611:24:
index out of bounds: the len is 0 but the index is 20
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
```
2025-04-09 16:55:19 +00:00
charlotte
e8fd750274
Fix unbatchable meshes. (#18761)
# Objective

Fixes #18550.

Because bin state for unbatchable meshes wasn't being cleared each
frame, the buffer indices for unbatchable meshes would demote from
sparse to dense storage and aggressively leak memory, with all kinds of
weird consequences downstream, namely supplying invalid instance ranges
for render.

## Solution

Clear out the unbatchable mesh bin state when we start a new frame.
2025-04-09 15:35:33 +00:00
Patrick Walton
dc7c8f228f
Add bindless support back to ExtendedMaterial. (#18025)
PR #17898 disabled bindless support for `ExtendedMaterial`. This commit
adds it back. It also adds a new example, `extended_material_bindless`,
showing how to use it.
2025-04-09 15:34:44 +00:00
Hennadii Chernyshchyk
d82c359a5a
Add Default for all schedule labels (#18731)
# Objective

In `bevy_enhanced_input`, I'm trying to associate `Actions` with a
schedule. I can do this via an associated type on a trait, but there's
no way to construct the associated label except by requiring a `Default`
implementation. However, Bevy labels don't implement `Default`.

## Solution

Add `Default` to all built-in labels. I think it should be useful in
general.
2025-04-06 16:44:33 +00:00
Brian Reavis
5dcfa52297
Expose TextureFormatFeatureFlags, TextureFormatFeatures from wgpu (#18721)
# Objective

This PR exposes the wgpu types necessary to use the result of
`RenderAdapter::get_texture_format_features`:

```rust
use bevy::render::render_resource::TextureFormatFeatureFlags;
// ^ now available

let adapter = world.resource::<RenderAdapter>();
let flags = adapter.get_texture_format_features(TextureFormat::R32Float).flags;
let filtering = flags.contains(TextureFormatFeatureFlags::FILTERABLE);
```

## Solution

- Expose `TextureFormatFeatureFlags`, `TextureFormatFeatures` like other
wgpu types in bevy_render
2025-04-05 03:44:37 +00:00
Carter Anderson
d8fa57bd7b
Switch ChildOf back to tuple struct (#18672)
# Objective

In #17905 we swapped to a named field on `ChildOf` to help resolve
variable naming ambiguity of child vs parent (ex: `child_of.parent`
clearly reads as "I am accessing the parent of the child_of
relationship", whereas `child_of.0` is less clear).

Unfortunately this has the side effect of making initialization less
ideal. `ChildOf { parent }` reads just as well as `ChildOf(parent)`, but
`ChildOf { parent: root }` doesn't read nearly as well as
`ChildOf(root)`.

## Solution

Move back to `ChildOf(pub Entity)` but add a `child_of.parent()`
function and use it for all accesses. The downside here is that users
are no longer "forced" to access the parent field with `parent`
nomenclature, but I think this strikes the right balance.

Take a look at the diff. I think the results provide strong evidence for
this change. Initialization has the benefit of reading much better _and_
of taking up significantly less space, as many lines go from 3 to 1, and
we're cutting out a bunch of syntax in some cases.

Sadly I do think this should land in 0.16 as the cost of doing this
_after_ the relationships migration is high.
2025-04-02 00:10:10 +00:00
charlotte
bd5fed9050
Fix no indirect drawing (#18628)
# Objective

The `NoIndirectDrawing` wasn't working and was causing the scene not to
be rendered.

## Solution

Check the configured preprocessing mode when adding new batch sets and
mark them as batchable instead of muli-drawable if indirect rendering
has been disabled.

## Testing

`cargo run --example many_cubes -- --no-indirect-drawing`
2025-03-31 19:20:57 +00:00