ca25a67d0d
25 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
5e8aa7986b
|
Newtyped ScrollPosition (#19881)
# Objective Change `ScrollPosition` to newtype `Vec2`. It's easier to work with a `Vec2` wrapper than individual fields. I'm not sure why this wasn't newtyped to start with. Maybe the intent was to support responsive coordinates eventually but that probably isn't very useful or straightforward to implement. And even if we do want to support responsive coords in the future, it can newtype `Val2`. ## Solution Change `ScrollPosition` to newtype `Vec2`. Also added some extra details to the doc comments. ## Testing Try the `scroll` example. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
38c3423693
|
Event Split: Event , EntityEvent , and BufferedEvent (#19647)
# Objective Closes #19564. The current `Event` trait looks like this: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The `Event` trait is used by both buffered events (`EventReader`/`EventWriter`) and observer events. If they are observer events, they can optionally be targeted at specific `Entity`s or `ComponentId`s, and can even be propagated to other entities. However, there has long been a desire to split the trait semantically for a variety of reasons, see #14843, #14272, and #16031 for discussion. Some reasons include: - It's very uncommon to use a single event type as both a buffered event and targeted observer event. They are used differently and tend to have distinct semantics. - A common footgun is using buffered events with observers or event readers with observer events, as there is no type-level error that prevents this kind of misuse. - #19440 made `Trigger::target` return an `Option<Entity>`. This *seriously* hurts ergonomics for the general case of entity observers, as you need to `.unwrap()` each time. If we could statically determine whether the event is expected to have an entity target, this would be unnecessary. There's really two main ways that we can categorize events: push vs. pull (i.e. "observer event" vs. "buffered event") and global vs. targeted: | | Push | Pull | | ------------ | --------------- | --------------------------- | | **Global** | Global observer | `EventReader`/`EventWriter` | | **Targeted** | Entity observer | - | There are many ways to approach this, each with their tradeoffs. Ultimately, we kind of want to split events both ways: - A type-level distinction between observer events and buffered events, to prevent people from using the wrong kind of event in APIs - A statically designated entity target for observer events to avoid accidentally using untargeted events for targeted APIs This PR achieves these goals by splitting event traits into `Event`, `EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait implemented by all events. ## `Event`, `EntityEvent`, and `BufferedEvent` `Event` is now a very simple trait shared by all events. ```rust pub trait Event: Send + Sync + 'static { // Required for observer APIs fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` You can call `trigger` for *any* event, and use a global observer for listening to the event. ```rust #[derive(Event)] struct Speak { message: String, } // ... app.add_observer(|trigger: On<Speak>| { println!("{}", trigger.message); }); // ... commands.trigger(Speak { message: "Y'all like these reworked events?".to_string(), }); ``` To allow an event to be targeted at entities and even propagated further, you can additionally implement the `EntityEvent` trait: ```rust pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This lets you call `trigger_targets`, and to use targeted observer APIs like `EntityCommands::observe`: ```rust #[derive(Event, EntityEvent)] #[entity_event(traversal = &'static ChildOf, auto_propagate)] struct Damage { amount: f32, } // ... let enemy = commands.spawn((Enemy, Health(100.0))).id(); // Spawn some armor as a child of the enemy entity. // When the armor takes damage, it will bubble the event up to the enemy. let armor_piece = commands .spawn((ArmorPiece, Health(25.0), ChildOf(enemy))) .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| { // Note: `On::target` only exists because this is an `EntityEvent`. let mut health = query.get(trigger.target()).unwrap(); health.0 -= trigger.amount(); }); commands.trigger_targets(Damage { amount: 10.0 }, armor_piece); ``` > [!NOTE] > You *can* still also trigger an `EntityEvent` without targets using `trigger`. We probably *could* make this an either-or thing, but I'm not sure that's actually desirable. To allow an event to be used with the buffered API, you can implement `BufferedEvent`: ```rust pub trait BufferedEvent: Event {} ``` The event can then be used with `EventReader`/`EventWriter`: ```rust #[derive(Event, BufferedEvent)] struct Message(String); fn write_hello(mut writer: EventWriter<Message>) { writer.write(Message("I hope these examples are alright".to_string())); } fn read_messages(mut reader: EventReader<Message>) { // Process all buffered events of type `Message`. for Message(message) in reader.read() { println!("{message}"); } } ``` In summary: - Need a basic event you can trigger and observe? Derive `Event`! - Need the event to be targeted at an entity? Derive `EntityEvent`! - Need the event to be buffered and support the `EventReader`/`EventWriter` API? Derive `BufferedEvent`! ## Alternatives I'll now cover some of the alternative approaches I have considered and briefly explored. I made this section collapsible since it ended up being quite long :P <details> <summary>Expand this to see alternatives</summary> ### 1. Unified `Event` Trait One option is not to have *three* separate traits (`Event`, `EntityEvent`, `BufferedEvent`), and to instead just use associated constants on `Event` to determine whether an event supports targeting and buffering or not: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; const BUFFERED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` Methods can then use bounds like `where E: Event<TARGETED = true>` or `where E: Event<BUFFERED = true>` to limit APIs to specific kinds of events. This would keep everything under one `Event` trait, but I don't think it's necessarily a good idea. It makes APIs harder to read, and docs can't easily refer to specific types of events. You can also create weird invariants: what if you specify `TARGETED = false`, but have `Traversal` and/or `AUTO_PROPAGATE` enabled? ### 2. `Event` and `Trigger` Another option is to only split the traits between buffered events and observer events, since that is the main thing people have been asking for, and they have the largest API difference. If we did this, I think we would need to make the terms *clearly* separate. We can't really use `Event` and `BufferedEvent` as the names, since it would be strange that `BufferedEvent` doesn't implement `Event`. Something like `ObserverEvent` and `BufferedEvent` could work, but it'd be more verbose. For this approach, I would instead keep `Event` for the current `EventReader`/`EventWriter` API, and call the observer event a `Trigger`, since the "trigger" terminology is already used in the observer context within Bevy (both as a noun and a verb). This is also what a long [bikeshed on Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791) seemed to land on at the end of last year. ```rust // For `EventReader`/`EventWriter` pub trait Event: Send + Sync + 'static {} // For observers pub trait Trigger: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The problem is that "event" is just a really good term for something that "happens". Observers are rapidly becoming the more prominent API, so it'd be weird to give them the `Trigger` name and leave the good `Event` name for the less common API. So, even though a split like this seems neat on the surface, I think it ultimately wouldn't really work. We want to keep the `Event` name for observer events, and there is no good alternative for the buffered variant. (`Message` was suggested, but saying stuff like "sends a collision message" is weird.) ### 3. `GlobalEvent` + `TargetedEvent` What if instead of focusing on the buffered vs. observed split, we *only* make a distinction between global and targeted events? ```rust // A shared event trait to allow global observers to work pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For buffered events and non-targeted observer events pub trait GlobalEvent: Event {} // For targeted observer events pub trait TargetedEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is actually the first approach I implemented, and it has the neat characteristic that you can only use non-targeted APIs like `trigger` with a `GlobalEvent` and targeted APIs like `trigger_targets` with a `TargetedEvent`. You have full control over whether the entity should or should not have a target, as they are fully distinct at the type-level. However, there's a few problems: - There is no type-level indication of whether a `GlobalEvent` supports buffered events or just non-targeted observer events - An `Event` on its own does literally nothing, it's just a shared trait required to make global observers accept both non-targeted and targeted events - If an event is both a `GlobalEvent` and `TargetedEvent`, global observers again have ambiguity on whether an event has a target or not, undermining some of the benefits - The names are not ideal ### 4. `Event` and `EntityEvent` We can fix some of the problems of Alternative 3 by accepting that targeted events can also be used in non-targeted contexts, and simply having the `Event` and `EntityEvent` traits: ```rust // For buffered events and non-targeted observer events pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For targeted observer events pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is essentially identical to this PR, just without a dedicated `BufferedEvent`. The remaining major "problem" is that there is still zero type-level indication of whether an `Event` event *actually* supports the buffered API. This leads us to the solution proposed in this PR, using `Event`, `EntityEvent`, and `BufferedEvent`. </details> ## Conclusion The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR aims to solve all the common problems with Bevy's current event model while keeping the "weirdness" factor minimal. It splits in terms of both the push vs. pull *and* global vs. targeted aspects, while maintaining a shared concept for an "event". ### Why I Like This - The term "event" remains as a single concept for all the different kinds of events in Bevy. - Despite all event types being "events", they use fundamentally different APIs. Instead of assuming that you can use an event type with any pattern (when only one is typically supported), you explicitly opt in to each one with dedicated traits. - Using separate traits for each type of event helps with documentation and clearer function signatures. - I can safely make assumptions on expected usage. - If I see that an event is an `EntityEvent`, I can assume that I can use `observe` on it and get targeted events. - If I see that an event is a `BufferedEvent`, I can assume that I can use `EventReader` to read events. - If I see both `EntityEvent` and `BufferedEvent`, I can assume that both APIs are supported. In summary: This allows for a unified concept for events, while limiting the different ways to use them with opt-in traits. No more guess-work involved when using APIs. ### Problems? - Because `BufferedEvent` implements `Event` (for more consistent semantics etc.), you can still use all buffered events for non-targeted observers. I think this is fine/good. The important part is that if you see that an event implements `BufferedEvent`, you know that the `EventReader`/`EventWriter` API should be supported. Whether it *also* supports other APIs is secondary. - I currently only support `trigger_targets` for an `EntityEvent`. However, you can technically target components too, without targeting any entities. I consider that such a niche and advanced use case that it's not a huge problem to only support it for `EntityEvent`s, but we could also split `trigger_targets` into `trigger_entities` and `trigger_components` if we wanted to (or implement components as entities :P). - You can still trigger an `EntityEvent` *without* targets. I consider this correct, since `Event` implements the non-targeted behavior, and it'd be weird if implementing another trait *removed* behavior. However, it does mean that global observers for entity events can technically return `Entity::PLACEHOLDER` again (since I got rid of the `Option<Entity>` added in #19440 for ergonomics). I think that's enough of an edge case that it's not a huge problem, but it is worth keeping in mind. - ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type currently duplicates the `Event` implementation, so you instead need to manually implement one of them.~~ Changed to always requiring `Event` to be derived. ## Related Work There are plans to implement multi-event support for observers, especially for UI contexts. [Cart's example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508) API looked like this: ```rust // Truncated for brevity trigger: Trigger<( OnAdd<Pressed>, OnRemove<Pressed>, OnAdd<InteractionDisabled>, OnRemove<InteractionDisabled>, OnInsert<Hovered>, )>, ``` I believe this shouldn't be in conflict with this PR. If anything, this PR might *help* achieve the multi-event pattern for entity observers with fewer footguns: by statically enforcing that all of these events are `EntityEvent`s in the context of `EntityCommands::observe`, we can avoid misuse or weird cases where *some* events inside the trigger are targeted while others are not. |
||
![]() |
e5dc177b4b
|
Rename Trigger to On (#19596)
# Objective Currently, the observer API looks like this: ```rust app.add_observer(|trigger: Trigger<Explode>| { info!("Entity {} exploded!", trigger.target()); }); ``` Future plans for observers also include "multi-event observers" with a trigger that looks like this (see [Cart's example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)): ```rust trigger: Trigger<( OnAdd<Pressed>, OnRemove<Pressed>, OnAdd<InteractionDisabled>, OnRemove<InteractionDisabled>, OnInsert<Hovered>, )>, ``` In scenarios like this, there is a lot of repetition of `On`. These are expected to be very high-traffic APIs especially in UI contexts, so ergonomics and readability are critical. By renaming `Trigger` to `On`, we can make these APIs read more cleanly and get rid of the repetition: ```rust app.add_observer(|trigger: On<Explode>| { info!("Entity {} exploded!", trigger.target()); }); ``` ```rust trigger: On<( Add<Pressed>, Remove<Pressed>, Add<InteractionDisabled>, Remove<InteractionDisabled>, Insert<Hovered>, )>, ``` Names like `On<Add<Pressed>>` emphasize the actual event listener nature more than `Trigger<OnAdd<Pressed>>`, and look cleaner. This *also* frees up the `Trigger` name if we want to use it for the observer event type, splitting them out from buffered events (bikeshedding this is out of scope for this PR though). For prior art: [`bevy_eventlistener`](https://github.com/aevyrie/bevy_eventlistener) used [`On`](https://docs.rs/bevy_eventlistener/latest/bevy_eventlistener/event_listener/struct.On.html) for its event listener type. Though in our case, the observer is the event listener, and `On` is just a type containing information about the triggered event. ## Solution Steal from `bevy_event_listener` by @aevyrie and use `On`. - Rename `Trigger` to `On` - Rename `OnAdd` to `Add` - Rename `OnInsert` to `Insert` - Rename `OnReplace` to `Replace` - Rename `OnRemove` to `Remove` - Rename `OnDespawn` to `Despawn` ## Discussion ### Naming Conflicts?? Using a name like `Add` might initially feel like a very bad idea, since it risks conflict with `core::ops::Add`. However, I don't expect this to be a big problem in practice. - You rarely need to actually implement the `Add` trait, especially in modules that would use the Bevy ECS. - In the rare cases where you *do* get a conflict, it is very easy to fix by just disambiguating, for example using `ops::Add`. - The `Add` event is a struct while the `Add` trait is a trait (duh), so the compiler error should be very obvious. For the record, renaming `OnAdd` to `Add`, I got exactly *zero* errors or conflicts within Bevy itself. But this is of course not entirely representative of actual projects *using* Bevy. You might then wonder, why not use `Added`? This would conflict with the `Added` query filter, so it wouldn't work. Additionally, the current naming convention for observer events does not use past tense. ### Documentation This does make documentation slightly more awkward when referring to `On` or its methods. Previous docs often referred to `Trigger::target` or "sends a `Trigger`" (which is... a bit strange anyway), which would now be `On::target` and "sends an observer `Event`". You can see the diff in this PR to see some of the effects. I think it should be fine though, we may just need to reword more documentation to read better. |
||
![]() |
8ab71a6999
|
Modified the "scroll.rs" example to use the new spawning API. (#19592)
# Objective - Update the scroll example to use the latest API. ## Solution - It now uses the 'children![]' API. ## Testing - I manually verified that the scrolling was working ## Limitations - Unfortunately, I couldn't find a way to spawn observers targeting the entity inside the "fn() -> impl Bundle" function. |
||
![]() |
33c6f45a35
|
Rename some pointer events and components (#19574)
# Objective #19366 implemented core button widgets, which included the `Depressed` state component. `Depressed` was chosen instead of `Pressed` to avoid conflict with the `Pointer<Pressed>` event, but it is problematic and awkward in many ways: - Using the word "depressed" for such a high-traffic type is not great due to the obvious connection to "depressed" as in depression. - "Depressed" is not what I would search for if I was looking for a component like this, and I'm not aware of any other engine or UI framework using the term. - `Depressed` is not a very natural pair to the `Pointer<Pressed>` event. - It might be because I'm not a native English speaker, but I have very rarely heard someone say "a button is depressed". Seeing it, my mind initially goes from "depression??" to "oh, de-pressed, meaning released" and definitely not "is pressed", even though that *is* also a valid meaning for it. A related problem is that the current `Pointer<Pressed>` and `Pointer<Released>` event names use a different verb tense than all of our other observer events such as `Pointer<Click>` or `Pointer<DragStart>`. By fixing this and renaming `Pressed` (and `Released`), we can then use `Pressed` instead of `Depressed` for the state component. Additionally, the `IsHovered` and `IsDirectlyHovered` components added in #19366 use an inconsistent naming; the other similar components don't use an `Is` prefix. It also makes query filters like `Has<IsHovered>` and `With<IsHovered>` a bit more awkward. This is partially related to Cart's [picking concept proposal](https://gist.github.com/cart/756e48a149db2838028be600defbd24a?permalink_comment_id=5598154). ## Solution - Rename `Pointer<Pressed>` to `Pointer<Press>` - Rename `Pointer<Released>` to `Pointer<Release>` - Rename `Depressed` to `Pressed` - Rename `IsHovered` to `Hovered` - Rename `IsDirectlyHovered` to `DirectlyHovered` |
||
![]() |
064e5e48b4
|
Remove entity placeholder from observers (#19440)
# Objective `Entity::PLACEHOLDER` acts as a magic number that will *probably* never really exist, but it certainly could. And, `Entity` has a niche, so the only reason to use `PLACEHOLDER` is as an alternative to `MaybeUninit` that trades safety risks for logic risks. As a result, bevy has generally advised against using `PLACEHOLDER`, but we still use if for a lot internally. This pr starts removing internal uses of it, starting from observers. ## Solution Change all trigger target related types from `Entity` to `Option<Entity>` Small migration guide to come. ## Testing CI ## Future Work This turned a lot of code from ```rust trigger.target() ``` to ```rust trigger.target().unwrap() ``` The extra panic is no worse than before; it's just earlier than panicking after passing the placeholder to something else. But this is kinda annoying. I would like to add a `TriggerMode` or something to `Event` that would restrict what kinds of targets can be used for that event. Many events like `Removed` etc, are always triggered with a target. We can make those have a way to assume Some, etc. But I wanted to save that for a future pr. |
||
![]() |
5ab0456f61
|
Unified picking cleanup (#18401)
# Objective @cart noticed some issues with my work in https://github.com/bevyengine/bevy/pull/17348#discussion_r2001815637, which I somehow missed before merging the PR. ## Solution - feature gate the UiPickingPlugin correctly - don't manually add the picking plugins ## Testing Ran the debug_picking and sprite_picking examples (for UI and sprites respectively): both seem to work fine. |
||
![]() |
65e289f5bc
|
Unify picking backends (#17348)
# Objective Currently, our picking backends are inconsistent: - Mesh picking and sprite picking both have configurable opt in/out behavior. UI picking does not. - Sprite picking uses `SpritePickingCamera` and `Pickable` for control, but mesh picking uses `RayCastPickable`. - `MeshPickingPlugin` is not a part of `DefaultPlugins`. `SpritePickingPlugin` and `UiPickingPlugin` are. ## Solution - Add configurable opt in/out behavior to UI picking (defaults to opt out). - Replace `RayCastPickable` with `MeshPickingCamera` and `Pickable`. - Remove `SpritePickingPlugin` and `UiPickingPlugin` from `DefaultPlugins`. ## Testing Ran some examples. ## Migration Guide `UiPickingPlugin` and `SpritePickingPlugin` are no longer included in `DefaultPlugins`. They must be explicitly added. `RayCastPickable` has been replaced in favor of the `MeshPickingCamera` and `Pickable` components. You should add them to cameras and entities, respectively, if you have `MeshPickingSettings::require_markers` set to `true`. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
c3ff6d4136
|
Fix non-crate typos (#18219)
# Objective Correct spelling ## Solution Fix typos, specifically ones that I found in folders other than /crates ## Testing CI --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
21f1e3045c
|
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with planned paths for fragmenting and non-fragmenting many-to-many relationships). "Non-fragmenting" means that entities with the same relationship type, but different relationship targets, are not forced into separate tables (which would cause "table fragmentation"). Functionally, this fills a similar niche as the current Parent/Children system. The biggest differences are: 1. Relationships have simpler internals and significantly improved performance and UX. Commands and specialized APIs are no longer necessary to keep everything in sync. Just spawn entities with the relationship components you want and everything "just works". 2. Relationships are generalized. Bevy can provide additional built in relationships, and users can define their own. **REQUEST TO REVIEWERS**: _please don't leave top level comments and instead comment on specific lines of code. That way we can take advantage of threaded discussions. Also dont leave comments simply pointing out CI failures as I can read those just fine._ ## Built on top of what we have Relationships are implemented on top of the Bevy ECS features we already have: components, immutability, and hooks. This makes them immediately compatible with all of our existing (and future) APIs for querying, spawning, removing, scenes, reflection, etc. The fewer specialized APIs we need to build, maintain, and teach, the better. ## Why focus on one-to-many non-fragmenting first? 1. This allows us to improve Parent/Children relationships immediately, in a way that is reasonably uncontroversial. Switching our hierarchy to fragmenting relationships would have significant performance implications. ~~Flecs is heavily considering a switch to non-fragmenting relations after careful considerations of the performance tradeoffs.~~ _(Correction from @SanderMertens: Flecs is implementing non-fragmenting storage specialized for asset hierarchies, where asset hierarchies are many instances of small trees that have a well defined structure)_ 2. Adding generalized one-to-many relationships is currently a priority for the [Next Generation Scene / UI effort](https://github.com/bevyengine/bevy/discussions/14437). Specifically, we're interested in building reactions and observers on top. ## The changes This PR does the following: 1. Adds a generic one-to-many Relationship system 3. Ports the existing Parent/Children system to Relationships, which now lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been removed. 4. Adds on_despawn component hooks 5. Relationships can opt-in to "despawn descendants" behavior, meaning that the entire relationship hierarchy is despawned when `entity.despawn()` is called. The built in Parent/Children hierarchies enable this behavior, and `entity.despawn_recursive()` has been removed. 6. `world.spawn` now applies commands after spawning. This ensures that relationship bookkeeping happens immediately and removes the need to manually flush. This is in line with the equivalent behaviors recently added to the other APIs (ex: insert). 7. Removes the ValidParentCheckPlugin (system-driven / poll based) in favor of a `validate_parent_has_component` hook. ## Using Relationships The `Relationship` trait looks like this: ```rust pub trait Relationship: Component + Sized { type RelationshipSources: RelationshipSources<Relationship = Self>; fn get(&self) -> Entity; fn from(entity: Entity) -> Self; } ``` A relationship is a component that: 1. Is a simple wrapper over a "target" Entity. 2. Has a corresponding `RelationshipSources` component, which is a simple wrapper over a collection of entities. Every "target entity" targeted by a "source entity" with a `Relationship` has a `RelationshipSources` component, which contains every "source entity" that targets it. For example, the `Parent` component (as it currently exists in Bevy) is the `Relationship` component and the entity containing the Parent is the "source entity". The entity _inside_ the `Parent(Entity)` component is the "target entity". And that target entity has a `Children` component (which implements `RelationshipSources`). In practice, the Parent/Children relationship looks like this: ```rust #[derive(Relationship)] #[relationship(relationship_sources = Children)] pub struct Parent(pub Entity); #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent)] pub struct Children(Vec<Entity>); ``` The Relationship and RelationshipSources derives automatically implement Component with the relevant configuration (namely, the hooks necessary to keep everything in sync). The most direct way to add relationships is to spawn entities with relationship components: ```rust let a = world.spawn_empty().id(); let b = world.spawn(Parent(a)).id(); assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]); ``` There are also convenience APIs for spawning more than one entity with the same relationship: ```rust world.spawn_empty().with_related::<Children>(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` The existing `with_children` API is now a simpler wrapper over `with_related`. This makes this change largely non-breaking for existing spawn patterns. ```rust world.spawn_empty().with_children(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` There are also other relationship APIs, such as `add_related` and `despawn_related`. ## Automatic recursive despawn via the new on_despawn hook `RelationshipSources` can opt-in to "despawn descendants" behavior, which will despawn all related entities in the relationship hierarchy: ```rust #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent, despawn_descendants)] pub struct Children(Vec<Entity>); ``` This means that `entity.despawn_recursive()` is no longer required. Instead, just use `entity.despawn()` and the relevant related entities will also be despawned. To despawn an entity _without_ despawning its parent/child descendants, you should remove the `Children` component first, which will also remove the related `Parent` components: ```rust entity .remove::<Children>() .despawn() ``` This builds on the on_despawn hook introduced in this PR, which is fired when an entity is despawned (before other hooks). ## Relationships are the source of truth `Relationship` is the _single_ source of truth component. `RelationshipSources` is merely a reflection of what all the `Relationship` components say. By embracing this, we are able to significantly improve the performance of the system as a whole. We can rely on component lifecycles to protect us against duplicates, rather than needing to scan at runtime to ensure entities don't already exist (which results in quadratic runtime). A single source of truth gives us constant-time inserts. This does mean that we cannot directly spawn populated `Children` components (or directly add or remove entities from those components). I personally think this is a worthwhile tradeoff, both because it makes the performance much better _and_ because it means theres exactly one way to do things (which is a philosophy we try to employ for Bevy APIs). As an aside: treating both sides of the relationship as "equivalent source of truth relations" does enable building simple and flexible many-to-many relationships. But this introduces an _inherent_ need to scan (or hash) to protect against duplicates. [`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations) has a very nice implementation of the "symmetrical many-to-many" approach. Unfortunately I think the performance issues inherent to that approach make it a poor choice for Bevy's default relationship system. ## Followup Work * Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in this PR to keep the diff reasonable, but I'm personally biased toward this change (and using that naming pattern generally for relationships). * [Improved spawning ergonomics](https://github.com/bevyengine/bevy/discussions/16920) * Consider adding relationship observers/triggers for "relationship targets" whenever a source is added or removed. This would replace the current "hierarchy events" system, which is unused upstream but may have existing users downstream. I think triggers are the better fit for this than a buffered event queue, and would prefer not to add that back. * Fragmenting relations: My current idea hinges on the introduction of "value components" (aka: components whose type _and_ value determines their ComponentId, via something like Hashing / PartialEq). By labeling a Relationship component such as `ChildOf(Entity)` as a "value component", `ChildOf(e1)` and `ChildOf(e2)` would be considered "different components". This makes the transition between fragmenting and non-fragmenting a single flag, and everything else continues to work as expected. * Many-to-many support * Non-fragmenting: We can expand Relationship to be a list of entities instead of a single entity. I have largely already written the code for this. * Fragmenting: With the "value component" impl mentioned above, we get many-to-many support "for free", as it would allow inserting multiple copies of a Relationship component with different target entities. Fixes #3742 (If this PR is merged, I think we should open more targeted followup issues for the work above, with a fresh tracking issue free of the large amount of less-directed historical context) Fixes #17301 Fixes #12235 Fixes #15299 Fixes #15308 ## Migration Guide * Replace `ChildBuilder` with `ChildSpawnerCommands`. * Replace calls to `.set_parent(parent_id)` with `.insert(Parent(parent_id))`. * Replace calls to `.replace_children()` with `.remove::<Children>()` followed by `.add_children()`. Note that you'll need to manually despawn any children that are not carried over. * Replace calls to `.despawn_recursive()` with `.despawn()`. * Replace calls to `.despawn_descendants()` with `.despawn_related::<Children>()`. * If you have any calls to `.despawn()` which depend on the children being preserved, you'll need to remove the `Children` component first. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
02bb151889
|
Rename PickingBehavior to Pickable (#17266)
# Objective PR #17225 allowed for sprite picking to be opt-in. After some discussion, it was agreed that `PickingBehavior` should be used to opt-in to sprite picking behavior for entities. This leads to `PickingBehavior` having two purposes: mark an entity for use in a backend, and describe how it should be picked. Discussion led to the name `Pickable`making more sense (also: this is what the component was named before upstreaming). A follow-up pass will be made after this PR to unify backends. ## Solution Replace all instances of `PickingBehavior` and `picking_behavior` with `Pickable` and `pickable`, respectively. ## Testing CI ## Migration Guide Change all instances of `PickingBehavior` to `Pickable`. |
||
![]() |
48fe2a6e21
|
Rename "focus" in bevy_picking to "hover" (#16872)
# Objective With the introduction of bevy_input_focus, the uses of "focus" in bevy_picking are quite confusing and make searching hard. Users will intuitively think these concepts are related, but they actually aren't. ## Solution Rename / rephrase all uses of "focus" in bevy_picking to refer to "hover", since this is ultimately related to creating the `HoverMap`. ## Migration Guide Various terms related to "focus" in `bevy_picking` have been renamed to refer to "hover" to avoid confusion with `bevy_input_focus`. In particular: - The `update_focus` system has been renamed to `generate_hovermap` - `PickSet::Focus` and `PostFocus` have been renamed to `Hover` and `PostHover` - The `bevy_picking::focus` module has been renamed to `bevy_picking::hover` - The `is_focus_enabled` field on `PickingPlugin` has been renamed to `is_hover_enabled` - The `focus_should_run` run condition has been renamed to `hover_should_run` |
||
![]() |
ad4144ad7a
|
Rename Pointer<Down/Up> -> Pointer<Pressed/Released> in bevy_picking. (#16331)
# Objective Fixes #16192 ## Solution I renamed the Pointer<Down/Up> to <Pressed/Released> and then I resolved all the errors. Renamed variables like "is_down" to "is_pressed" to maintain consistency. Modified the docs in places where 'down/up' were used to maintain consistency. ## Testing I haven't tested this in any way beside the checks from rust analyzer and the examples in the examples/ directory. --- ## Migration Guide ### `bevy_picking/src/pointer.rs`: #### `enum PressDirection`: - `PressDirection::Down` changes to `PressDirection::Pressed`. - `PressDirection::Up` changes to `PressDirection::Released`. These changes are also relevant when working with `enum PointerAction` ### `bevy_picking/src/events.rs`: Clicking and pressing Events in events.rs categories change from [Down], [Up], [Click] to [Pressed], [Released], [Click]. - `struct Down` changes to `struct Pressed` - fires when a pointer button is pressed over the 'target' entity. - `struct Up` changes to `struct Released` - fires when a pointer button is released over the 'target' entity. - `struct Click` now fires when a pointer sends a Pressed event followed by a Released event on the same 'target'. - `struct DragStart` now fires when the 'target' entity receives a pointer Pressed event followed by a pointer Move event. - `struct DragEnd` now fires when the 'target' entity is being dragged and receives a pointer Released event. - `PickingEventWriters<'w>::down_events: EventWriter<'w, Pointer<Down>>` changes to `PickingEventWriters<'w>::pressed_events: EventWriter<'w, Pointer<Pressed>>`. - `PickingEventWriters<'w>::up_events changes to PickingEventWriters<'w>::released_events`. --------- Co-authored-by: Harun Ibram <harun.ibram@outlook.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
61b98ec80f
|
Rename trigger.entity() to trigger.target() (#16716)
# Objective - A `Trigger` has multiple associated `Entity`s - the entity observing the event, and the entity that was targeted by the event. - The field `entity: Entity` encodes no semantic information about what the entity is used for, you can already tell that it's an `Entity` by the type signature! ## Solution - Rename `trigger.entity()` to `trigger.target()` --- ## Changelog - `Trigger`s are associated with multiple entities. `Trigger::entity()` has been renamed to `Trigger::target()` to reflect the semantics of the entity being returned. ## Migration Guide - Rename `Trigger::entity()` to `Trigger::target()`. - Rename `ObserverTrigger::entity` to `ObserverTrigger::target` |
||
![]() |
0ac495f7f4
|
Remove accesskit re-export from bevy_a11y (#16257)
# Objective - Fixes #16235 ## Solution - Both Bevy and AccessKit export a `Node` struct, to reduce confusion Bevy will no longer re-export `AccessKit` from `bevy_a11y` ## Testing - Tested locally ## Migration Guide ```diff # main.rs -- use bevy_a11y::{ -- accesskit::{Node, Rect, Role}, -- AccessibilityNode, -- }; ++ use bevy_a11y::AccessibilityNode; ++ use accesskit::{Node, Rect, Role}; # Cargo.toml ++ accesskit = "0.17" ``` - Users will need to add `accesskit = "0.17"` to the dependencies section of their `Cargo.toml` file and update their `accesskit` use statements to come directly from the external crate instead of `bevy_a11y`. - Make sure to keep the versions of `accesskit` aligned with the versions Bevy uses. |
||
![]() |
817f160d35
|
Bump accesskit and accesskit_winit. (#16234)
# Objective - Bumps accesskit and accesskit_winit dependencies ## Solution - Fixes several breaking API changes introduced in accesskit 0.23. ## Testing - Tested with the ui example and seems to work comparably |
||
![]() |
015f2c69ca
|
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ``` |
||
![]() |
eb19a9ea0b
|
Migrate UI bundles to required components (#15898)
# Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
6f7d0e5725
|
split up TextStyle (#15857)
# Objective Currently text is recomputed unnecessarily on any changes to its color, which is extremely expensive. ## Solution Split up `TextStyle` into two separate components `TextFont` and `TextColor`. ## Testing I added this system to `many_buttons`: ```rust fn set_text_colors_changed(mut colors: Query<&mut TextColor>) { for mut text_color in colors.iter_mut() { text_color.set_changed(); } } ``` reports ~4fps on main, ~50fps with this PR. ## Migration Guide `TextStyle` has been renamed to `TextFont` and its `color` field has been moved to a separate component named `TextColor` which newtypes `Color`. |
||
![]() |
c2c19e5ae4
|
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
d454db8e58
|
Rename the Pickable component and fix incorrect documentation (#15707)
# Objective
- Rename `Pickable` to `PickingBehavior` to counter the easily-made
assumption that the component is required. It is optional
- Fix and clarify documentation
- The docs in `crates/bevy_ui/src/picking_backend.rs` were incorrect
about the necessity of `Pickable`
- Plus two minor code quality changes in this commit
(
|
||
![]() |
25bfa80e60
|
Migrate cameras to required components (#15641)
# Objective Yet another PR for migrating stuff to required components. This time, cameras! ## Solution As per the [selected proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected), deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d` and `Camera3d`. Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning, as suggested by Cart [on Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273). I would personally like cameras to work a bit differently and be split into a few more components, to avoid some footguns and confusing semantics, but that is more controversial, and shouldn't block this core migration. ## Testing I ran a few 2D and 3D examples, and tried cameras with and without render graphs. --- ## Migration Guide `Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of `Camera2d` and `Camera3d`. Inserting them will now also insert the other components required by them automatically. |
||
![]() |
efda7f3f9c
|
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ``` |
||
![]() |
1d9ee56457
|
Fix horizontal scrolling in scroll example for macOS (#15407)
# Objective Fixes #15401 ## Solution Changes the scroll inversion hotkey in the example from Shift to Control. Shift is idiomatic for this. Since we cannot use Shift per #15401, I picked another modifier arbitrarily. A production app would handle this in a platform specific way until the platform behaviors are unified upstream, but no point here. ## Testing I don't have a mac readily available for testing, if someone wouldn't mind testing. I would also appreciate confirmation that trackpad is working nicely. |
||
![]() |
55dddaf72e
|
UI Scrolling (#15291)
# Objective - Fixes #8074 - Adopts / Supersedes #8104 ## Solution Adapted from #8104 and affords the same benefits. **Additions** - [x] Update scrolling on relayout (height of node or contents may have changed) - [x] Make ScrollPosition component optional for ui nodes to avoid checking every node on scroll - [x] Nested scrollviews **Omissions** - Removed input handling for scrolling from `bevy_ui`. Users should update `ScrollPosition` directly. ### Implementation Adds a new `ScrollPosition` component. Updating this component on a `Node` with an overflow axis set to `OverflowAxis::Scroll` will reposition its children by that amount when calculating node transforms. As before, no impact on the underlying Taffy layout. Calculating this correctly is trickier than it was in #8104 due to `"Update scrolling on relayout"`. **Background** When `ScrollPosition` is updated directly by the user, it can be trivially handled in-engine by adding the parent's scroll position to the final location of each child node. However, _other layout actions_ may result in a situation where `ScrollPosition` needs to be updated. Consider a 1000 pixel tall vertically scrolling list of 100 elements, each 100 pixels tall. Scrolled to the bottom, the `ScrollPosition.offset_y` is 9000, just enough to display the last element in the list. When removing an element from that list, the new desired `ScrollPosition.offset_y` is 8900, but, critically, that is not known until after the sizes and positions of the children of the scrollable node are resolved. All user scrolling code today handles this by delaying the resolution by one frame. One notable disadvantage of this is the inability to support `WinitSettings::desktop_app()`, since there would need to be an input AFTER the layout change that caused the scroll position to update for the results of the scroll position update to render visually. I propose the alternative in this PR, which allows for same-frame resolution of scrolling layout. **Resolution** _Edit: Below resolution is outdated, and replaced with the simpler usage of taffy's `Layout::content_size`._ When recursively iterating the children of a node, each child now returns a `Vec2` representing the location of their own bottom right corner. Then, `[[0,0, [x,y]]` represents a bounding box containing the scrollable area filled by that child. Scrollable parents aggregate those areas into the bounding box of _all_ children, then consider that result against `ScrollPosition` to ensure its validity. In the event that resolution of the layout of the children invalidates the `ScrollPosition` (e.g. scrolled further than there were children to scroll to), _all_ children of that node must be recursively repositioned. The position of each child must change as a result of the change in scroll position. Therefore, this implementation takes care to only spend the cost of the "second layout pass" when a specific node actually had a `ScrollPosition` forcibly updated by the layout of its children. ## Testing Examples in `ui/scroll.rs`. There may be more complex node/style interactions that were unconsidered. --- ## Showcase  ## Alternatives - `bevy_ui` doesn't support scrolling. - `bevy_ui` implements scrolling with a one-frame delay on reactions to layout changes. |