Commit Graph

25 Commits

Author SHA1 Message Date
ickshonpe
5e8aa7986b
Newtyped ScrollPosition (#19881)
# Objective

Change `ScrollPosition` to newtype `Vec2`. It's easier to work with a
`Vec2` wrapper than individual fields.

I'm not sure why this wasn't newtyped to start with. Maybe the intent
was to support responsive coordinates eventually but that probably isn't
very useful or straightforward to implement. And even if we do want to
support responsive coords in the future, it can newtype `Val2`.

## Solution

Change `ScrollPosition` to newtype `Vec2`. 

Also added some extra details to the doc comments.

## Testing

Try the `scroll` example.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-07-01 17:41:48 +00:00
Joona Aalto
38c3423693
Event Split: Event, EntityEvent, and BufferedEvent (#19647)
# Objective

Closes #19564.

The current `Event` trait looks like this:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The `Event` trait is used by both buffered events
(`EventReader`/`EventWriter`) and observer events. If they are observer
events, they can optionally be targeted at specific `Entity`s or
`ComponentId`s, and can even be propagated to other entities.

However, there has long been a desire to split the trait semantically
for a variety of reasons, see #14843, #14272, and #16031 for discussion.
Some reasons include:

- It's very uncommon to use a single event type as both a buffered event
and targeted observer event. They are used differently and tend to have
distinct semantics.
- A common footgun is using buffered events with observers or event
readers with observer events, as there is no type-level error that
prevents this kind of misuse.
- #19440 made `Trigger::target` return an `Option<Entity>`. This
*seriously* hurts ergonomics for the general case of entity observers,
as you need to `.unwrap()` each time. If we could statically determine
whether the event is expected to have an entity target, this would be
unnecessary.

There's really two main ways that we can categorize events: push vs.
pull (i.e. "observer event" vs. "buffered event") and global vs.
targeted:

|              | Push            | Pull                        |
| ------------ | --------------- | --------------------------- |
| **Global**   | Global observer | `EventReader`/`EventWriter` |
| **Targeted** | Entity observer | -                           |

There are many ways to approach this, each with their tradeoffs.
Ultimately, we kind of want to split events both ways:

- A type-level distinction between observer events and buffered events,
to prevent people from using the wrong kind of event in APIs
- A statically designated entity target for observer events to avoid
accidentally using untargeted events for targeted APIs

This PR achieves these goals by splitting event traits into `Event`,
`EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait
implemented by all events.

## `Event`, `EntityEvent`, and `BufferedEvent`

`Event` is now a very simple trait shared by all events.

```rust
pub trait Event: Send + Sync + 'static {
    // Required for observer APIs
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

You can call `trigger` for *any* event, and use a global observer for
listening to the event.

```rust
#[derive(Event)]
struct Speak {
    message: String,
}

// ...

app.add_observer(|trigger: On<Speak>| {
    println!("{}", trigger.message);
});

// ...

commands.trigger(Speak {
    message: "Y'all like these reworked events?".to_string(),
});
```

To allow an event to be targeted at entities and even propagated
further, you can additionally implement the `EntityEvent` trait:

```rust
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This lets you call `trigger_targets`, and to use targeted observer APIs
like `EntityCommands::observe`:

```rust
#[derive(Event, EntityEvent)]
#[entity_event(traversal = &'static ChildOf, auto_propagate)]
struct Damage {
    amount: f32,
}

// ...

let enemy = commands.spawn((Enemy, Health(100.0))).id();

// Spawn some armor as a child of the enemy entity.
// When the armor takes damage, it will bubble the event up to the enemy.
let armor_piece = commands
    .spawn((ArmorPiece, Health(25.0), ChildOf(enemy)))
    .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| {
        // Note: `On::target` only exists because this is an `EntityEvent`.
        let mut health = query.get(trigger.target()).unwrap();
        health.0 -= trigger.amount();
    });

commands.trigger_targets(Damage { amount: 10.0 }, armor_piece);
```

> [!NOTE]
> You *can* still also trigger an `EntityEvent` without targets using
`trigger`. We probably *could* make this an either-or thing, but I'm not
sure that's actually desirable.

To allow an event to be used with the buffered API, you can implement
`BufferedEvent`:

```rust
pub trait BufferedEvent: Event {}
```

The event can then be used with `EventReader`/`EventWriter`:

```rust
#[derive(Event, BufferedEvent)]
struct Message(String);

fn write_hello(mut writer: EventWriter<Message>) {
    writer.write(Message("I hope these examples are alright".to_string()));
}

fn read_messages(mut reader: EventReader<Message>) {
    // Process all buffered events of type `Message`.
    for Message(message) in reader.read() {
        println!("{message}");
    }
}
```

In summary:

- Need a basic event you can trigger and observe? Derive `Event`!
- Need the event to be targeted at an entity? Derive `EntityEvent`!
- Need the event to be buffered and support the
`EventReader`/`EventWriter` API? Derive `BufferedEvent`!

## Alternatives

I'll now cover some of the alternative approaches I have considered and
briefly explored. I made this section collapsible since it ended up
being quite long :P

<details>

<summary>Expand this to see alternatives</summary>

### 1. Unified `Event` Trait

One option is not to have *three* separate traits (`Event`,
`EntityEvent`, `BufferedEvent`), and to instead just use associated
constants on `Event` to determine whether an event supports targeting
and buffering or not:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    const BUFFERED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

Methods can then use bounds like `where E: Event<TARGETED = true>` or
`where E: Event<BUFFERED = true>` to limit APIs to specific kinds of
events.

This would keep everything under one `Event` trait, but I don't think
it's necessarily a good idea. It makes APIs harder to read, and docs
can't easily refer to specific types of events. You can also create
weird invariants: what if you specify `TARGETED = false`, but have
`Traversal` and/or `AUTO_PROPAGATE` enabled?

### 2. `Event` and `Trigger`

Another option is to only split the traits between buffered events and
observer events, since that is the main thing people have been asking
for, and they have the largest API difference.

If we did this, I think we would need to make the terms *clearly*
separate. We can't really use `Event` and `BufferedEvent` as the names,
since it would be strange that `BufferedEvent` doesn't implement
`Event`. Something like `ObserverEvent` and `BufferedEvent` could work,
but it'd be more verbose.

For this approach, I would instead keep `Event` for the current
`EventReader`/`EventWriter` API, and call the observer event a
`Trigger`, since the "trigger" terminology is already used in the
observer context within Bevy (both as a noun and a verb). This is also
what a long [bikeshed on
Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791)
seemed to land on at the end of last year.

```rust
// For `EventReader`/`EventWriter`
pub trait Event: Send + Sync + 'static {}

// For observers
pub trait Trigger: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The problem is that "event" is just a really good term for something
that "happens". Observers are rapidly becoming the more prominent API,
so it'd be weird to give them the `Trigger` name and leave the good
`Event` name for the less common API.

So, even though a split like this seems neat on the surface, I think it
ultimately wouldn't really work. We want to keep the `Event` name for
observer events, and there is no good alternative for the buffered
variant. (`Message` was suggested, but saying stuff like "sends a
collision message" is weird.)

### 3. `GlobalEvent` + `TargetedEvent`

What if instead of focusing on the buffered vs. observed split, we
*only* make a distinction between global and targeted events?

```rust
// A shared event trait to allow global observers to work
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For buffered events and non-targeted observer events
pub trait GlobalEvent: Event {}

// For targeted observer events
pub trait TargetedEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is actually the first approach I implemented, and it has the neat
characteristic that you can only use non-targeted APIs like `trigger`
with a `GlobalEvent` and targeted APIs like `trigger_targets` with a
`TargetedEvent`. You have full control over whether the entity should or
should not have a target, as they are fully distinct at the type-level.

However, there's a few problems:

- There is no type-level indication of whether a `GlobalEvent` supports
buffered events or just non-targeted observer events
- An `Event` on its own does literally nothing, it's just a shared trait
required to make global observers accept both non-targeted and targeted
events
- If an event is both a `GlobalEvent` and `TargetedEvent`, global
observers again have ambiguity on whether an event has a target or not,
undermining some of the benefits
- The names are not ideal

### 4. `Event` and `EntityEvent`

We can fix some of the problems of Alternative 3 by accepting that
targeted events can also be used in non-targeted contexts, and simply
having the `Event` and `EntityEvent` traits:

```rust
// For buffered events and non-targeted observer events
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For targeted observer events
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is essentially identical to this PR, just without a dedicated
`BufferedEvent`. The remaining major "problem" is that there is still
zero type-level indication of whether an `Event` event *actually*
supports the buffered API. This leads us to the solution proposed in
this PR, using `Event`, `EntityEvent`, and `BufferedEvent`.

</details>

## Conclusion

The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR
aims to solve all the common problems with Bevy's current event model
while keeping the "weirdness" factor minimal. It splits in terms of both
the push vs. pull *and* global vs. targeted aspects, while maintaining a
shared concept for an "event".

### Why I Like This

- The term "event" remains as a single concept for all the different
kinds of events in Bevy.
- Despite all event types being "events", they use fundamentally
different APIs. Instead of assuming that you can use an event type with
any pattern (when only one is typically supported), you explicitly opt
in to each one with dedicated traits.
- Using separate traits for each type of event helps with documentation
and clearer function signatures.
- I can safely make assumptions on expected usage.
- If I see that an event is an `EntityEvent`, I can assume that I can
use `observe` on it and get targeted events.
- If I see that an event is a `BufferedEvent`, I can assume that I can
use `EventReader` to read events.
- If I see both `EntityEvent` and `BufferedEvent`, I can assume that
both APIs are supported.

In summary: This allows for a unified concept for events, while limiting
the different ways to use them with opt-in traits. No more guess-work
involved when using APIs.

### Problems?

- Because `BufferedEvent` implements `Event` (for more consistent
semantics etc.), you can still use all buffered events for non-targeted
observers. I think this is fine/good. The important part is that if you
see that an event implements `BufferedEvent`, you know that the
`EventReader`/`EventWriter` API should be supported. Whether it *also*
supports other APIs is secondary.
- I currently only support `trigger_targets` for an `EntityEvent`.
However, you can technically target components too, without targeting
any entities. I consider that such a niche and advanced use case that
it's not a huge problem to only support it for `EntityEvent`s, but we
could also split `trigger_targets` into `trigger_entities` and
`trigger_components` if we wanted to (or implement components as
entities :P).
- You can still trigger an `EntityEvent` *without* targets. I consider
this correct, since `Event` implements the non-targeted behavior, and
it'd be weird if implementing another trait *removed* behavior. However,
it does mean that global observers for entity events can technically
return `Entity::PLACEHOLDER` again (since I got rid of the
`Option<Entity>` added in #19440 for ergonomics). I think that's enough
of an edge case that it's not a huge problem, but it is worth keeping in
mind.
- ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type
currently duplicates the `Event` implementation, so you instead need to
manually implement one of them.~~ Changed to always requiring `Event` to
be derived.

## Related Work

There are plans to implement multi-event support for observers,
especially for UI contexts. [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)
API looked like this:

```rust
// Truncated for brevity
trigger: Trigger<(
    OnAdd<Pressed>,
    OnRemove<Pressed>,
    OnAdd<InteractionDisabled>,
    OnRemove<InteractionDisabled>,
    OnInsert<Hovered>,
)>,
```

I believe this shouldn't be in conflict with this PR. If anything, this
PR might *help* achieve the multi-event pattern for entity observers
with fewer footguns: by statically enforcing that all of these events
are `EntityEvent`s in the context of `EntityCommands::observe`, we can
avoid misuse or weird cases where *some* events inside the trigger are
targeted while others are not.
2025-06-15 16:46:34 +00:00
Joona Aalto
e5dc177b4b
Rename Trigger to On (#19596)
# Objective

Currently, the observer API looks like this:

```rust
app.add_observer(|trigger: Trigger<Explode>| {
    info!("Entity {} exploded!", trigger.target());
});
```

Future plans for observers also include "multi-event observers" with a
trigger that looks like this (see [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)):

```rust
trigger: Trigger<(
    OnAdd<Pressed>,
    OnRemove<Pressed>,
    OnAdd<InteractionDisabled>,
    OnRemove<InteractionDisabled>,
    OnInsert<Hovered>,
)>,
```

In scenarios like this, there is a lot of repetition of `On`. These are
expected to be very high-traffic APIs especially in UI contexts, so
ergonomics and readability are critical.

By renaming `Trigger` to `On`, we can make these APIs read more cleanly
and get rid of the repetition:

```rust
app.add_observer(|trigger: On<Explode>| {
    info!("Entity {} exploded!", trigger.target());
});
```

```rust
trigger: On<(
    Add<Pressed>,
    Remove<Pressed>,
    Add<InteractionDisabled>,
    Remove<InteractionDisabled>,
    Insert<Hovered>,
)>,
```

Names like `On<Add<Pressed>>` emphasize the actual event listener nature
more than `Trigger<OnAdd<Pressed>>`, and look cleaner. This *also* frees
up the `Trigger` name if we want to use it for the observer event type,
splitting them out from buffered events (bikeshedding this is out of
scope for this PR though).

For prior art:
[`bevy_eventlistener`](https://github.com/aevyrie/bevy_eventlistener)
used
[`On`](https://docs.rs/bevy_eventlistener/latest/bevy_eventlistener/event_listener/struct.On.html)
for its event listener type. Though in our case, the observer is the
event listener, and `On` is just a type containing information about the
triggered event.

## Solution

Steal from `bevy_event_listener` by @aevyrie and use `On`.

- Rename `Trigger` to `On`
- Rename `OnAdd` to `Add`
- Rename `OnInsert` to `Insert`
- Rename `OnReplace` to `Replace`
- Rename `OnRemove` to `Remove`
- Rename `OnDespawn` to `Despawn`

## Discussion

### Naming Conflicts??

Using a name like `Add` might initially feel like a very bad idea, since
it risks conflict with `core::ops::Add`. However, I don't expect this to
be a big problem in practice.

- You rarely need to actually implement the `Add` trait, especially in
modules that would use the Bevy ECS.
- In the rare cases where you *do* get a conflict, it is very easy to
fix by just disambiguating, for example using `ops::Add`.
- The `Add` event is a struct while the `Add` trait is a trait (duh), so
the compiler error should be very obvious.

For the record, renaming `OnAdd` to `Add`, I got exactly *zero* errors
or conflicts within Bevy itself. But this is of course not entirely
representative of actual projects *using* Bevy.

You might then wonder, why not use `Added`? This would conflict with the
`Added` query filter, so it wouldn't work. Additionally, the current
naming convention for observer events does not use past tense.

### Documentation

This does make documentation slightly more awkward when referring to
`On` or its methods. Previous docs often referred to `Trigger::target`
or "sends a `Trigger`" (which is... a bit strange anyway), which would
now be `On::target` and "sends an observer `Event`".

You can see the diff in this PR to see some of the effects. I think it
should be fine though, we may just need to reword more documentation to
read better.
2025-06-12 18:22:33 +00:00
LP
8ab71a6999
Modified the "scroll.rs" example to use the new spawning API. (#19592)
# Objective

- Update the scroll example to use the latest API.

## Solution

- It now uses the 'children![]' API.

## Testing

- I manually verified that the scrolling was working

## Limitations
- Unfortunately, I couldn't find a way to spawn observers targeting the
entity inside the "fn() -> impl Bundle" function.
2025-06-12 02:32:18 +00:00
Joona Aalto
33c6f45a35
Rename some pointer events and components (#19574)
# Objective

#19366 implemented core button widgets, which included the `Depressed`
state component.

`Depressed` was chosen instead of `Pressed` to avoid conflict with the
`Pointer<Pressed>` event, but it is problematic and awkward in many
ways:

- Using the word "depressed" for such a high-traffic type is not great
due to the obvious connection to "depressed" as in depression.
- "Depressed" is not what I would search for if I was looking for a
component like this, and I'm not aware of any other engine or UI
framework using the term.
- `Depressed` is not a very natural pair to the `Pointer<Pressed>`
event.
- It might be because I'm not a native English speaker, but I have very
rarely heard someone say "a button is depressed". Seeing it, my mind
initially goes from "depression??" to "oh, de-pressed, meaning released"
and definitely not "is pressed", even though that *is* also a valid
meaning for it.

A related problem is that the current `Pointer<Pressed>` and
`Pointer<Released>` event names use a different verb tense than all of
our other observer events such as `Pointer<Click>` or
`Pointer<DragStart>`. By fixing this and renaming `Pressed` (and
`Released`), we can then use `Pressed` instead of `Depressed` for the
state component.

Additionally, the `IsHovered` and `IsDirectlyHovered` components added
in #19366 use an inconsistent naming; the other similar components don't
use an `Is` prefix. It also makes query filters like `Has<IsHovered>`
and `With<IsHovered>` a bit more awkward.

This is partially related to Cart's [picking concept
proposal](https://gist.github.com/cart/756e48a149db2838028be600defbd24a?permalink_comment_id=5598154).

## Solution

- Rename `Pointer<Pressed>` to `Pointer<Press>`
- Rename `Pointer<Released>` to `Pointer<Release>`
- Rename `Depressed` to `Pressed`
- Rename `IsHovered` to `Hovered`
- Rename `IsDirectlyHovered` to `DirectlyHovered`
2025-06-10 21:57:28 +00:00
Eagster
064e5e48b4
Remove entity placeholder from observers (#19440)
# Objective

`Entity::PLACEHOLDER` acts as a magic number that will *probably* never
really exist, but it certainly could. And, `Entity` has a niche, so the
only reason to use `PLACEHOLDER` is as an alternative to `MaybeUninit`
that trades safety risks for logic risks.

As a result, bevy has generally advised against using `PLACEHOLDER`, but
we still use if for a lot internally. This pr starts removing internal
uses of it, starting from observers.

## Solution

Change all trigger target related types from `Entity` to
`Option<Entity>`

Small migration guide to come.

## Testing

CI

## Future Work

This turned a lot of code from 

```rust
trigger.target()
```

to 

```rust
trigger.target().unwrap()
```

The extra panic is no worse than before; it's just earlier than
panicking after passing the placeholder to something else.

But this is kinda annoying. 

I would like to add a `TriggerMode` or something to `Event` that would
restrict what kinds of targets can be used for that event. Many events
like `Removed` etc, are always triggered with a target. We can make
those have a way to assume Some, etc. But I wanted to save that for a
future pr.
2025-06-09 19:37:56 +00:00
Alice Cecile
5ab0456f61
Unified picking cleanup (#18401)
# Objective

@cart noticed some issues with my work in
https://github.com/bevyengine/bevy/pull/17348#discussion_r2001815637,
which I somehow missed before merging the PR.

## Solution

- feature gate the UiPickingPlugin correctly
- don't manually add the picking plugins

## Testing

Ran the debug_picking and sprite_picking examples (for UI and sprites
respectively): both seem to work fine.
2025-03-18 20:28:03 +00:00
Antony
65e289f5bc
Unify picking backends (#17348)
# Objective

Currently, our picking backends are inconsistent:

- Mesh picking and sprite picking both have configurable opt in/out
behavior. UI picking does not.
- Sprite picking uses `SpritePickingCamera` and `Pickable` for control,
but mesh picking uses `RayCastPickable`.
- `MeshPickingPlugin` is not a part of `DefaultPlugins`.
`SpritePickingPlugin` and `UiPickingPlugin` are.

## Solution

- Add configurable opt in/out behavior to UI picking (defaults to opt
out).
- Replace `RayCastPickable` with `MeshPickingCamera` and `Pickable`.
- Remove `SpritePickingPlugin` and `UiPickingPlugin` from
`DefaultPlugins`.

## Testing

Ran some examples.

## Migration Guide

`UiPickingPlugin` and `SpritePickingPlugin` are no longer included in
`DefaultPlugins`. They must be explicitly added.

`RayCastPickable` has been replaced in favor of the `MeshPickingCamera`
and `Pickable` components. You should add them to cameras and entities,
respectively, if you have `MeshPickingSettings::require_markers` set to
`true`.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-03-18 19:24:43 +00:00
Benjamin Brienen
c3ff6d4136
Fix non-crate typos (#18219)
# Objective

Correct spelling

## Solution

Fix typos, specifically ones that I found in folders other than /crates

## Testing

CI

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-03-11 06:17:48 +00:00
Carter Anderson
21f1e3045c
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with
planned paths for fragmenting and non-fragmenting many-to-many
relationships). "Non-fragmenting" means that entities with the same
relationship type, but different relationship targets, are not forced
into separate tables (which would cause "table fragmentation").

Functionally, this fills a similar niche as the current Parent/Children
system. The biggest differences are:

1. Relationships have simpler internals and significantly improved
performance and UX. Commands and specialized APIs are no longer
necessary to keep everything in sync. Just spawn entities with the
relationship components you want and everything "just works".
2. Relationships are generalized. Bevy can provide additional built in
relationships, and users can define their own.

**REQUEST TO REVIEWERS**: _please don't leave top level comments and
instead comment on specific lines of code. That way we can take
advantage of threaded discussions. Also dont leave comments simply
pointing out CI failures as I can read those just fine._

## Built on top of what we have

Relationships are implemented on top of the Bevy ECS features we already
have: components, immutability, and hooks. This makes them immediately
compatible with all of our existing (and future) APIs for querying,
spawning, removing, scenes, reflection, etc. The fewer specialized APIs
we need to build, maintain, and teach, the better.

## Why focus on one-to-many non-fragmenting first?

1. This allows us to improve Parent/Children relationships immediately,
in a way that is reasonably uncontroversial. Switching our hierarchy to
fragmenting relationships would have significant performance
implications. ~~Flecs is heavily considering a switch to non-fragmenting
relations after careful considerations of the performance tradeoffs.~~
_(Correction from @SanderMertens: Flecs is implementing non-fragmenting
storage specialized for asset hierarchies, where asset hierarchies are
many instances of small trees that have a well defined structure)_
2. Adding generalized one-to-many relationships is currently a priority
for the [Next Generation Scene / UI
effort](https://github.com/bevyengine/bevy/discussions/14437).
Specifically, we're interested in building reactions and observers on
top.

## The changes

This PR does the following:

1. Adds a generic one-to-many Relationship system
3. Ports the existing Parent/Children system to Relationships, which now
lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been
removed.
4. Adds on_despawn component hooks
5. Relationships can opt-in to "despawn descendants" behavior, meaning
that the entire relationship hierarchy is despawned when
`entity.despawn()` is called. The built in Parent/Children hierarchies
enable this behavior, and `entity.despawn_recursive()` has been removed.
6. `world.spawn` now applies commands after spawning. This ensures that
relationship bookkeeping happens immediately and removes the need to
manually flush. This is in line with the equivalent behaviors recently
added to the other APIs (ex: insert).
7. Removes the ValidParentCheckPlugin (system-driven / poll based) in
favor of a `validate_parent_has_component` hook.

## Using Relationships

The `Relationship` trait looks like this:

```rust
pub trait Relationship: Component + Sized {
    type RelationshipSources: RelationshipSources<Relationship = Self>;
    fn get(&self) -> Entity;
    fn from(entity: Entity) -> Self;
}
```

A relationship is a component that:

1. Is a simple wrapper over a "target" Entity.
2. Has a corresponding `RelationshipSources` component, which is a
simple wrapper over a collection of entities. Every "target entity"
targeted by a "source entity" with a `Relationship` has a
`RelationshipSources` component, which contains every "source entity"
that targets it.

For example, the `Parent` component (as it currently exists in Bevy) is
the `Relationship` component and the entity containing the Parent is the
"source entity". The entity _inside_ the `Parent(Entity)` component is
the "target entity". And that target entity has a `Children` component
(which implements `RelationshipSources`).

In practice, the Parent/Children relationship looks like this:

```rust
#[derive(Relationship)]
#[relationship(relationship_sources = Children)]
pub struct Parent(pub Entity);

#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent)]
pub struct Children(Vec<Entity>);
```

The Relationship and RelationshipSources derives automatically implement
Component with the relevant configuration (namely, the hooks necessary
to keep everything in sync).

The most direct way to add relationships is to spawn entities with
relationship components:

```rust
let a = world.spawn_empty().id();
let b = world.spawn(Parent(a)).id();

assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]);
```

There are also convenience APIs for spawning more than one entity with
the same relationship:

```rust
world.spawn_empty().with_related::<Children>(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

The existing `with_children` API is now a simpler wrapper over
`with_related`. This makes this change largely non-breaking for existing
spawn patterns.

```rust
world.spawn_empty().with_children(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

There are also other relationship APIs, such as `add_related` and
`despawn_related`.

## Automatic recursive despawn via the new on_despawn hook

`RelationshipSources` can opt-in to "despawn descendants" behavior,
which will despawn all related entities in the relationship hierarchy:

```rust
#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent, despawn_descendants)]
pub struct Children(Vec<Entity>);
```

This means that `entity.despawn_recursive()` is no longer required.
Instead, just use `entity.despawn()` and the relevant related entities
will also be despawned.

To despawn an entity _without_ despawning its parent/child descendants,
you should remove the `Children` component first, which will also remove
the related `Parent` components:

```rust
entity
    .remove::<Children>()
    .despawn()
```

This builds on the on_despawn hook introduced in this PR, which is fired
when an entity is despawned (before other hooks).

## Relationships are the source of truth

`Relationship` is the _single_ source of truth component.
`RelationshipSources` is merely a reflection of what all the
`Relationship` components say. By embracing this, we are able to
significantly improve the performance of the system as a whole. We can
rely on component lifecycles to protect us against duplicates, rather
than needing to scan at runtime to ensure entities don't already exist
(which results in quadratic runtime). A single source of truth gives us
constant-time inserts. This does mean that we cannot directly spawn
populated `Children` components (or directly add or remove entities from
those components). I personally think this is a worthwhile tradeoff,
both because it makes the performance much better _and_ because it means
theres exactly one way to do things (which is a philosophy we try to
employ for Bevy APIs).

As an aside: treating both sides of the relationship as "equivalent
source of truth relations" does enable building simple and flexible
many-to-many relationships. But this introduces an _inherent_ need to
scan (or hash) to protect against duplicates.
[`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations)
has a very nice implementation of the "symmetrical many-to-many"
approach. Unfortunately I think the performance issues inherent to that
approach make it a poor choice for Bevy's default relationship system.

## Followup Work

* Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in
this PR to keep the diff reasonable, but I'm personally biased toward
this change (and using that naming pattern generally for relationships).
* [Improved spawning
ergonomics](https://github.com/bevyengine/bevy/discussions/16920)
* Consider adding relationship observers/triggers for "relationship
targets" whenever a source is added or removed. This would replace the
current "hierarchy events" system, which is unused upstream but may have
existing users downstream. I think triggers are the better fit for this
than a buffered event queue, and would prefer not to add that back.
* Fragmenting relations: My current idea hinges on the introduction of
"value components" (aka: components whose type _and_ value determines
their ComponentId, via something like Hashing / PartialEq). By labeling
a Relationship component such as `ChildOf(Entity)` as a "value
component", `ChildOf(e1)` and `ChildOf(e2)` would be considered
"different components". This makes the transition between fragmenting
and non-fragmenting a single flag, and everything else continues to work
as expected.
* Many-to-many support
* Non-fragmenting: We can expand Relationship to be a list of entities
instead of a single entity. I have largely already written the code for
this.
* Fragmenting: With the "value component" impl mentioned above, we get
many-to-many support "for free", as it would allow inserting multiple
copies of a Relationship component with different target entities.

Fixes #3742 (If this PR is merged, I think we should open more targeted
followup issues for the work above, with a fresh tracking issue free of
the large amount of less-directed historical context)
Fixes #17301
Fixes #12235 
Fixes #15299
Fixes #15308 

## Migration Guide

* Replace `ChildBuilder` with `ChildSpawnerCommands`.
* Replace calls to `.set_parent(parent_id)` with
`.insert(Parent(parent_id))`.
* Replace calls to `.replace_children()` with `.remove::<Children>()`
followed by `.add_children()`. Note that you'll need to manually despawn
any children that are not carried over.
* Replace calls to `.despawn_recursive()` with `.despawn()`.
* Replace calls to `.despawn_descendants()` with
`.despawn_related::<Children>()`.
* If you have any calls to `.despawn()` which depend on the children
being preserved, you'll need to remove the `Children` component first.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-18 22:20:30 +00:00
Antony
02bb151889
Rename PickingBehavior to Pickable (#17266)
# Objective

PR #17225 allowed for sprite picking to be opt-in. After some
discussion, it was agreed that `PickingBehavior` should be used to
opt-in to sprite picking behavior for entities. This leads to
`PickingBehavior` having two purposes: mark an entity for use in a
backend, and describe how it should be picked. Discussion led to the
name `Pickable`making more sense (also: this is what the component was
named before upstreaming).

A follow-up pass will be made after this PR to unify backends.

## Solution

Replace all instances of `PickingBehavior` and `picking_behavior` with
`Pickable` and `pickable`, respectively.

## Testing

CI

## Migration Guide

Change all instances of `PickingBehavior` to `Pickable`.
2025-01-12 05:36:52 +00:00
Alice Cecile
48fe2a6e21
Rename "focus" in bevy_picking to "hover" (#16872)
# Objective

With the introduction of bevy_input_focus, the uses of "focus" in
bevy_picking are quite confusing and make searching hard.

Users will intuitively think these concepts are related, but they
actually aren't.

## Solution

Rename / rephrase all uses of "focus" in bevy_picking to refer to
"hover", since this is ultimately related to creating the `HoverMap`.

## Migration Guide

Various terms related to "focus" in `bevy_picking` have been renamed to
refer to "hover" to avoid confusion with `bevy_input_focus`. In
particular:

- The `update_focus` system has been renamed to `generate_hovermap`
- `PickSet::Focus` and `PostFocus` have been renamed to `Hover` and
`PostHover`
- The `bevy_picking::focus` module has been renamed to
`bevy_picking::hover`
- The `is_focus_enabled` field on `PickingPlugin` has been renamed to
`is_hover_enabled`
- The `focus_should_run` run condition has been renamed to
`hover_should_run`
2024-12-24 06:22:13 +00:00
Harun Ibram
ad4144ad7a
Rename Pointer<Down/Up> -> Pointer<Pressed/Released> in bevy_picking. (#16331)
# Objective
Fixes #16192 

## Solution
I renamed the Pointer<Down/Up> to <Pressed/Released> and then I resolved
all the errors.
Renamed variables like "is_down" to "is_pressed" to maintain
consistency.
Modified the docs in places where 'down/up' were used to maintain
consistency.

## Testing

I haven't tested this in any way beside the checks from rust analyzer
and the examples in the examples/ directory.

---

## Migration Guide

### `bevy_picking/src/pointer.rs`:
#### `enum PressDirection`:

- `PressDirection::Down` changes to `PressDirection::Pressed`.
- `PressDirection::Up` changes to `PressDirection::Released`.

	These changes are also relevant when working with `enum PointerAction`

### `bevy_picking/src/events.rs`:
Clicking and pressing Events in events.rs categories change from [Down],
[Up], [Click] to [Pressed], [Released], [Click].

- `struct Down` changes to `struct Pressed` - fires when a pointer
button is pressed over the 'target' entity.
- `struct Up` changes to `struct Released` - fires when a pointer button
is released over the 'target' entity.
- `struct Click` now fires when a pointer sends a Pressed event followed
by a Released event on the same 'target'.
- `struct DragStart` now fires when the 'target' entity receives a
pointer Pressed event followed by a pointer Move event.
- `struct DragEnd` now fires when the 'target' entity is being dragged
and receives a pointer Released event.
- `PickingEventWriters<'w>::down_events: EventWriter<'w, Pointer<Down>>`
changes to `PickingEventWriters<'w>::pressed_events: EventWriter<'w,
Pointer<Pressed>>`.
- `PickingEventWriters<'w>::up_events changes to
PickingEventWriters<'w>::released_events`.

---------

Co-authored-by: Harun Ibram <harun.ibram@outlook.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-12-10 02:20:48 +00:00
Aevyrie
61b98ec80f
Rename trigger.entity() to trigger.target() (#16716)
# Objective

- A `Trigger` has multiple associated `Entity`s - the entity observing
the event, and the entity that was targeted by the event.
- The field `entity: Entity` encodes no semantic information about what
the entity is used for, you can already tell that it's an `Entity` by
the type signature!

## Solution

- Rename `trigger.entity()` to `trigger.target()`

---

## Changelog

- `Trigger`s are associated with multiple entities. `Trigger::entity()`
has been renamed to `Trigger::target()` to reflect the semantics of the
entity being returned.

## Migration Guide

- Rename `Trigger::entity()` to `Trigger::target()`.
- Rename `ObserverTrigger::entity` to `ObserverTrigger::target`
2024-12-08 21:55:09 +00:00
Derick M
0ac495f7f4
Remove accesskit re-export from bevy_a11y (#16257)
# Objective

- Fixes #16235 

## Solution

- Both Bevy and AccessKit export a `Node` struct, to reduce confusion
Bevy will no longer re-export `AccessKit` from `bevy_a11y`

## Testing

- Tested locally

## Migration Guide

```diff
# main.rs
--    use bevy_a11y::{
--        accesskit::{Node, Rect, Role},
--        AccessibilityNode,
--    };
++    use bevy_a11y::AccessibilityNode;
++    use accesskit::{Node, Rect, Role};

# Cargo.toml
++    accesskit = "0.17"
```

- Users will need to add `accesskit = "0.17"` to the dependencies
section of their `Cargo.toml` file and update their `accesskit` use
statements to come directly from the external crate instead of
`bevy_a11y`.
- Make sure to keep the versions of `accesskit` aligned with the
versions Bevy uses.
2024-11-08 21:01:16 +00:00
Nolan Darilek
817f160d35
Bump accesskit and accesskit_winit. (#16234)
# Objective

- Bumps accesskit and accesskit_winit dependencies

## Solution

- Fixes several breaking API changes introduced in accesskit 0.23.

## Testing

- Tested with the ui example and seems to work comparably
2024-11-04 20:07:38 +00:00
Carter Anderson
015f2c69ca
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective

Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)

## Solution

As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.

This accomplishes a number of goals:

## Ergonomics wins

Specifying both `Node` and `Style` is now no longer required for
non-default styles

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

## Conceptual clarity

`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).

By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.

## Next Steps

* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.

---

## Migration Guide

Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:

Before:
```rust
fn system(nodes: Query<&Node>) {
    for node in &nodes {
        let computed_size = node.size();
    }
}
```

After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
    for computed_node in &computed_nodes {
        let computed_size = computed_node.size();
    }
}
```
2024-10-18 22:25:33 +00:00
VitalyR
eb19a9ea0b
Migrate UI bundles to required components (#15898)
# Objective

- Migrate UI bundles to required components, fixes #15889

## Solution

- deprecate `NodeBundle` in favor of `Node`
- deprecate `ImageBundle` in favor of `UiImage`
- deprecate `ButtonBundle` in favor of `Button`

## Testing

CI.

## Migration Guide

- Replace all uses of `NodeBundle` with `Node`. e.g.
```diff
     commands
-        .spawn(NodeBundle {
-            style: Style {
+        .spawn((
+            Node::default(),
+            Style {
                 width: Val::Percent(100.),
                 align_items: AlignItems::Center,
                 justify_content: JustifyContent::Center,
                 ..default()
             },
-            ..default()
-        })
+        ))
``` 
- Replace all uses of `ButtonBundle` with `Button`. e.g.
```diff
                     .spawn((
-                        ButtonBundle {
-                            style: Style {
-                                width: Val::Px(w),
-                                height: Val::Px(h),
-                                // horizontally center child text
-                                justify_content: JustifyContent::Center,
-                                // vertically center child text
-                                align_items: AlignItems::Center,
-                                margin: UiRect::all(Val::Px(20.0)),
-                                ..default()
-                            },
-                            image: image.clone().into(),
+                        Button,
+                        Style {
+                            width: Val::Px(w),
+                            height: Val::Px(h),
+                            // horizontally center child text
+                            justify_content: JustifyContent::Center,
+                            // vertically center child text
+                            align_items: AlignItems::Center,
+                            margin: UiRect::all(Val::Px(20.0)),
                             ..default()
                         },
+                        UiImage::from(image.clone()),
                         ImageScaleMode::Sliced(slicer.clone()),
                     ))
```
- Replace all uses of `ImageBundle` with `UiImage`. e.g.
```diff
-    commands.spawn(ImageBundle {
-        image: UiImage {
+    commands.spawn((
+        UiImage {
             texture: metering_mask,
             ..default()
         },
-        style: Style {
+        Style {
             width: Val::Percent(100.0),
             height: Val::Percent(100.0),
             ..default()
         },
-        ..default()
-    });
+    ));
 ```

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
ickshonpe
6f7d0e5725
split up TextStyle (#15857)
# Objective

Currently text is recomputed unnecessarily on any changes to its color,
which is extremely expensive.

## Solution
Split up `TextStyle` into two separate components `TextFont` and
`TextColor`.

## Testing

I added this system to `many_buttons`:
```rust
fn set_text_colors_changed(mut colors: Query<&mut TextColor>) {
    for mut text_color in colors.iter_mut() {
        text_color.set_changed();
    }
}
```

reports ~4fps on main, ~50fps with this PR.

## Migration Guide
`TextStyle` has been renamed to `TextFont` and its `color` field has
been moved to a separate component named `TextColor` which newtypes
`Color`.
2024-10-13 17:06:22 +00:00
UkoeHB
c2c19e5ae4
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.**

# Objective

- Implement https://github.com/bevyengine/bevy/discussions/15014

## Solution

This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.

Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.

## Testing

- [x] Text examples all work.

---

## Showcase

TODO: showcase-worthy

## Migration Guide

TODO: very breaking

### Accessing text spans by index

Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.

Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
    let text = query.single_mut();
    text.sections[1].value = format_time(time.elapsed());
}
```

After:
```rust
fn refresh_text(
    query: Query<Entity, With<TimeText>>,
    mut writer: UiTextWriter,
    time: Res<Time>
) {
    let entity = query.single();
    *writer.text(entity, 1) = format_time(time.elapsed());
}
```

### Iterating text spans

Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.

---------

Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
Tim
d454db8e58
Rename the Pickable component and fix incorrect documentation (#15707)
# Objective

- Rename `Pickable` to `PickingBehavior` to counter the easily-made
assumption that the component is required. It is optional
- Fix and clarify documentation
- The docs in `crates/bevy_ui/src/picking_backend.rs` were incorrect
about the necessity of `Pickable`
- Plus two minor code quality changes in this commit
(7c2e75f48d)

Closes #15632
2024-10-07 17:09:57 +00:00
Joona Aalto
25bfa80e60
Migrate cameras to required components (#15641)
# Objective

Yet another PR for migrating stuff to required components. This time,
cameras!

## Solution

As per the [selected
proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected),
deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d`
and `Camera3d`.

Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning,
as suggested by Cart [on
Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273).
I would personally like cameras to work a bit differently and be split
into a few more components, to avoid some footguns and confusing
semantics, but that is more controversial, and shouldn't block this core
migration.

## Testing

I ran a few 2D and 3D examples, and tried cameras with and without
render graphs.

---

## Migration Guide

`Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of
`Camera2d` and `Camera3d`. Inserting them will now also insert the other
components required by them automatically.
2024-10-05 01:59:52 +00:00
Clar Fon
efda7f3f9c
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this
comment:
https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300

See #15375 for more reasoning/motivation.

## Rebasing (rerunning)

```rust
git switch simpler-lint-fixes
git reset --hard main
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "rustfmt"
cargo clippy --workspace --all-targets --all-features --fix
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "clippy"
git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887
```
2024-09-24 11:42:59 +00:00
Piefayth
1d9ee56457
Fix horizontal scrolling in scroll example for macOS (#15407)
# Objective
Fixes #15401

## Solution
Changes the scroll inversion hotkey in the example from Shift to
Control.

Shift is idiomatic for this. Since we cannot use Shift per #15401, I
picked another modifier arbitrarily. A production app would handle this
in a platform specific way until the platform behaviors are unified
upstream, but no point here.

## Testing
I don't have a mac readily available for testing, if someone wouldn't
mind testing. I would also appreciate confirmation that trackpad is
working nicely.
2024-09-24 11:40:54 +00:00
Piefayth
55dddaf72e
UI Scrolling (#15291)
# Objective

- Fixes #8074 
- Adopts / Supersedes #8104

## Solution

Adapted from #8104 and affords the same benefits.

**Additions**
- [x] Update scrolling on relayout (height of node or contents may have
changed)
- [x] Make ScrollPosition component optional for ui nodes to avoid
checking every node on scroll
- [x] Nested scrollviews

**Omissions**
- Removed input handling for scrolling from `bevy_ui`. Users should
update `ScrollPosition` directly.

### Implementation

Adds a new `ScrollPosition` component. Updating this component on a
`Node` with an overflow axis set to `OverflowAxis::Scroll` will
reposition its children by that amount when calculating node transforms.
As before, no impact on the underlying Taffy layout.

Calculating this correctly is trickier than it was in #8104 due to
`"Update scrolling on relayout"`.

**Background**

When `ScrollPosition` is updated directly by the user, it can be
trivially handled in-engine by adding the parent's scroll position to
the final location of each child node. However, _other layout actions_
may result in a situation where `ScrollPosition` needs to be updated.
Consider a 1000 pixel tall vertically scrolling list of 100 elements,
each 100 pixels tall. Scrolled to the bottom, the
`ScrollPosition.offset_y` is 9000, just enough to display the last
element in the list. When removing an element from that list, the new
desired `ScrollPosition.offset_y` is 8900, but, critically, that is not
known until after the sizes and positions of the children of the
scrollable node are resolved.

All user scrolling code today handles this by delaying the resolution by
one frame. One notable disadvantage of this is the inability to support
`WinitSettings::desktop_app()`, since there would need to be an input
AFTER the layout change that caused the scroll position to update for
the results of the scroll position update to render visually.

I propose the alternative in this PR, which allows for same-frame
resolution of scrolling layout.

**Resolution**

_Edit: Below resolution is outdated, and replaced with the simpler usage
of taffy's `Layout::content_size`._

When recursively iterating the children of a node, each child now
returns a `Vec2` representing the location of their own bottom right
corner. Then, `[[0,0, [x,y]]` represents a bounding box containing the
scrollable area filled by that child. Scrollable parents aggregate those
areas into the bounding box of _all_ children, then consider that result
against `ScrollPosition` to ensure its validity.

In the event that resolution of the layout of the children invalidates
the `ScrollPosition` (e.g. scrolled further than there were children to
scroll to), _all_ children of that node must be recursively
repositioned. The position of each child must change as a result of the
change in scroll position.

Therefore, this implementation takes care to only spend the cost of the
"second layout pass" when a specific node actually had a
`ScrollPosition` forcibly updated by the layout of its children.


## Testing

Examples in `ui/scroll.rs`. There may be more complex node/style
interactions that were unconsidered.

---

## Showcase



![scroll](https://github.com/user-attachments/assets/1331138f-93aa-4a8f-959c-6be18a04ff03)

## Alternatives

- `bevy_ui` doesn't support scrolling.
- `bevy_ui` implements scrolling with a one-frame delay on reactions to
layout changes.
2024-09-23 17:17:58 +00:00