339914b0af
72 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
339914b0af
|
Fix dynamic scene resources not being entity mapped (#18395)
# Objective The resources were converted via `clone_reflect_value` and the cloned value was mapped. But the value that is inserted is the source of the clone, which was not mapped. I ran into this issue while working on #18380. Having non consecutive entity allocations has caught a lot of bugs. ## Solution Use the cloned value for insertion if it exists. |
||
![]() |
6d6054116a
|
Support skipping Relationship on_replace hooks (#18378)
# Objective Fixes #18357 ## Solution Generalize `RelationshipInsertHookMode` to `RelationshipHookMode`, wire it up to on_replace execution, and use it in the `Relationship::on_replace` hook. |
||
![]() |
c2854a2a05
|
bevy_reflect: Deprecate PartialReflect::clone_value (#18284)
# Objective #13432 added proper reflection-based cloning. This is a better method than cloning via `clone_value` for reasons detailed in the description of that PR. However, it may not be immediately apparent to users why one should be used over the other, and what the gotchas of `clone_value` are. ## Solution This PR marks `PartialReflect::clone_value` as deprecated, with the deprecation notice pointing users to `PartialReflect::reflect_clone`. However, it also suggests using a new method introduced in this PR: `PartialReflect::to_dynamic`. `PartialReflect::to_dynamic` is essentially a renaming of `PartialReflect::clone_value`. By naming it `to_dynamic`, we make it very obvious that what's returned is a dynamic type. The one caveat to this is that opaque types still use `reflect_clone` as they have no corresponding dynamic type. Along with changing the name, the method is now optional, and comes with a default implementation that calls out to the respective reflection subtrait method. This was done because there was really no reason to require manual implementors provide a method that almost always calls out to a known set of methods. Lastly, to make this default implementation work, this PR also did a similar thing with the `clone_dynamic ` methods on the reflection subtraits. For example, `Struct::clone_dynamic` has been marked deprecated and is superseded by `Struct::to_dynamic_struct`. This was necessary to avoid the "multiple names in scope" issue. ### Open Questions This PR maintains the original signature of `clone_value` on `to_dynamic`. That is, it takes `&self` and returns `Box<dyn PartialReflect>`. However, in order for this to work, it introduces a panic if the value is opaque and doesn't override the default `reflect_clone` implementation. One thing we could do to avoid the panic would be to make the conversion fallible, either returning `Option<Box<dyn PartialReflect>>` or `Result<Box<dyn PartialReflect>, ReflectCloneError>`. This makes using the method a little more involved (i.e. users have to either unwrap or handle the rare possibility of an error), but it would set us up for a world where opaque types don't strictly need to be `Clone`. Right now this bound is sort of implied by the fact that `clone_value` is a required trait method, and the default behavior of the macro is to use `Clone` for opaque types. Alternatively, we could keep the signature but make the method required. This maintains that implied bound where manual implementors must provide some way of cloning the value (or YOLO it and just panic), but also makes the API simpler to use. Finally, we could just leave it with the panic. It's unlikely this would occur in practice since our macro still requires `Clone` for opaque types, and thus this would only ever be an issue if someone were to manually implement `PartialReflect` without a valid `to_dynamic` or `reflect_clone` method. ## Testing You can test locally using the following command: ``` cargo test --package bevy_reflect --all-features ``` --- ## Migration Guide `PartialReflect::clone_value` is being deprecated. Instead, use `PartialReflect::to_dynamic` if wanting to create a new dynamic instance of the reflected value. Alternatively, use `PartialReflect::reflect_clone` to attempt to create a true clone of the underlying value. Similarly, the following methods have been deprecated and should be replaced with these alternatives: - `Array::clone_dynamic` → `Array::to_dynamic_array` - `Enum::clone_dynamic` → `Enum::to_dynamic_enum` - `List::clone_dynamic` → `List::to_dynamic_list` - `Map::clone_dynamic` → `Map::to_dynamic_map` - `Set::clone_dynamic` → `Set::to_dynamic_set` - `Struct::clone_dynamic` → `Struct::to_dynamic_struct` - `Tuple::clone_dynamic` → `Tuple::to_dynamic_tuple` - `TupleStruct::clone_dynamic` → `TupleStruct::to_dynamic_tuple_struct` |
||
![]() |
a530c07bc5
|
Preserve spawned RelationshipTarget order and other improvements (#17858)
Fixes #17720 ## Objective Spawning RelationshipTargets from scenes currently fails to preserve RelationshipTarget ordering (ex: `Children` has an arbitrary order). This is because it uses the normal hook flow to set up the collection, which means we are pushing onto the collection in _spawn order_ (which is currently in archetype order, which will often produce mismatched orderings). We need to preserve the ordering in the original RelationshipTarget collection. Ideally without expensive checking / fixups. ## Solution One solution would be to spawn in hierarchy-order. However this gets complicated as there can be multiple hierarchies, and it also means we can't spawn in more cache-friendly orders (ex: the current per-archetype spawning, or future even-smarter per-table spawning). Additionally, same-world cloning has _slightly_ more nuanced needs (ex: recursively clone linked relationships, while maintaining _original_ relationships outside of the tree via normal hooks). The preferred approach is to directly spawn the remapped RelationshipTarget collection, as this trivially preserves the ordering. Unfortunately we can't _just_ do that, as when we spawn the children with their Relationships (ex: `ChildOf`), that will insert a duplicate. We could "fixup" the collection retroactively by just removing the back half of duplicates, but this requires another pass / more lookups / allocating twice as much space. Additionally, it becomes complicated because observers could insert additional children, making it harder (aka more expensive) to determine which children are dupes and which are not. The path I chose is to support "opting out" of the relationship target hook in the contexts that need that, as this allows us to just cheaply clone the mapped collection. The relationship hook can look for this configuration when it runs and skip its logic when that happens. A "simple" / small-amount-of-code way to do this would be to add a "skip relationship spawn" flag to World. Sadly, any hook / observer that runs _as the result of an insert_ would also read this flag. We really need a way to scope this setting to a _specific_ insert. Therefore I opted to add a new `RelationshipInsertHookMode` enum and an `entity.insert_with_relationship_insert_hook_mode` variant. Obviously this is verbose and ugly. And nobody wants _more_ insert variants. But sadly this was the best I could come up with from a performance and capability perspective. If you have alternatives let me know! There are three variants: 1. `RelationshipInsertHookMode::Run`: always run relationship insert hooks (this is the default) 2. `RelationshipInsertHookMode::Skip`: do not run any relationship insert hooks for this insert (this is used by spawner code) 3. `RelationshipInsertHookMode::RunIfNotLinked`: only run hooks for _unlinked_ relationships (this is used in same-world recursive entity cloning to preserve relationships outside of the deep-cloned tree) Note that I have intentionally only added "insert with relationship hook mode" variants to the cases we absolutely need (everything else uses the default `Run` mode), just to keep the code size in check. I do not think we should add more without real _very necessary_ use cases. I also made some other minor tweaks: 1. I split out `SourceComponent` from `ComponentCloneCtx`. Reading the source component no longer needlessly blocks mutable access to `ComponentCloneCtx`. 2. Thanks to (1), I've removed the `RefCell` wrapper over the cloned component queue. 3. (1) also allowed me to write to the EntityMapper while queuing up clones, meaning we can reserve entities during the component clone and write them to the mapper _before_ inserting the component, meaning cloned collections can be mapped on insert. 4. I've removed the closure from `write_target_component_ptr` to simplify the API / make it compatible with the split `SourceComponent` approach. 5. I've renamed `EntityCloner::recursive` to `EntityCloner::linked_cloning` to connect that feature more directly with `RelationshipTarget::LINKED_SPAWN` 6. I've removed `EntityCloneBehavior::RelationshipTarget`. This was always intended to be temporary, and this new behavior removes the need for it. --------- Co-authored-by: Viktor Gustavsson <villor94@gmail.com> |
||
![]() |
b73811d40e
|
Remove ChildOf::get and Deref impl (#18080)
# Objective There are currently three ways to access the parent stored on a ChildOf relationship: 1. `child_of.parent` (field accessor) 2. `child_of.get()` (get function) 3. `**child_of` (Deref impl) I will assert that we should only have one (the field accessor), and that the existence of the other implementations causes confusion and legibility issues. The deref approach is heinous, and `child_of.get()` is significantly less clear than `child_of.parent`. ## Solution Remove `impl Deref for ChildOf` and `ChildOf::get`. The one "downside" I'm seeing is that: ```rust entity.get::<ChildOf>().map(ChildOf::get) ``` Becomes this: ```rust entity.get::<ChildOf>().map(|c| c.parent) ``` I strongly believe that this is worth the increased clarity and consistency. I'm also not really a huge fan of the "pass function pointer to map" syntax. I think most people don't think this way about maps. They think in terms of a function that takes the item in the Option and returns the result of some action on it. ## Migration Guide ```rust // Before **child_of // After child_of.parent // Before child_of.get() // After child_of.parent // Before entity.get::<ChildOf>().map(ChildOf::get) // After entity.get::<ChildOf>().map(|c| c.parent) ``` |
||
![]() |
3c8fae2390
|
Improved Entity Mapping and Cloning (#17687)
Fixes #17535 Bevy's approach to handling "entity mapping" during spawning and cloning needs some work. The addition of [Relations](https://github.com/bevyengine/bevy/pull/17398) both [introduced a new "duplicate entities" bug when spawning scenes in the scene system](#17535) and made the weaknesses of the current mapping system exceedingly clear: 1. Entity mapping requires _a ton_ of boilerplate (implement or derive VisitEntities and VisitEntitesMut, then register / reflect MapEntities). Knowing the incantation is challenging and if you forget to do it in part or in whole, spawning subtly breaks. 2. Entity mapping a spawned component in scenes incurs unnecessary overhead: look up ReflectMapEntities, create a _brand new temporary instance_ of the component using FromReflect, map the entities in that instance, and then apply that on top of the actual component using reflection. We can do much better. Additionally, while our new [Entity cloning system](https://github.com/bevyengine/bevy/pull/16132) is already pretty great, it has some areas we can make better: * It doesn't expose semantic info about the clone (ex: ignore or "clone empty"), meaning we can't key off of that in places where it would be useful, such as scene spawning. Rather than duplicating this info across contexts, I think it makes more sense to add that info to the clone system, especially given that we'd like to use cloning code in some of our spawning scenarios. * EntityCloner is currently built in a way that prioritizes a single entity clone * EntityCloner's recursive cloning is built to be done "inside out" in a parallel context (queue commands that each have a clone of EntityCloner). By making EntityCloner the orchestrator of the clone we can remove internal arcs, improve the clarity of the code, make EntityCloner mutable again, and simplify the builder code. * EntityCloner does not currently take into account entity mapping. This is necessary to do true "bullet proof" cloning, would allow us to unify the per-component scene spawning and cloning UX, and ultimately would allow us to use EntityCloner in place of raw reflection for scenes like `Scene(World)` (which would give us a nice performance boost: fewer archetype moves, less reflection overhead). ## Solution ### Improved Entity Mapping First, components now have first-class "entity visiting and mapping" behavior: ```rust #[derive(Component, Reflect)] #[reflect(Component)] struct Inventory { size: usize, #[entities] items: Vec<Entity>, } ``` Any field with the `#[entities]` annotation will be viewable and mappable when cloning and spawning scenes. Compare that to what was required before! ```rust #[derive(Component, Reflect, VisitEntities, VisitEntitiesMut)] #[reflect(Component, MapEntities)] struct Inventory { #[visit_entities(ignore)] size: usize, items: Vec<Entity>, } ``` Additionally, for relationships `#[entities]` is implied, meaning this "just works" in scenes and cloning: ```rust #[derive(Component, Reflect)] #[relationship(relationship_target = Children)] #[reflect(Component)] struct ChildOf(pub Entity); ``` Note that Component _does not_ implement `VisitEntities` directly. Instead, it has `Component::visit_entities` and `Component::visit_entities_mut` methods. This is for a few reasons: 1. We cannot implement `VisitEntities for C: Component` because that would conflict with our impl of VisitEntities for anything that implements `IntoIterator<Item=Entity>`. Preserving that impl is more important from a UX perspective. 2. We should not implement `Component: VisitEntities` VisitEntities in the Component derive, as that would increase the burden of manual Component trait implementors. 3. Making VisitEntitiesMut directly callable for components would make it easy to invalidate invariants defined by a component author. By putting it in the `Component` impl, we can make it harder to call naturally / unavailable to autocomplete using `fn visit_entities_mut(this: &mut Self, ...)`. `ReflectComponent::apply_or_insert` is now `ReflectComponent::apply_or_insert_mapped`. By moving mapping inside this impl, we remove the need to go through the reflection system to do entity mapping, meaning we no longer need to create a clone of the target component, map the entities in that component, and patch those values on top. This will make spawning mapped entities _much_ faster (The default `Component::visit_entities_mut` impl is an inlined empty function, so it will incur no overhead for unmapped entities). ### The Bug Fix To solve #17535, spawning code now skips entities with the new `ComponentCloneBehavior::Ignore` and `ComponentCloneBehavior::RelationshipTarget` variants (note RelationshipTarget is a temporary "workaround" variant that allows scenes to skip these components. This is a temporary workaround that can be removed as these cases should _really_ be using EntityCloner logic, which should be done in a followup PR. When that is done, `ComponentCloneBehavior::RelationshipTarget` can be merged into the normal `ComponentCloneBehavior::Custom`). ### Improved Cloning * `Option<ComponentCloneHandler>` has been replaced by `ComponentCloneBehavior`, which encodes additional intent and context (ex: `Default`, `Ignore`, `Custom`, `RelationshipTarget` (this last one is temporary)). * Global per-world entity cloning configuration has been removed. This felt overly complicated, increased our API surface, and felt too generic. Each clone context can have different requirements (ex: what a user wants in a specific system, what a scene spawner wants, etc). I'd prefer to see how far context-specific EntityCloners get us first. * EntityCloner's internals have been reworked to remove Arcs and make it mutable. * EntityCloner is now directly stored on EntityClonerBuilder, simplifying the code somewhat * EntityCloner's "bundle scratch" pattern has been moved into the new BundleScratch type, improving its usability and making it usable in other contexts (such as future cross-world cloning code). Currently this is still private, but with some higher level safe APIs it could be used externally for making dynamic bundles * EntityCloner's recursive cloning behavior has been "externalized". It is now responsible for orchestrating recursive clones, meaning it no longer needs to be sharable/clone-able across threads / read-only. * EntityCloner now does entity mapping during clones, like scenes do. This gives behavior parity and also makes it more generically useful. * `RelatonshipTarget::RECURSIVE_SPAWN` is now `RelationshipTarget::LINKED_SPAWN`, and this field is used when cloning relationship targets to determine if cloning should happen recursively. The new `LINKED_SPAWN` term was picked to make it more generically applicable across spawning and cloning scenarios. ## Next Steps * I think we should adapt EntityCloner to support cross world cloning. I think this PR helps set the stage for that by making the internals slightly more generalized. We could have a CrossWorldEntityCloner that reuses a lot of this infrastructure. * Once we support cross world cloning, we should use EntityCloner to spawn `Scene(World)` scenes. This would yield significant performance benefits (no archetype moves, less reflection overhead). --------- Co-authored-by: eugineerd <70062110+eugineerd@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
41e79ae826
|
Refactored ComponentHook Parameters into HookContext (#17503)
# Objective - Make the function signature for `ComponentHook` less verbose ## Solution - Refactored `Entity`, `ComponentId`, and `Option<&Location>` into a new `HookContext` struct. ## Testing - CI --- ## Migration Guide Update the function signatures for your component hooks to only take 2 arguments, `world` and `context`. Note that because `HookContext` is plain data with all members public, you can use de-structuring to simplify migration. ```rust // Before fn my_hook( mut world: DeferredWorld, entity: Entity, component_id: ComponentId, ) { ... } // After fn my_hook( mut world: DeferredWorld, HookContext { entity, component_id, caller }: HookContext, ) { ... } ``` Likewise, if you were discarding certain parameters, you can use `..` in the de-structuring: ```rust // Before fn my_hook( mut world: DeferredWorld, entity: Entity, _: ComponentId, ) { ... } // After fn my_hook( mut world: DeferredWorld, HookContext { entity, .. }: HookContext, ) { ... } ``` |
||
![]() |
f32a6fb205
|
Track callsite for observers & hooks (#15607)
# Objective Fixes #14708 Also fixes some commands not updating tracked location. ## Solution `ObserverTrigger` has a new `caller` field with the `track_change_detection` feature; hooks take an additional caller parameter (which is `Some(…)` or `None` depending on the feature). ## Testing See the new tests in `src/observer/mod.rs` --- ## Showcase Observers now know from where they were triggered (if `track_change_detection` is enabled): ```rust world.observe(move |trigger: Trigger<OnAdd, Foo>| { println!("Added Foo from {}", trigger.caller()); }); ``` ## Migration - hooks now take an additional `Option<&'static Location>` argument --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
44ad3bf62b
|
Move Resource trait to its own file (#17469)
# Objective `bevy_ecs`'s `system` module is something of a grab bag, and *very* large. This is particularly true for the `system_param` module, which is more than 2k lines long! While it could be defensible to put `Res` and `ResMut` there (lol no they're in change_detection.rs, obviously), it doesn't make any sense to put the `Resource` trait there. This is confusing to navigate (and painful to work on and review). ## Solution - Create a root level `bevy_ecs/resource.rs` module to mirror `bevy_ecs/component.rs` - move the `Resource` trait to that module - move the `Resource` derive macro to that module as well (Rust really likes when you pun on the names of the derive macro and trait and put them in the same path) - fix all of the imports ## Notes to reviewers - We could probably move more stuff into here, but I wanted to keep this PR as small as possible given the absurd level of import changes. - This PR is ground work for my upcoming attempts to store resource data on components (resources-as-entities). Splitting this code out will make the work and review a bit easier, and is the sort of overdue refactor that's good to do as part of more meaningful work. ## Testing cargo build works! ## Migration Guide `bevy_ecs::system::Resource` has been moved to `bevy_ecs::resource::Resource`. |
||
![]() |
ba5e71f53d
|
Parent -> ChildOf (#17427)
Fixes #17412 ## Objective `Parent` uses the "has a X" naming convention. There is increasing sentiment that we should use the "is a X" naming convention for relationships (following #17398). This leaves `Children` as-is because there is prevailing sentiment that `Children` is clearer than `ParentOf` in many cases (especially when treating it like a collection). This renames `Parent` to `ChildOf`. This is just the implementation PR. To discuss the path forward, do so in #17412. ## Migration Guide - The `Parent` component has been renamed to `ChildOf`. |
||
![]() |
5a9bc28502
|
Support non-Vec data structures in relations (#17447)
# Objective
The existing `RelationshipSourceCollection` uses `Vec` as the only
possible backing for our relationships. While a reasonable choice,
benchmarking use cases might reveal that a different data type is better
or faster.
For example:
- Not all relationships require a stable ordering between the
relationship sources (i.e. children). In cases where we a) have many
such relations and b) don't care about the ordering between them, a hash
set is likely a better datastructure than a `Vec`.
- The number of children-like entities may be small on average, and a
`smallvec` may be faster
## Solution
- Implement `RelationshipSourceCollection` for `EntityHashSet`, our
custom entity-optimized `HashSet`.
-~~Implement `DoubleEndedIterator` for `EntityHashSet` to make things
compile.~~
- This implementation was cursed and very surprising.
- Instead, by moving the iterator type on `RelationshipSourceCollection`
from an erased RPTIT to an explicit associated type we can add a trait
bound on the offending methods!
- Implement `RelationshipSourceCollection` for `SmallVec`
## Testing
I've added a pair of new tests to make sure this pattern compiles
successfully in practice!
## Migration Guide
`EntityHashSet` and `EntityHashMap` are no longer re-exported in
`bevy_ecs::entity` directly. If you were not using `bevy_ecs` / `bevy`'s
`prelude`, you can access them through their now-public modules,
`hash_set` and `hash_map` instead.
## Notes to reviewers
The `EntityHashSet::Iter` type needs to be public for this impl to be
allowed. I initially renamed it to something that wasn't ambiguous and
re-exported it, but as @Victoronz pointed out, that was somewhat
unidiomatic.
In
|
||
![]() |
21f1e3045c
|
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with planned paths for fragmenting and non-fragmenting many-to-many relationships). "Non-fragmenting" means that entities with the same relationship type, but different relationship targets, are not forced into separate tables (which would cause "table fragmentation"). Functionally, this fills a similar niche as the current Parent/Children system. The biggest differences are: 1. Relationships have simpler internals and significantly improved performance and UX. Commands and specialized APIs are no longer necessary to keep everything in sync. Just spawn entities with the relationship components you want and everything "just works". 2. Relationships are generalized. Bevy can provide additional built in relationships, and users can define their own. **REQUEST TO REVIEWERS**: _please don't leave top level comments and instead comment on specific lines of code. That way we can take advantage of threaded discussions. Also dont leave comments simply pointing out CI failures as I can read those just fine._ ## Built on top of what we have Relationships are implemented on top of the Bevy ECS features we already have: components, immutability, and hooks. This makes them immediately compatible with all of our existing (and future) APIs for querying, spawning, removing, scenes, reflection, etc. The fewer specialized APIs we need to build, maintain, and teach, the better. ## Why focus on one-to-many non-fragmenting first? 1. This allows us to improve Parent/Children relationships immediately, in a way that is reasonably uncontroversial. Switching our hierarchy to fragmenting relationships would have significant performance implications. ~~Flecs is heavily considering a switch to non-fragmenting relations after careful considerations of the performance tradeoffs.~~ _(Correction from @SanderMertens: Flecs is implementing non-fragmenting storage specialized for asset hierarchies, where asset hierarchies are many instances of small trees that have a well defined structure)_ 2. Adding generalized one-to-many relationships is currently a priority for the [Next Generation Scene / UI effort](https://github.com/bevyengine/bevy/discussions/14437). Specifically, we're interested in building reactions and observers on top. ## The changes This PR does the following: 1. Adds a generic one-to-many Relationship system 3. Ports the existing Parent/Children system to Relationships, which now lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been removed. 4. Adds on_despawn component hooks 5. Relationships can opt-in to "despawn descendants" behavior, meaning that the entire relationship hierarchy is despawned when `entity.despawn()` is called. The built in Parent/Children hierarchies enable this behavior, and `entity.despawn_recursive()` has been removed. 6. `world.spawn` now applies commands after spawning. This ensures that relationship bookkeeping happens immediately and removes the need to manually flush. This is in line with the equivalent behaviors recently added to the other APIs (ex: insert). 7. Removes the ValidParentCheckPlugin (system-driven / poll based) in favor of a `validate_parent_has_component` hook. ## Using Relationships The `Relationship` trait looks like this: ```rust pub trait Relationship: Component + Sized { type RelationshipSources: RelationshipSources<Relationship = Self>; fn get(&self) -> Entity; fn from(entity: Entity) -> Self; } ``` A relationship is a component that: 1. Is a simple wrapper over a "target" Entity. 2. Has a corresponding `RelationshipSources` component, which is a simple wrapper over a collection of entities. Every "target entity" targeted by a "source entity" with a `Relationship` has a `RelationshipSources` component, which contains every "source entity" that targets it. For example, the `Parent` component (as it currently exists in Bevy) is the `Relationship` component and the entity containing the Parent is the "source entity". The entity _inside_ the `Parent(Entity)` component is the "target entity". And that target entity has a `Children` component (which implements `RelationshipSources`). In practice, the Parent/Children relationship looks like this: ```rust #[derive(Relationship)] #[relationship(relationship_sources = Children)] pub struct Parent(pub Entity); #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent)] pub struct Children(Vec<Entity>); ``` The Relationship and RelationshipSources derives automatically implement Component with the relevant configuration (namely, the hooks necessary to keep everything in sync). The most direct way to add relationships is to spawn entities with relationship components: ```rust let a = world.spawn_empty().id(); let b = world.spawn(Parent(a)).id(); assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]); ``` There are also convenience APIs for spawning more than one entity with the same relationship: ```rust world.spawn_empty().with_related::<Children>(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` The existing `with_children` API is now a simpler wrapper over `with_related`. This makes this change largely non-breaking for existing spawn patterns. ```rust world.spawn_empty().with_children(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` There are also other relationship APIs, such as `add_related` and `despawn_related`. ## Automatic recursive despawn via the new on_despawn hook `RelationshipSources` can opt-in to "despawn descendants" behavior, which will despawn all related entities in the relationship hierarchy: ```rust #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent, despawn_descendants)] pub struct Children(Vec<Entity>); ``` This means that `entity.despawn_recursive()` is no longer required. Instead, just use `entity.despawn()` and the relevant related entities will also be despawned. To despawn an entity _without_ despawning its parent/child descendants, you should remove the `Children` component first, which will also remove the related `Parent` components: ```rust entity .remove::<Children>() .despawn() ``` This builds on the on_despawn hook introduced in this PR, which is fired when an entity is despawned (before other hooks). ## Relationships are the source of truth `Relationship` is the _single_ source of truth component. `RelationshipSources` is merely a reflection of what all the `Relationship` components say. By embracing this, we are able to significantly improve the performance of the system as a whole. We can rely on component lifecycles to protect us against duplicates, rather than needing to scan at runtime to ensure entities don't already exist (which results in quadratic runtime). A single source of truth gives us constant-time inserts. This does mean that we cannot directly spawn populated `Children` components (or directly add or remove entities from those components). I personally think this is a worthwhile tradeoff, both because it makes the performance much better _and_ because it means theres exactly one way to do things (which is a philosophy we try to employ for Bevy APIs). As an aside: treating both sides of the relationship as "equivalent source of truth relations" does enable building simple and flexible many-to-many relationships. But this introduces an _inherent_ need to scan (or hash) to protect against duplicates. [`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations) has a very nice implementation of the "symmetrical many-to-many" approach. Unfortunately I think the performance issues inherent to that approach make it a poor choice for Bevy's default relationship system. ## Followup Work * Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in this PR to keep the diff reasonable, but I'm personally biased toward this change (and using that naming pattern generally for relationships). * [Improved spawning ergonomics](https://github.com/bevyengine/bevy/discussions/16920) * Consider adding relationship observers/triggers for "relationship targets" whenever a source is added or removed. This would replace the current "hierarchy events" system, which is unused upstream but may have existing users downstream. I think triggers are the better fit for this than a buffered event queue, and would prefer not to add that back. * Fragmenting relations: My current idea hinges on the introduction of "value components" (aka: components whose type _and_ value determines their ComponentId, via something like Hashing / PartialEq). By labeling a Relationship component such as `ChildOf(Entity)` as a "value component", `ChildOf(e1)` and `ChildOf(e2)` would be considered "different components". This makes the transition between fragmenting and non-fragmenting a single flag, and everything else continues to work as expected. * Many-to-many support * Non-fragmenting: We can expand Relationship to be a list of entities instead of a single entity. I have largely already written the code for this. * Fragmenting: With the "value component" impl mentioned above, we get many-to-many support "for free", as it would allow inserting multiple copies of a Relationship component with different target entities. Fixes #3742 (If this PR is merged, I think we should open more targeted followup issues for the work above, with a fresh tracking issue free of the large amount of less-directed historical context) Fixes #17301 Fixes #12235 Fixes #15299 Fixes #15308 ## Migration Guide * Replace `ChildBuilder` with `ChildSpawnerCommands`. * Replace calls to `.set_parent(parent_id)` with `.insert(Parent(parent_id))`. * Replace calls to `.replace_children()` with `.remove::<Children>()` followed by `.add_children()`. Note that you'll need to manually despawn any children that are not carried over. * Replace calls to `.despawn_recursive()` with `.despawn()`. * Replace calls to `.despawn_descendants()` with `.despawn_related::<Children>()`. * If you have any calls to `.despawn()` which depend on the children being preserved, you'll need to remove the `Children` component first. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
9ac7e17f2e
|
Refactor hierarchy-related commands to remove structs (#17029)
## Objective Continuation of #16999. This PR handles the following: - Many hierarchy-related commands are wrappers around `World` and `EntityWorldMut` methods and can be moved to closures: - `AddChild` - `InsertChildren` - `AddChildren` - `RemoveChildren` - `ClearChildren` - `ReplaceChildren` - `RemoveParent` - `DespawnRecursive` - `DespawnChildrenRecursive` - `AddChildInPlace` - `RemoveParentInPlace` - `SendEvent` is a wrapper around `World` methods and can be moved to a closure (and its file deleted). ## Migration Guide If you were queuing the structs of hierarchy-related commands or `SendEvent` directly, you will need to change them to the methods implemented on `EntityCommands` (or `Commands` for `SendEvent`): | Struct | Method | |--------------------------------------------------------------------|---------------------------------------------------------------------------------------------| | `commands.queue(AddChild { child, parent });` | `commands.entity(parent).add_child(child);` OR `commands.entity(child).set_parent(parent);` | | `commands.queue(AddChildren { children, parent });` | `commands.entity(parent).add_children(children);` | | `commands.queue(InsertChildren { children, parent });` | `commands.entity(parent).insert_children(children);` | | `commands.queue(RemoveChildren { children, parent });` | `commands.entity(parent).remove_children(children);` | | `commands.queue(ReplaceChildren { children, parent });` | `commands.entity(parent).replace_children(children);` | | `commands.queue(ClearChildren { parent });` | `commands.entity(parent).clear_children();` | | `commands.queue(RemoveParent { child });` | `commands.entity(child).remove_parent()` | | `commands.queue(DespawnRecursive { entity, warn: true });` | `commands.entity(entity).despawn_recursive();` | | `commands.queue(DespawnRecursive { entity, warn: false });` | `commands.entity(entity).try_despawn_recursive();` | | `commands.queue(DespawnChildrenRecursive { entity, warn: true });` | `commands.entity(entity).despawn_descendants();` | | `commands.queue(DespawnChildrenRecursive { entity, warn: false});` | `commands.entity(entity).try_despawn_descendants();` | | `commands.queue(SendEvent { event });` | `commands.send_event(event);` | |
||
![]() |
0707c0717b
|
✏️ Fix typos across bevy (#16702)
# Objective Fixes typos in bevy project, following suggestion in https://github.com/bevyengine/bevy-website/pull/1912#pullrequestreview-2483499337 ## Solution I used https://github.com/crate-ci/typos to find them. I included only the ones that feel undebatable too me, but I am not in game engine so maybe some terms are expected. I left out the following typos: - `reparametrize` => `reparameterize`: There are a lot of occurences, I believe this was expected - `semicircles` => `hemicircles`: 2 occurences, may mean something specific in geometry - `invertation` => `inversion`: may mean something specific - `unparented` => `parentless`: may mean something specific - `metalness` => `metallicity`: may mean something specific ## Testing - Did you test these changes? If so, how? I did not test the changes, most changes are related to raw text. I expect the others to be tested by the CI. - Are there any parts that need more testing? I do not think - How can other people (reviewers) test your changes? Is there anything specific they need to know? To me there is nothing to test - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? --- ## Migration Guide > This section is optional. If there are no breaking changes, you can delete this section. (kept in case I include the `reparameterize` change here) - If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes - Simply adding new functionality is not a breaking change. - Fixing behavior that was definitely a bug, rather than a questionable design choice is not a breaking change. ## Questions - [x] Should I include the above typos? No (https://github.com/bevyengine/bevy/pull/16702#issuecomment-2525271152) - [ ] Should I add `typos` to the CI? (I will check how to configure it properly) This project looks awesome, I really enjoy reading the progress made, thanks to everyone involved. |
||
![]() |
eb51b4c28e
|
Migrate scenes to required components (#15579)
# Objective A step in the migration to required components: scenes! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2FPJtNGVMMQhyM0zIvCJSkbA): - Deprecate `SceneBundle` and `DynamicSceneBundle`. - Add `SceneRoot` and `DynamicSceneRoot` components, which wrap a `Handle<Scene>` and `Handle<DynamicScene>` respectively. ## Migration Guide Asset handles for scenes and dynamic scenes must now be wrapped in the `SceneRoot` and `DynamicSceneRoot` components. Raw handles as components no longer spawn scenes. Additionally, `SceneBundle` and `DynamicSceneBundle` have been deprecated. Instead, use the scene components directly. Previously: ```rust let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf")); commands.spawn(SceneBundle { scene: model_scene, transform: Transform::from_xyz(-4.0, 0.0, -3.0), ..default() }); ``` Now: ```rust let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf")); commands.spawn(( SceneRoot(model_scene), Transform::from_xyz(-4.0, 0.0, -3.0), )); ``` |
||
![]() |
40e88dceff
|
Change ReflectMapEntities to operate on components before insertion (#15422)
Previous PR https://github.com/bevyengine/bevy/pull/14549 was closed in error and couldn't be reopened since I had updated the branch 😿 # Objective Fixes #14465 ## Solution `ReflectMapEntities` now works similarly to `MapEntities` in that it works on the reflected value itself rather than the component in the world after insertion. This makes it so that observers see the remapped entities on insertion rather than the entity IDs from the scene. `ReflectMapEntities` now works for both components and resources, so we only need the one. ## Testing * New unit test for `Observer`s + `DynamicScene`s * New unit test for `Observer`s + `Scene`s * Open to suggestions for other tests! --- ## Migration Guide - Consumers of `ReflectMapEntities` will need to call `map_entities` on values prior to inserting them into the world. - Implementors of `MapEntities` will need to remove the `mappings` method, which is no longer needed for `ReflectMapEntities` and has been removed from the trait. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com> |
||
![]() |
f97eba2082
|
Add VisitEntities for generic and reflectable Entity iteration (#15425)
# Objective - Provide a generic and _reflectable_ way to iterate over contained entities ## Solution Adds two new traits: * `VisitEntities`: Reflectable iteration, accepts a closure rather than producing an iterator. Implemented by default for `IntoIterator` implementing types. A proc macro is also provided. * A `Mut` variant of the above. Its derive macro uses the same field attribute to avoid repetition. ## Testing Added a test for `VisitEntities` that also transitively tests its derive macro as well as the default `MapEntities` impl. |
||
![]() |
fcddb54ce5
|
Fix for SceneEntityMapper + hooks panic (#15405)
# Objective - Add a test case for #14300 Fixes #14300 ## Solution `SceneEntityMapper` relies on operations on `Entities` that require flushing in advance, such as `alloc` and `free`. Previously, it wasn't calling `world.flush_entities()` itself and relied on its caller having flushed beforehand. This wasn't an issue before observers and hooks were released, since entity reservation was happening at expected times. Now that hooks and observers are a thing, they can introduce a need to flush. We have a few options: * Flush after each observer/hook run * Flush between each paired observer/hook and operation that requires a flush * Flush before operations requiring it The first option for this case seemed trickier to reason about than I wanted, since it involved the `BundleInserter` and its `UnsafeWorldCell`, and the second is generally harder to track down. The third seemed the most straightforward and conventional, since we can see a flush occurring at the start of a number of `World` methods. Therefore, we're letting `SceneEntityMapper` be in charge of upholding its own invariants and calling `flush_entities` when it's created. ## Testing Added a new test case modeled after #14300 |
||
![]() |
efda7f3f9c
|
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ``` |
||
![]() |
23a77ca5eb
|
Rename push children to add children (#15196)
# Objective - Makes naming between add_child and add_children more consistent - Fixes #15101 ## Solution renamed push_children to add_children ## Testing - Did you test these changes? If so, how? Ran tests + grep search for any instance of `push_child` - Are there any parts that need more testing? - How can other people (reviewers) test your changes? Is there anything specific they need to know? - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? ran tests on WSL2 --- ## Migration Guide > This section is optional. If there are no breaking changes, you can delete this section. - If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes rename any use of `push_children()` to the updated `add_children()` |
||
![]() |
6ab8767d3b
|
reflect: implement the unique reflect rfc (#7207)
# Objective
- Implements the [Unique Reflect
RFC](https://github.com/nicopap/rfcs/blob/bevy-reflect-api/rfcs/56-better-reflect.md).
## Solution
- Implements the RFC.
- This implementation differs in some ways from the RFC:
- In the RFC, it was suggested `Reflect: Any` but `PartialReflect:
?Any`. During initial implementation I tried this, but we assume the
`PartialReflect: 'static` in a lot of places and the changes required
crept out of the scope of this PR.
- `PartialReflect::try_into_reflect` originally returned `Option<Box<dyn
Reflect>>` but i changed this to `Result<Box<dyn Reflect>, Box<dyn
PartialReflect>>` since the method takes by value and otherwise there
would be no way to recover the type. `as_full` and `as_full_mut` both
still return `Option<&(mut) dyn Reflect>`.
---
## Changelog
- Added `PartialReflect`.
- `Reflect` is now a subtrait of `PartialReflect`.
- Moved most methods on `Reflect` to the new `PartialReflect`.
- Added `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect}`.
- Added `PartialReflect::{try_as_reflect, try_as_reflect_mut,
try_into_reflect}`.
- Added `<dyn PartialReflect>::{try_downcast_ref, try_downcast_mut,
try_downcast, try_take}` supplementing the methods on `dyn Reflect`.
## Migration Guide
- Most instances of `dyn Reflect` should be changed to `dyn
PartialReflect` which is less restrictive, however trait bounds should
generally stay as `T: Reflect`.
- The new `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect, try_as_reflect, try_as_reflect_mut,
try_into_reflect}` methods as well as `Reflect::{as_reflect,
as_reflect_mut, into_reflect}` will need to be implemented for manual
implementors of `Reflect`.
## Future Work
- This PR is designed to be followed up by another "Unique Reflect Phase
2" that addresses the following points:
- Investigate making serialization revolve around `Reflect` instead of
`PartialReflect`.
- [Remove the `try_*` methods on `dyn PartialReflect` since they are
stop
gaps](https://github.com/bevyengine/bevy/pull/7207#discussion_r1083476050).
- Investigate usages like `ReflectComponent`. In the places they
currently use `PartialReflect`, should they be changed to use `Reflect`?
- Merging this opens the door to lots of reflection features we haven't
been able to implement.
- We could re-add [the `Reflectable`
trait](
|
||
![]() |
6273227e09
|
Fix lints introduced in Rust beta 1.80 (#13899)
Resolves #13895 Mostly just involves being more explicit about which parts of the docs belong to a list and which begin a new paragraph. - found a few docs that were malformed because of exactly this, so I fixed that by introducing a paragraph - added indentation to nearly all multiline lists - fixed a few minor typos - added `#[allow(dead_code)]` to types that are needed to test annotations but are never constructed ([here](https://github.com/bevyengine/bevy/pull/13899/files#diff-b02b63604e569c8577c491e7a2030d456886d8f6716eeccd46b11df8aac75dafR1514) and [here](https://github.com/bevyengine/bevy/pull/13899/files#diff-b02b63604e569c8577c491e7a2030d456886d8f6716eeccd46b11df8aac75dafR1523)) - verified that `cargo +beta run -p ci -- lints` passes - verified that `cargo +beta run -p ci -- test` passes |
||
![]() |
7570c9f3d2
|
Map entities from a resource when written to the world. (#13650)
# Objective - Fix #10958 by performing entity mapping on the entities inside of resources. ## Solution - Resources can reflect(MapEntitiesResource) and impl MapEntities to get access to the mapper during the world insert of the scene. ## Testing - A test resource_entity_map_maps_entities confirms the desired behavior. ## Changelog - Added reflect(MapEntitiesResource) for mapping entities on Resources in a DynamicScene. fixes 10958 |
||
![]() |
760c645de1
|
Fix TypeRegistry use in dynamic scene (#12715)
Adopted from and closes https://github.com/bevyengine/bevy/pull/9914 by @djeedai # Objective Fix the use of `TypeRegistry` instead of `TypeRegistryArc` in dynamic scene and its serializer. Rename `DynamicScene::serialize_ron()` into `serialize()` to highlight the fact this is not about serializing to RON specifically, but rather about serializing to the official Bevy scene format (`.scn` / `.scn.ron`) which the `SceneLoader` can deserialize (and which happens to be based in RON, but that not the object here). Also make the link with the documentation of `SceneLoader` so users understand the full serializing cycle of a Bevy dynamic scene. Document `SceneSerializer` with an example showing how to serialize to a custom format (here: RON), which is easily transposed to serializing into any other format. Fixes #9520 ## Changelog ### Changed * `SceneSerializer` and all related serializing helper types now take a `&TypeRegistry` instead of a `&TypeRegistryArc`. ([SceneSerializer needlessly uses specifically &TypeRegistryArc #9520](https://github.com/bevyengine/bevy/issues/9520)) * `DynamicScene::serialize_ron()` was renamed to `serialize()`. ## Migration Guide * `SceneSerializer` and all related serializing helper types now take a `&TypeRegistry` instead of a `&TypeRegistryArc`. You can upgrade by getting the former from the latter with `TypeRegistryArc::read()`, _e.g._ ```diff let registry_arc: TypeRegistryArc = [...]; - let serializer = SceneSerializer(&scene, ®istry_arc); + let registry = registry_arc.read(); + let serializer = SceneSerializer(&scene, ®istry); ``` * Rename `DynamicScene::serialize_ron()` to `serialize()`. --------- Co-authored-by: Jerome Humbert <djeedai@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: James Liu <contact@jamessliu.com> |
||
![]() |
13cbb9cf10
|
Move commands module into bevy::ecs::world (#12234)
# Objective Fixes https://github.com/bevyengine/bevy/issues/11628 ## Migration Guide `Command` and `CommandQueue` have migrated from `bevy_ecs::system` to `bevy_ecs::world`, so `use bevy_ecs::world::{Command, CommandQueue};` when necessary. |
||
![]() |
309c3876bf
|
Replace FromWorld requirement on ReflectResource and reflect Resource for State<S> (#12136)
# Objective - In #9623 I forgot to change the `FromWorld` requirement for `ReflectResource`, fix that; - Fix #12129 ## Solution - Use the same approach as in #9623 to try using `FromReflect` and falling back to the `ReflectFromWorld` contained in the `TypeRegistry` provided - Just reflect `Resource` on `State<S>` since now that's possible without introducing new bounds. --- ## Changelog - `ReflectResource`'s `FromType<T>` implementation no longer requires `T: FromWorld`, but instead now requires `FromReflect`. - `ReflectResource::insert`, `ReflectResource::apply_or_insert` and `ReflectResource::copy` now take an extra `&TypeRegistry` parameter. ## Migration Guide - Users of `#[reflect(Resource)]` will need to also implement/derive `FromReflect` (should already be the default). - Users of `#[reflect(Resource)]` may now want to also add `FromWorld` to the list of reflected traits in case their `FromReflect` implementation may fail. - Users of `ReflectResource` will now need to pass a `&TypeRegistry` to its `insert`, `apply_or_insert` and `copy` methods. |
||
![]() |
1c67e020f7
|
Move EntityHash related types into bevy_ecs (#11498)
# Objective Reduce the size of `bevy_utils` (https://github.com/bevyengine/bevy/issues/11478) ## Solution Move `EntityHash` related types into `bevy_ecs`. This also allows us access to `Entity`, which means we no longer need `EntityHashMap`'s first generic argument. --- ## Changelog - Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap, EntityHashSet}` into `bevy::ecs::entity::hash` . - Removed `EntityHashMap`'s first generic argument. It is now hardcoded to always be `Entity`. ## Migration Guide - Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap, EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`. - Uses of `EntityHashMap` no longer have to specify the first generic parameter. It is now hardcoded to always be `Entity`. |
||
![]() |
21aa5fe2b6
|
Use TypeIdMap whenever possible (#11684)
Use `TypeIdMap<T>` instead of `HashMap<TypeId, T>` - ~~`TypeIdMap` was in `bevy_ecs`. I've kept it there because of #11478~~ - ~~I haven't swapped `bevy_reflect` over because it doesn't depend on `bevy_ecs`, but I'd also be happy with moving `TypeIdMap` to `bevy_utils` and then adding a dependency to that~~ - ~~this is a slight change in the public API of `DrawFunctionsInternal`, does this need to go in the changelog?~~ ## Changelog - moved `TypeIdMap` to `bevy_utils` - changed `DrawFunctionsInternal::indices` to `TypeIdMap` ## Migration Guide - `TypeIdMap` now lives in `bevy_utils` - `DrawFunctionsInternal::indices` now uses a `TypeIdMap`. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
eff96e20a0
|
Add ReflectFromWorld and replace the FromWorld requirement on ReflectComponent and ReflectBundle with FromReflect (#9623)
# Objective - `FromType<T>` for `ReflectComponent` and `ReflectBundle` currently require `T: FromWorld` for two reasons: - they include a `from_world` method; - they create dummy `T`s using `FromWorld` and then `apply` a `&dyn Reflect` to it to simulate `FromReflect`. - However `FromWorld`/`Default` may be difficult/weird/impractical to implement, while `FromReflect` is easier and also more natural for the job. - See also https://discord.com/channels/691052431525675048/1146022009554337792 ## Solution - Split `from_world` from `ReflectComponent` and `ReflectBundle` into its own `ReflectFromWorld` struct. - Replace the requirement on `FromWorld` in `ReflectComponent` and `ReflectBundle` with `FromReflect` --- ## Changelog - `ReflectComponent` and `ReflectBundle` no longer offer a `from_world` method. - `ReflectComponent` and `ReflectBundle`'s `FromType<T>` implementation no longer requires `T: FromWorld`, but now requires `FromReflect`. - `ReflectComponent::insert`, `ReflectComponent::apply_or_insert` and `ReflectComponent::copy` now take an extra `&TypeRegistry` parameter. - There is now a new `ReflectFromWorld` struct. ## Migration Guide - Existing uses of `ReflectComponent::from_world` and `ReflectBundle::from_world` will have to be changed to `ReflectFromWorld::from_world`. - Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` will need to also implement/derive `FromReflect`. - Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` may now want to also add `FromWorld` to the list of reflected traits in case their `FromReflect` implementation may fail. - Users of `ReflectComponent` will now need to pass a `&TypeRegistry` to its `insert`, `apply_or_insert` and `copy` methods. |
||
![]() |
93c7e7cf4d
|
Rename "AddChild" to "PushChild" (#11194)
# Objective - Fixes #11187 ## Solution - Rename the `AddChild` struct to `PushChild` - Rename the `AddChildInPlace` struct to `PushChildInPlace` ## Migration Guide The struct `AddChild` has been renamed to `PushChild`, and the struct `AddChildInPlace` has been renamed to `PushChildInPlace`. |
||
![]() |
3ec1b5c323
|
Mention DynamicSceneBuilder in doc comment (#10780)
# Objective Resolves #10773 ## Solution Added comment mentioning DynamicSceneBuilder |
||
![]() |
dcfae72386
|
Re-export ron in bevy_scene (#10529)
# Objective Close #10504. Improve the development experience for working with scenes by not requiring the user to specify a matching version of `ron` in their `Cargo.toml` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
04ceb46fe0
|
Use EntityHashMap for EntityMapper (#10415)
# Objective - There is a specialized hasher for entities: [`EntityHashMap`](https://docs.rs/bevy/latest/bevy/utils/type.EntityHashMap.html) - [`EntityMapper`] currently uses a normal `HashMap<Entity, Entity>` - Fixes #10391 ## Solution - Replace the normal `HashMap` with the more performant `EntityHashMap` ## Questions - This does change public API. Should a system be implemented to help migrate code? - Perhaps an `impl From<HashMap<K, V, S>> for EntityHashMap<K, V>` - I updated to docs for each function that I changed, but I may have missed something --- ## Changelog - Changed `EntityMapper` to use `EntityHashMap` instead of normal `HashMap` ## Migration Guide If you are using the following types, update their listed methods to use the new `EntityHashMap`. `EntityHashMap` has the same methods as the normal `HashMap`, so you just need to replace the name. ### `EntityMapper` - `get_map` - `get_mut_map` - `new` - `world_scope` ### `ReflectMapEntities` - `map_all_entities` - `map_entities` - `write_to_world` ### `InstanceInfo` - `entity_map` - This is a property, not a method. --- This is my first time contributing in a while, and I'm not familiar with the usage of `EntityMapper`. I changed the type definition and fixed all errors, but there may have been things I've missed. Please keep an eye out for me! |
||
![]() |
569e2ac80f
|
Make builder types take and return Self (#10001)
# Objective Closes #9955. Use the same interface for all "pure" builder types: taking and returning `Self` (and not `&mut Self`). ## Solution Changed `DynamicSceneBuilder`, `SceneFilter` and `TableBuilder` to take and return `Self`. ## Changelog ### Changed - `DynamicSceneBuilder` and `SceneBuilder` methods in `bevy_ecs` now take and return `Self`. ## Migration guide When using `bevy_ecs::DynamicSceneBuilder` and `bevy_ecs::SceneBuilder`, instead of binding the builder to a variable, directly use it. Methods on those types now consume `Self`, so you will need to re-bind the builder if you don't `build` it immediately. Before: ```rust let mut scene_builder = DynamicSceneBuilder::from_world(&world); let scene = scene_builder.extract_entity(a).extract_entity(b).build(); ``` After: ```rust let scene = DynamicSceneBuilder::from_world(&world) .extract_entity(a) .extract_entity(b) .build(); ``` |
||
![]() |
262846e702
|
reflect: TypePath part 2 (#8768)
# Objective
- Followup to #7184.
- ~Deprecate `TypeUuid` and remove its internal references.~ No longer
part of this PR.
- Use `TypePath` for the type registry, and (de)serialisation instead of
`std::any::type_name`.
- Allow accessing type path information behind proxies.
## Solution
- Introduce methods on `TypeInfo` and friends for dynamically querying
type path. These methods supersede the old `type_name` methods.
- Remove `Reflect::type_name` in favor of `DynamicTypePath::type_path`
and `TypeInfo::type_path_table`.
- Switch all uses of `std::any::type_name` in reflection, non-debugging
contexts to use `TypePath`.
---
## Changelog
- Added `TypePathTable` for dynamically accessing methods on `TypePath`
through `TypeInfo` and the type registry.
- Removed `type_name` from all `TypeInfo`-like structs.
- Added `type_path` and `type_path_table` methods to all `TypeInfo`-like
structs.
- Removed `Reflect::type_name` in favor of
`DynamicTypePath::reflect_type_path` and `TypeInfo::type_path`.
- Changed the signature of all `DynamicTypePath` methods to return
strings with a static lifetime.
## Migration Guide
- Rely on `TypePath` instead of `std::any::type_name` for all stability
guarantees and for use in all reflection contexts, this is used through
with one of the following APIs:
- `TypePath::type_path` if you have a concrete type and not a value.
- `DynamicTypePath::reflect_type_path` if you have an `dyn Reflect`
value without a concrete type.
- `TypeInfo::type_path` for use through the registry or if you want to
work with the represented type of a `DynamicFoo`.
- Remove `type_name` from manual `Reflect` implementations.
- Use `type_path` and `type_path_table` in place of `type_name` on
`TypeInfo`-like structs.
- Use `get_with_type_path(_mut)` over `get_with_type_name(_mut)`.
## Note to reviewers
I think if anything we were a little overzealous in merging #7184 and we
should take that extra care here.
In my mind, this is the "point of no return" for `TypePath` and while I
think we all agree on the design, we should carefully consider if the
finer details and current implementations are actually how we want them
moving forward.
For example [this incorrect `TypePath` implementation for
`String`](
|
||
![]() |
ec34fe01d1
|
Finish documenting bevy_scene (#9949)
# Objective Finish documenting `bevy_scene`. ## Solution Document the remaining items and add a crate-level `warn(missing_doc)` attribute as for the other crates with completed documentation. |
||
![]() |
5eb292dc10
|
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
![]() |
394e2b0c91
|
Replaced EntityMap with HashMap (#9461)
# Objective - Fixes #9321 ## Solution - `EntityMap` has been replaced by a simple `HashMap<Entity, Entity>`. --- ## Changelog - `EntityMap::world_scope` has been replaced with `World::world_scope` to avoid creating a new trait. This is a public facing change to the call semantics, but has no effect on results or behaviour. - `EntityMap`, as a `HashMap`, now operates on `&Entity` rather than `Entity`. This changes many standard access functions (e.g, `.get`) in a public-facing way. ## Migration Guide - Calls to `EntityMap::world_scope` can be directly replaced with the following: `map.world_scope(&mut world)` -> `world.world_scope(&mut map)` - Calls to legacy `EntityMap` methods such as `EntityMap::get` must explicitly include de/reference symbols: `let entity = map.get(parent);` -> `let &entity = map.get(&parent);` |
||
![]() |
d96933ad9c
|
bevy_scene: Add SceneFilter (#6793)
# Objective Currently, `DynamicScene`s extract all components listed in the given (or the world's) type registry. This acts as a quasi-filter of sorts. However, it can be troublesome to use effectively and lacks decent control. For example, say you need to serialize only the following component over the network: ```rust #[derive(Reflect, Component, Default)] #[reflect(Component)] struct NPC { name: Option<String> } ``` To do this, you'd need to: 1. Create a new `AppTypeRegistry` 2. Register `NPC` 3. Register `Option<String>` If we skip Step 3, then the entire scene might fail to serialize as `Option<String>` requires registration. Not only is this annoying and easy to forget, but it can leave users with an impossible task: serializing a third-party type that contains private types. Generally, the third-party crate will register their private types within a plugin so the user doesn't need to do it themselves. However, this means we are now unable to serialize _just_ that type— we're forced to allow everything! ## Solution Add the `SceneFilter` enum for filtering components to extract. This filter can be used to optionally allow or deny entire sets of components/resources. With the `DynamicSceneBuilder`, users have more control over how their `DynamicScene`s are built. To only serialize a subset of components, use the `allow` method: ```rust let scene = builder .allow::<ComponentA>() .allow::<ComponentB>() .extract_entity(entity) .build(); ``` To serialize everything _but_ a subset of components, use the `deny` method: ```rust let scene = builder .deny::<ComponentA>() .deny::<ComponentB>() .extract_entity(entity) .build(); ``` Or create a custom filter: ```rust let components = HashSet::from([type_id]); let filter = SceneFilter::Allowlist(components); // let filter = SceneFilter::Denylist(components); let scene = builder .with_filter(Some(filter)) .extract_entity(entity) .build(); ``` Similar operations exist for resources: <details> <summary>View Resource Methods</summary> To only serialize a subset of resources, use the `allow_resource` method: ```rust let scene = builder .allow_resource::<ResourceA>() .extract_resources() .build(); ``` To serialize everything _but_ a subset of resources, use the `deny_resource` method: ```rust let scene = builder .deny_resource::<ResourceA>() .extract_resources() .build(); ``` Or create a custom filter: ```rust let resources = HashSet::from([type_id]); let filter = SceneFilter::Allowlist(resources); // let filter = SceneFilter::Denylist(resources); let scene = builder .with_resource_filter(Some(filter)) .extract_resources() .build(); ``` </details> ### Open Questions - [x] ~~`allow` and `deny` are mutually exclusive. Currently, they overwrite each other. Should this instead be a panic?~~ Took @soqb's suggestion and made it so that the opposing method simply removes that type from the list. - [x] ~~`DynamicSceneBuilder` extracts entity data as soon as `extract_entity`/`extract_entities` is called. Should this behavior instead be moved to the `build` method to prevent ordering mixups (e.g. `.allow::<Foo>().extract_entity(entity)` vs `.extract_entity(entity).allow::<Foo>()`)? The tradeoff would be iterating over the given entities twice: once at extraction and again at build.~~ Based on the feedback from @Testare it sounds like it might be better to just keep the current functionality (if anything we can open a separate PR that adds deferred methods for extraction, so the choice/performance hit is up to the user). - [ ] An alternative might be to remove the filter from `DynamicSceneBuilder` and have it as a separate parameter to the extraction methods (either in the existing ones or as added `extract_entity_with_filter`-type methods). Is this preferable? - [x] ~~Should we include constructors that include common types to allow/deny? For example, a `SceneFilter::standard_allowlist` that includes things like `Parent` and `Children`?~~ Consensus suggests we should. I may split this out into a followup PR, though. - [x] ~~Should we add the ability to remove types from the filter regardless of whether an allowlist or denylist (e.g. `filter.remove::<Foo>()`)?~~ See the first list item - [x] ~~Should `SceneFilter` be an enum? Would it make more sense as a struct that contains an `is_denylist` boolean?~~ With the added `SceneFilter::None` state (replacing the need to wrap in an `Option` or rely on an empty `Denylist`), it seems an enum is better suited now - [x] ~~Bikeshed: Do we like the naming convention? Should we instead use `include`/`exclude` terminology?~~ Sounds like we're sticking with `allow`/`deny`! - [x] ~~Does this feature need a new example? Do we simply include it in the existing one (maybe even as a comment?)? Should this be done in a followup PR instead?~~ Example will be added in a followup PR ### Followup Tasks - [ ] Add a dedicated `SceneFilter` example - [ ] Possibly add default types to the filter (e.g. deny things like `ComputedVisibility`, allow `Parent`, etc) --- ## Changelog - Added the `SceneFilter` enum for filtering components and resources when building a `DynamicScene` - Added methods: - `DynamicSceneBuilder::with_filter` - `DynamicSceneBuilder::allow` - `DynamicSceneBuilder::deny` - `DynamicSceneBuilder::allow_all` - `DynamicSceneBuilder::deny_all` - `DynamicSceneBuilder::with_resource_filter` - `DynamicSceneBuilder::allow_resource` - `DynamicSceneBuilder::deny_resource` - `DynamicSceneBuilder::allow_all_resources` - `DynamicSceneBuilder::deny_all_resources` - Removed methods: - `DynamicSceneBuilder::from_world_with_type_registry` - `DynamicScene::from_scene` and `DynamicScene::from_world` no longer require an `AppTypeRegistry` reference ## Migration Guide - `DynamicScene::from_scene` and `DynamicScene::from_world` no longer require an `AppTypeRegistry` reference: ```rust // OLD let registry = world.resource::<AppTypeRegistry>(); let dynamic_scene = DynamicScene::from_world(&world, registry); // let dynamic_scene = DynamicScene::from_scene(&scene, registry); // NEW let dynamic_scene = DynamicScene::from_world(&world); // let dynamic_scene = DynamicScene::from_scene(&scene); ``` - Removed `DynamicSceneBuilder::from_world_with_type_registry`. Now the registry is automatically taken from the given world: ```rust // OLD let registry = world.resource::<AppTypeRegistry>(); let builder = DynamicSceneBuilder::from_world_with_type_registry(&world, registry); // NEW let builder = DynamicSceneBuilder::from_world(&world); ``` |
||
![]() |
0294bb191d
|
Move AppTypeRegistry to bevy_ecs (#8901)
# Objective - Use `AppTypeRegistry` on API defined in `bevy_ecs` (https://github.com/bevyengine/bevy/pull/8895#discussion_r1234748418) A lot of the API on `Reflect` depends on a registry. When it comes to the ECS. We should use `AppTypeRegistry` in the general case. This is however impossible in `bevy_ecs`, since `AppTypeRegistry` is defined in `bevy_app`. ## Solution - Move `AppTypeRegistry` resource definition from `bevy_app` to `bevy_ecs` - Still add the resource in the `App` plugin, since bevy_ecs itself doesn't know of plugins Note that `bevy_ecs` is a dependency of `bevy_app`, so nothing revolutionary happens. ## Alternative - Define the API as a trait in `bevy_app` over `bevy_ecs`. (though this prevents us from using bevy_ecs internals) - Do not rely on `AppTypeRegistry` for the API in question, requring users to extract themselves the resource and pass it to the API methods. --- ## Changelog - Moved `AppTypeRegistry` resource definition from `bevy_app` to `bevy_ecs` ## Migration Guide - If you were **not** using a `prelude::*` to import `AppTypeRegistry`, you should update your imports: ```diff - use bevy::app::AppTypeRegistry; + use bevy::ecs::reflect::AppTypeRegistry ``` |
||
![]() |
f135535cd6
|
Rename Command's "write" method to "apply" (#8814)
# Objective - Fixes #8811 . ## Solution - Rename "write" method to "apply" in Command trait definition. - Rename other implementations of command trait throughout bevy's code base. --- ## Changelog - Changed: `Command::write` has been changed to `Command::apply` - Changed: `EntityCommand::write` has been changed to `EntityCommand::apply` ## Migration Guide - `Command::write` implementations need to be changed to implement `Command::apply` instead. This is a mere name change, with no further actions needed. - `EntityCommand::write` implementations need to be changed to implement `EntityCommand::apply` instead. This is a mere name change, with no further actions needed. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
1efc762924
|
reflect: stable type path v2 (#7184)
# Objective
- Introduce a stable alternative to
[`std::any::type_name`](https://doc.rust-lang.org/std/any/fn.type_name.html).
- Rewrite of #5805 with heavy inspiration in design.
- On the path to #5830.
- Part of solving #3327.
## Solution
- Add a `TypePath` trait for static stable type path/name information.
- Add a `TypePath` derive macro.
- Add a `impl_type_path` macro for implementing internal and foreign
types in `bevy_reflect`.
---
## Changelog
- Added `TypePath` trait.
- Added `DynamicTypePath` trait and `get_type_path` method to `Reflect`.
- Added a `TypePath` derive macro.
- Added a `bevy_reflect::impl_type_path` for implementing `TypePath` on
internal and foreign types in `bevy_reflect`.
- Changed `bevy_reflect::utility::(Non)GenericTypeInfoCell` to
`(Non)GenericTypedCell<T>` which allows us to be generic over both
`TypeInfo` and `TypePath`.
- `TypePath` is now a supertrait of `Asset`, `Material` and
`Material2d`.
- `impl_reflect_struct` needs a `#[type_path = "..."]` attribute to be
specified.
- `impl_reflect_value` needs to either specify path starting with a
double colon (`::core::option::Option`) or an `in my_crate::foo`
declaration.
- Added `bevy_reflect_derive::ReflectTypePath`.
- Most uses of `Ident` in `bevy_reflect_derive` changed to use
`ReflectTypePath`.
## Migration Guide
- Implementors of `Asset`, `Material` and `Material2d` now also need to
derive `TypePath`.
- Manual implementors of `Reflect` will need to implement the new
`get_type_path` method.
## Open Questions
- [x] ~This PR currently does not migrate any usages of
`std::any::type_name` to use `bevy_reflect::TypePath` to ease the review
process. Should it?~ Migration will be left to a follow-up PR.
- [ ] This PR adds a lot of `#[derive(TypePath)]` and `T: TypePath` to
satisfy new bounds, mostly when deriving `TypeUuid`. Should we make
`TypePath` a supertrait of `TypeUuid`? [Should we remove `TypeUuid` in
favour of
`TypePath`?](
|
||
![]() |
a29d328fe5
|
Rename map_entities and map_specific_entities (#7570)
# Objective After fixing dynamic scene to only map specific entities, we want map_entities to default to the less error prone behavior and have the previous behavior renamed to "map_all_entities." As this is a breaking change, it could not be pushed out with the bug fix. ## Solution Simple rename and refactor. ## Changelog ### Changed - `map_entities` now accepts a list of entities to apply to, with `map_all_entities` retaining previous behavior of applying to all entities in the map. ## Migration Guide - In `bevy_ecs`, `ReflectMapEntities::map_entites` now requires an additional `entities` parameter to specify which entities it applies to. To keep the old behavior, use the new `ReflectMapEntities::map_all_entities`, but consider if passing the entities in specifically might be better for your use case to avoid bugs. |
||
![]() |
eebc92a7d4
|
Make scene handling of entity references robust (#7335)
# Objective - Handle dangling entity references inside scenes - Handle references to entities with generation > 0 inside scenes - Fix a latent bug in `Parent`'s `MapEntities` implementation, which would, if the parent was outside the scene, cause the scene to be loaded into the new world with a parent reference potentially pointing to some random entity in that new world. - Fixes #4793 and addresses #7235 ## Solution - DynamicScenes now identify entities with a `Entity` instead of a u32, therefore including generation - `World` exposes a new `reserve_generations` function that despawns an entity and advances its generation by some extra amount. - `MapEntities` implementations have a new `get_or_reserve` function available that will always return an `Entity`, establishing a new mapping to a dead entity when the entity they are called with is not in the `EntityMap`. Subsequent calls with that same `Entity` will return the same newly created dead entity reference, preserving equality semantics. - As a result, after loading a scene containing references to dead entities (or entities otherwise outside the scene), those references will all point to different generations on a single entity id in the new world. --- ## Changelog ### Changed - In serialized scenes, entities are now identified by a u64 instead of a u32. - In serialized scenes, components with entity references now have those references serialize as u64s instead of structs. ### Fixed - Scenes containing components with entity references will now deserialize and add to a world reliably. ## Migration Guide - `MapEntities` implementations must change from a `&EntityMap` parameter to a `&mut EntityMapper` parameter and can no longer return a `Result`. Finally, they should switch from calling `EntityMap::get` to calling `EntityMapper::get_or_reserve`. --------- Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
![]() |
abf12f3b3b
|
Fixed several missing links in docs. (#8117)
Links in the api docs are nice. I noticed that there were several places where structs / functions and other things were referenced in the docs, but weren't linked. I added the links where possible / logical. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: François <mockersf@gmail.com> |
||
![]() |
3d8c7681a7
|
Bugfix: Scene reload fix (nonbreaking) (#7951)
# Objective Fix a bug with scene reload. (This is a copy of #7570 but without the breaking API change, in order to allow the bugfix to be introduced in 0.10.1) When a scene was reloaded, it was corrupting components that weren't native to the scene itself. In particular, when a DynamicScene was created on Entity (A), all components in the scene without parents are automatically added as children of Entity (A). But if that scene was reloaded and the same ID of Entity (A) was a scene ID as well*, that parent component was corrupted, causing the hierarchy to become malformed and bevy to panic. *For example, if Entity (A)'s ID was 3, and the scene contained an entity with ID 3 This issue could affect any components that: * Implemented `MapEntities`, basically components that contained references to other entities * Were added to entities from a scene file but weren't defined in the scene file - Fixes #7529 ## Solution The solution was to keep track of entities+components that had `MapEntities` functionality during scene load, and only apply the entity update behavior to them. They were tracked with a HashMap from the component's TypeID to a vector of entity ID's. Then the `ReflectMapEntities` struct was updated to hold a function that took a list of entities to be applied to, instead of naively applying itself to all values in the EntityMap. (See this PR comment https://github.com/bevyengine/bevy/pull/7570#issuecomment-1432302796 for a story-based explanation of this bug and solution) ## Changelog ### Fixed - Components that implement `MapEntities` added to scene entities after load are not corrupted during scene reload. |
||
![]() |
7b38de0a64
|
(De) serialize resources in scenes (#6846)
# Objective Co-Authored-By: davier [bricedavier@gmail.com](mailto:bricedavier@gmail.com) Fixes #3576. Adds a `resources` field in scene serialization data to allow de/serializing resources that have reflection enabled. ## Solution Most of this code is taken from a previous closed PR: https://github.com/bevyengine/bevy/pull/3580. Most of the credit goes to @Davier , what I did was mostly getting it to work on the latest main branch of Bevy, along with adding a few asserts in the currently existing tests to be sure everything is working properly. This PR changes the scene format to include resources in this way: ``` ( resources: { // List of resources here, keyed by resource type name. }, entities: [ // Previous scene format here ], ) ``` An example taken from the tests: ``` ( resources: { "bevy_scene::serde::tests::MyResource": ( foo: 123, ), }, entities: { // Previous scene format here }, ) ``` For this, a `resources` fields has been added on the `DynamicScene` and the `DynamicSceneBuilder` structs. The latter now also has a method named `extract_resources` to properly extract the existing resources registered in the local type registry, in a similar way to `extract_entities`. --- ## Changelog Added: Reflect resources registered in the type registry used by dynamic scenes will now be properly de/serialized in scene data. ## Migration Guide Since the scene format has been changed, the user may not be able to use scenes saved prior to this PR due to the `resources` scene field being missing. ~~To preserve backwards compatibility, I will try to make the `resources` fully optional so that old scenes can be loaded without issue.~~ ## TODOs - [x] I may have to update a few doc blocks still referring to dynamic scenes as mere container of entities, since they now include resources as well. - [x] ~~I want to make the `resources` key optional, as specified in the Migration Guide, so that old scenes will be compatible with this change.~~ Since this would only be trivial for ron format, I think it might be better to consider it in a separate PR/discussion to figure out if it could be done for binary serialization too. - [x] I suppose it might be a good idea to add a resources in the scene example so that users will quickly notice they can serialize resources just like entities. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
e1d741aa19 |
bevy_ecs: ReflectComponentFns without World (#7206)
# Objective Ability to use `ReflectComponent` methods in dynamic type contexts with no access to `&World`. This problem occurred to me when wanting to apply reflected types to an entity where the `&World` reference was already consumed by query iterator leaving only `EntityMut`. ## Solution - Remove redundant `EntityMut` or `EntityRef` lookup from `World` and `Entity` in favor of taking `EntityMut` directly in `ReflectComponentFns`. - Added `RefectComponent::contains` to determine without panic whether `apply` can be used. ## Changelog - Changed function signatures of `ReflectComponent` methods, `apply`, `remove`, `contains`, and `reflect`. ## Migration Guide - Call `World::entity` before calling into the changed `ReflectComponent` methods, most likely user already has a `EntityRef` or `EntityMut` which was being queried redundantly. |
||
![]() |
e8c0df9e1e |
Allow iterating over with EntityRef over the entire World (#6843)
# Objective Partially addresses #5504. Allow users to get an `Iterator<Item = EntityRef<'a>>` over all entities in the `World`. ## Solution Change `World::iter_entities` to return an iterator of `EntityRef` instead of `Entity`. Not sure how to tackle making an `Iterator<Item = EntityMut<'_>>` without being horribly unsound. Might need to wait for `LendingIterator` to stabilize so we can ensure only one of them is valid at a given time. --- ## Changelog Changed: `World::iter_entities` now returns an iterator of `EntityRef` instead of `Entity`. |
||
![]() |
af2a199254 |
[Fixes #6030] Bevy scene optional serde (#6076)
# Objective Fixes #6030, making ``serde`` optional. ## Solution This was solved by making a ``serialize`` feature that can activate ``serde``, which is now optional. When ``serialize`` is deactivated, the ``Plugin`` implementation for ``ScenePlugin`` does nothing. Co-authored-by: Linus Käll <linus.kall.business@gmail.com> |