# Objective
Many instances of `clippy::too_many_arguments` linting happen to be on
systems - functions which we don't call manually, and thus there's not
much reason to worry about the argument count.
## Solution
Allow `clippy::too_many_arguments` globally, and remove all lint
attributes related to it.
# Objective
I never realized `clippy::type_complexity` was an allowed lint - I've
been assuming it'd generate a warning when performing my linting PRs.
## Solution
Removes any instances of `#[allow(clippy::type_complexity)]` and
`#[expect(clippy::type_complexity)]`
## Testing
`cargo clippy` ran without errors or warnings.
I broke the commit history on the other one,
https://github.com/bevyengine/bevy/pull/17160. Woops.
# Objective
- https://github.com/bevyengine/bevy/issues/17111
## Solution
Set the `clippy::allow_attributes` and
`clippy::allow_attributes_without_reason` lints to `deny`, and bring
`bevy_sprite` in line with the new restrictions.
## Testing
`cargo clippy` and `cargo test --package bevy_sprite` were run, and no
errors were encountered.
Currently, our batchable binned items are stored in a hash table that
maps bin key, which includes the batch set key, to a list of entities.
Multidraw is handled by sorting the bin keys and accumulating adjacent
bins that can be multidrawn together (i.e. have the same batch set key)
into multidraw commands during `batch_and_prepare_binned_render_phase`.
This is reasonably efficient right now, but it will complicate future
work to retain indirect draw parameters from frame to frame. Consider
what must happen when we have retained indirect draw parameters and the
application adds a bin (i.e. a new mesh) that shares a batch set key
with some pre-existing meshes. (That is, the new mesh can be multidrawn
with the pre-existing meshes.) To be maximally efficient, our goal in
that scenario will be to update *only* the indirect draw parameters for
the batch set (i.e. multidraw command) containing the mesh that was
added, while leaving the others alone. That means that we have to
quickly locate all the bins that belong to the batch set being modified.
In the existing code, we would have to sort the list of bin keys so that
bins that can be multidrawn together become adjacent to one another in
the list. Then we would have to do a binary search through the sorted
list to find the location of the bin that was just added. Next, we would
have to widen our search to adjacent indexes that contain the same batch
set, doing expensive comparisons against the batch set key every time.
Finally, we would reallocate the indirect draw parameters and update the
stored pointers to the indirect draw parameters that the bins store.
By contrast, it'd be dramatically simpler if we simply changed the way
bins are stored to first map from batch set key (i.e. multidraw command)
to the bins (i.e. meshes) within that batch set key, and then from each
individual bin to the mesh instances. That way, the scenario above in
which we add a new mesh will be simpler to handle. First, we will look
up the batch set key corresponding to that mesh in the outer map to find
an inner map corresponding to the single multidraw command that will
draw that batch set. We will know how many meshes the multidraw command
is going to draw by the size of that inner map. Then we simply need to
reallocate the indirect draw parameters and update the pointers to those
parameters within the bins as necessary. There will be no need to do any
binary search or expensive batch set key comparison: only a single hash
lookup and an iteration over the inner map to update the pointers.
This patch implements the above technique. Because we don't have
retained bins yet, this PR provides no performance benefits. However, it
opens the door to maximally efficient updates when only a small number
of meshes change from frame to frame.
The main churn that this patch causes is that the *batch set key* (which
uniquely specifies a multidraw command) and *bin key* (which uniquely
specifies a mesh *within* that multidraw command) are now separate,
instead of the batch set key being embedded *within* the bin key.
In order to isolate potential regressions, I think that at least #16890,
#16836, and #16825 should land before this PR does.
## Migration Guide
* The *batch set key* is now separate from the *bin key* in
`BinnedPhaseItem`. The batch set key is used to collect multidrawable
meshes together. If you aren't using the multidraw feature, you can
safely set the batch set key to `()`.
# Objective
- Contributes to #11478
## Solution
- Made `bevy_utils::tracing` `doc(hidden)`
- Re-exported `tracing` from `bevy_log` for end-users
- Added `tracing` directly to crates that need it.
## Testing
- CI
---
## Migration Guide
If you were importing `tracing` via `bevy::utils::tracing`, instead use
`bevy::log::tracing`. Note that many items within `tracing` are also
directly re-exported from `bevy::log` as well, so you may only need
`bevy::log` for the most common items (e.g., `warn!`, `trace!`, etc.).
This also applies to the `log_once!` family of macros.
## Notes
- While this doesn't reduce the line-count in `bevy_utils`, it further
decouples the internal crates from `bevy_utils`, making its eventual
removal more feasible in the future.
- I have just imported `tracing` as we do for all dependencies. However,
a workspace dependency may be more appropriate for version management.
Derived `Default` for all public unit structs that already derive from
`Component`. This allows them to be used more easily as required
components.
To avoid clutter in tests/examples, only public components were
affected, but this could easily be expanded to affect all unit
components.
Fixes#17052.
This commit makes the following changes:
* `IndirectParametersBuffer` has been changed from a `BufferVec` to a
`RawBufferVec`. This won about 20us or so on Bistro by avoiding `encase`
overhead.
* The methods on the `GetFullBatchData` trait no longer have the
`entity` parameter, as it was unused.
* `PreprocessWorkItem`, which specifies a transform-and-cull operation,
now supplies the mesh instance uniform output index directly instead of
having the shader look it up from the indirect draw parameters.
Accordingly, the responsibility of writing the output index to the
indirect draw parameters has been moved from the CPU to the GPU. This is
in preparation for retained indirect instance draw commands, where the
mesh instance uniform output index may change from frame to frame, while
the indirect instance draw commands will be cached. We won't want the
CPU to have to upload the same indirect draw parameters again and again
if a batch didn't change from frame to frame.
* `batch_and_prepare_binned_render_phase` and
`batch_and_prepare_sorted_render_phase` now allocate indirect draw
commands for an entire batch set at a time when possible, instead of one
batch at a time. This change will allow us to retain the indirect draw
commands for whole batch sets.
* `GetFullBatchData::get_batch_indirect_parameters_index` has been
replaced with `GetFullBatchData::write_batch_indirect_parameters`, which
takes an offset and writes into it instead of allocating. This is
necessary in order to use the optimization mentioned in the previous
point.
* At the WGSL level, `IndirectParameters` has been factored out into
`mesh_preprocess_types.wgsl`. This is because we'll need a new compute
shader that zeroes out the instance counts in preparation for a new
frame. That shader will need to access `IndirectParameters`, so it was
moved to a separate file.
* Bins are no longer raw vectors but are instances of a separate type,
`RenderBin`. This is so that the bin can eventually contain its retained
batches.
# Objective
When preparing `GpuImage`s, we currently discard the
`depth_or_array_layers` of the `Image`'s size by converting it into a
`UVec2`.
Fixes#16715.
## Solution
Change `GpuImage::size` to `Extent3d`, and just pass that through when
creating `GpuImage`s.
Also copy the `aspect_ratio`, and `size` (now `size_2d` for
disambiguation from the field) functions from `Image` to `GpuImage` for
ease of use with 2D textures.
I originally copied all size-related functions (like `width`, and
`height`), but i think they are unnecessary considering how visible the
`size` field on `GpuImage` is compared to `Image`.
## Testing
Tested via `cargo r -p ci` for everything except docs, when generating
docs it keeps spitting out a ton of
```
error[E0554]: `#![feature]` may not be used on the stable release channel
--> crates/bevy_dylib/src/lib.rs:1:21
|
1 | #![cfg_attr(docsrs, feature(doc_auto_cfg))]
|
```
Not sure why this is happening, but it also happens without my changes,
so it's almost certainly some strange issue specific to my machine.
## Migration Guide
- `GpuImage::size` is now an `Extent3d`. To easily get 2D size, use
`size_2d()`.
Currently, `check_visibility` is parameterized over a query filter that
specifies the type of potentially-visible object. This has the
unfortunate side effect that we need a separate system,
`mark_view_visibility_as_changed_if_necessary`, to trigger view
visibility change detection. That system is quite slow because it must
iterate sequentially over all entities in the scene.
This PR moves the query filter from `check_visibility` to a new
component, `VisibilityClass`. `VisibilityClass` stores a list of type
IDs, each corresponding to one of the query filters we used to use.
Because `check_visibility` is no longer specialized to the query filter
at the type level, Bevy now only needs to invoke it once, leading to
better performance as `check_visibility` can do change detection on the
fly rather than delegating it to a separate system.
This commit also has ergonomic improvements, as there's no need for
applications that want to add their own custom renderable components to
add specializations of the `check_visibility` system to the schedule.
Instead, they only need to ensure that the `ViewVisibility` component is
properly kept up to date. The recommended way to do this, and the way
that's demonstrated in the `custom_phase_item` and
`specialized_mesh_pipeline` examples, is to make `ViewVisibility` a
required component and to add the type ID to it in a component add hook.
This patch does this for `Mesh3d`, `Mesh2d`, `Sprite`, `Light`, and
`Node`, which means that most app code doesn't need to change at all.
Note that, although this patch has a large impact on the performance of
visibility determination, it doesn't actually improve the end-to-end
frame time of `many_cubes`. That's because the render world was already
effectively hiding the latency from
`mark_view_visibility_as_changed_if_necessary`. This patch is, however,
necessary for *further* improvements to `many_cubes` performance.
`many_cubes` trace before:

`many_cubes` trace after:

## Migration Guide
* `check_visibility` no longer takes a `QueryFilter`, and there's no
need to add it manually to your app schedule anymore for custom
rendering items. Instead, entities with custom renderable components
should add the appropriate type IDs to `VisibilityClass`. See
`custom_phase_item` for an example.
This commit adds support for *multidraw*, which is a feature that allows
multiple meshes to be drawn in a single drawcall. `wgpu` currently
implements multidraw on Vulkan, so this feature is only enabled there.
Multiple meshes can be drawn at once if they're in the same vertex and
index buffers and are otherwise placed in the same bin. (Thus, for
example, at present the materials and textures must be identical, but
see #16368.) Multidraw is a significant performance improvement during
the draw phase because it reduces the number of rebindings, as well as
the number of drawcalls.
This feature is currently only enabled when GPU culling is used: i.e.
when `GpuCulling` is present on a camera. Therefore, if you run for
example `scene_viewer`, you will not see any performance improvements,
because `scene_viewer` doesn't add the `GpuCulling` component to its
camera.
Additionally, the multidraw feature is only implemented for opaque 3D
meshes and not for shadows or 2D meshes. I plan to make GPU culling the
default and to extend the feature to shadows in the future. Also, in the
future I suspect that polyfilling multidraw on APIs that don't support
it will be fruitful, as even without driver-level support use of
multidraw allows us to avoid expensive `wgpu` rebindings.
This patch adds the infrastructure necessary for Bevy to support
*bindless resources*, by adding a new `#[bindless]` attribute to
`AsBindGroup`.
Classically, only a single texture (or sampler, or buffer) can be
attached to each shader binding. This means that switching materials
requires breaking a batch and issuing a new drawcall, even if the mesh
is otherwise identical. This adds significant overhead not only in the
driver but also in `wgpu`, as switching bind groups increases the amount
of validation work that `wgpu` must do.
*Bindless resources* are the typical solution to this problem. Instead
of switching bindings between each texture, the renderer instead
supplies a large *array* of all textures in the scene up front, and the
material contains an index into that array. This pattern is repeated for
buffers and samplers as well. The renderer now no longer needs to switch
binding descriptor sets while drawing the scene.
Unfortunately, as things currently stand, this approach won't quite work
for Bevy. Two aspects of `wgpu` conspire to make this ideal approach
unacceptably slow:
1. In the DX12 backend, all binding arrays (bindless resources) must
have a constant size declared in the shader, and all textures in an
array must be bound to actual textures. Changing the size requires a
recompile.
2. Changing even one texture incurs revalidation of all textures, a
process that takes time that's linear in the total size of the binding
array.
This means that declaring a large array of textures big enough to
encompass the entire scene is presently unacceptably slow. For example,
if you declare 4096 textures, then `wgpu` will have to revalidate all
4096 textures if even a single one changes. This process can take
multiple frames.
To work around this problem, this PR groups bindless resources into
small *slabs* and maintains a free list for each. The size of each slab
for the bindless arrays associated with a material is specified via the
`#[bindless(N)]` attribute. For instance, consider the following
declaration:
```rust
#[derive(AsBindGroup)]
#[bindless(16)]
struct MyMaterial {
#[buffer(0)]
color: Vec4,
#[texture(1)]
#[sampler(2)]
diffuse: Handle<Image>,
}
```
The `#[bindless(N)]` attribute specifies that, if bindless arrays are
supported on the current platform, each resource becomes a binding array
of N instances of that resource. So, for `MyMaterial` above, the `color`
attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`,
the `diffuse` texture is exposed to the shader as
`binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is
exposed to the shader as `binding_array<sampler, 16>`. Inside the
material's vertex and fragment shaders, the applicable index is
available via the `material_bind_group_slot` field of the `Mesh`
structure. So, for instance, you can access the current color like so:
```wgsl
// `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted
// to `storage` in bindless mode.
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
...
}
```
Note that portable shader code can't guarantee that the current platform
supports bindless textures. Indeed, bindless mode is only available in
Vulkan and DX12. The `BINDLESS` shader definition is available for your
use to determine whether you're on a bindless platform or not. Thus a
portable version of the shader above would look like:
```wgsl
#ifdef BINDLESS
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
#else // BINDLESS
@group(2) @binding(0) var<uniform> material_color: Color;
#endif // BINDLESS
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
#ifdef BINDLESS
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
#else // BINDLESS
let color = material_color;
#endif // BINDLESS
...
}
```
Importantly, this PR *doesn't* update `StandardMaterial` to be bindless.
So, for example, `scene_viewer` will currently not run any faster. I
intend to update `StandardMaterial` to use bindless mode in a follow-up
patch.
A new example, `shaders/shader_material_bindless`, has been added to
demonstrate how to use this new feature.
Here's a Tracy profile of `submit_graph_commands` of this patch and an
additional patch (not submitted yet) that makes `StandardMaterial` use
bindless. Red is those patches; yellow is `main`. The scene was Bistro
Exterior with a hack that forces all textures to opaque. You can see a
1.47x mean speedup.

## Migration Guide
* `RenderAssets::prepare_asset` now takes an `AssetId` parameter.
* Bin keys now have Bevy-specific material bind group indices instead of
`wgpu` material bind group IDs, as part of the bindless change. Use the
new `MaterialBindGroupAllocator` to map from bind group index to bind
group ID.
# Objective
Fixes#15940
## Solution
Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.
## Testing
Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.
## Migration Guide
Use `bevy_image` instead of `bevy_render::texture` items.
---------
Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.
## Solution
- expose the compilation option wgpu gives us
## Testing
- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems
---
</details>
## Migration Guide
- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
# Objective
Closes#15799.
Many rendering people and maintainers are in favor of reverting default
mesh materials added in #15524, especially as the migration to required
component is already large and heavily breaking.
## Solution
Revert default mesh materials, and adjust docs accordingly.
- Remove `extract_default_materials`
- Remove `clear_material_instances`, and move the logic back into
`extract_mesh_materials`
- Remove `HasMaterial2d` and `HasMaterial3d`
- Change default material handles back to pink instead of white
- 2D uses `Color::srgb(1.0, 0.0, 1.0)`, while 3D uses `Color::srgb(1.0,
0.0, 0.5)`. Not sure if this is intended.
There is now no indication at all about missing materials for `Mesh2d`
and `Mesh3d`. Having a mesh without a material renders nothing.
## Testing
I ran `2d_shapes`, `mesh2d_manual`, and `3d_shapes`, with and without
mesh material components.
# Objective
In the Render World, there are a number of collections that are derived
from Main World entities and are used to drive rendering. The most
notable are:
- `VisibleEntities`, which is generated in the `check_visibility` system
and contains visible entities for a view.
- `ExtractedInstances`, which maps entity ids to asset ids.
In the old model, these collections were trivially kept in sync -- any
extracted phase item could look itself up because the render entity id
was guaranteed to always match the corresponding main world id.
After #15320, this became much more complicated, and was leading to a
number of subtle bugs in the Render World. The main rendering systems,
i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a
similar pattern:
```rust
for visible_entity in visible_entities.iter::<With<Mesh2d>>() {
let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else {
continue;
};
// Look some more stuff up and specialize the pipeline...
let bin_key = Opaque2dBinKey {
pipeline: pipeline_id,
draw_function: draw_opaque_2d,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material_2d.get_bind_group_id().0,
};
opaque_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching),
);
}
```
In this case, `visible_entities` and `render_mesh_instances` are both
collections that are created and keyed by Main World entity ids, and so
this lookup happens to work by coincidence. However, there is a major
unintentional bug here: namely, because `visible_entities` is a
collection of Main World ids, the phase item being queued is created
with a Main World id rather than its correct Render World id.
This happens to not break mesh rendering because the render commands
used for drawing meshes do not access the `ItemQuery` parameter, but
demonstrates the confusion that is now possible: our UI phase items are
correctly being queued with Render World ids while our meshes aren't.
Additionally, this makes it very easy and error prone to use the wrong
entity id to look up things like assets. For example, if instead we
ignored visibility checks and queued our meshes via a query, we'd have
to be extra careful to use `&MainEntity` instead of the natural
`Entity`.
## Solution
Make all collections that are derived from Main World data use
`MainEntity` as their key, to ensure type safety and avoid accidentally
looking up data with the wrong entity id:
```rust
pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>;
```
Additionally, we make all `PhaseItem` be able to provide both their Main
and Render World ids, to allow render phase implementors maximum
flexibility as to what id should be used to look up data.
You can think of this like tracking at the type level whether something
in the Render World should use it's "primary key", i.e. entity id, or
needs to use a foreign key, i.e. `MainEntity`.
## Testing
##### TODO:
This will require extensive testing to make sure things didn't break!
Additionally, some extraction logic has become more complicated and
needs to be checked for regressions.
## Migration Guide
With the advent of the retained render world, collections that contain
references to `Entity` that are extracted into the render world have
been changed to contain `MainEntity` in order to prevent errors where a
render world entity id is used to look up an item by accident. Custom
rendering code may need to be changed to query for `&MainEntity` in
order to look up the correct item from such a collection. Additionally,
users who implement their own extraction logic for collections of main
world entity should strongly consider extracting into a different
collection that uses `MainEntity` as a key.
Additionally, render phases now require specifying both the `Entity` and
`MainEntity` for a given `PhaseItem`. Custom render phases should ensure
`MainEntity` is available when queuing a phase item.
As discussed in #15521
- Partial revert of #14897, reverting the change to the methods to
consume `self`
- The `insert_if` method is kept
The migration guide of #14897 should be removed
Closes#15521
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:


Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
- Adopted from #14449
- Still fixes#12144.
## Migration Guide
The retained render world is a complex change: migrating might take one
of a few different forms depending on the patterns you're using.
For every example, we specify in which world the code is run. Most of
the changes affect render world code, so for the average Bevy user who's
using Bevy's high-level rendering APIs, these changes are unlikely to
affect your code.
### Spawning entities in the render world
Previously, if you spawned an entity with `world.spawn(...)`,
`commands.spawn(...)` or some other method in the rendering world, it
would be despawned at the end of each frame. In 0.15, this is no longer
the case and so your old code could leak entities. This can be mitigated
by either re-architecting your code to no longer continuously spawn
entities (like you're used to in the main world), or by adding the
`bevy_render::world_sync::TemporaryRenderEntity` component to the entity
you're spawning. Entities tagged with `TemporaryRenderEntity` will be
removed at the end of each frame (like before).
### Extract components with `ExtractComponentPlugin`
```
// main world
app.add_plugins(ExtractComponentPlugin::<ComponentToExtract>::default());
```
`ExtractComponentPlugin` has been changed to only work with synced
entities. Entities are automatically synced if `ComponentToExtract` is
added to them. However, entities are not "unsynced" if any given
`ComponentToExtract` is removed, because an entity may have multiple
components to extract. This would cause the other components to no
longer get extracted because the entity is not synced.
So be careful when only removing extracted components from entities in
the render world, because it might leave an entity behind in the render
world. The solution here is to avoid only removing extracted components
and instead despawn the entire entity.
### Manual extraction using `Extract<Query<(Entity, ...)>>`
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(Entity, &Clusters, &Camera)>>,
) {
for (entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(entity).insert(...);
}
}
```
One of the primary consequences of the retained rendering world is that
there's no longer a one-to-one mapping from entity IDs in the main world
to entity IDs in the render world. Unlike in Bevy 0.14, Entity 42 in the
main world doesn't necessarily map to entity 42 in the render world.
Previous code which called `get_or_spawn(main_world_entity)` in the
render world (`Extract<Query<(Entity, ...)>>` returns main world
entities). Instead, you should use `&RenderEntity` and
`render_entity.id()` to get the correct entity in the render world. Note
that this entity does need to be synced first in order to have a
`RenderEntity`.
When performing manual abstraction, this won't happen automatically
(like with `ExtractComponentPlugin`) so add a `SyncToRenderWorld` marker
component to the entities you want to extract.
This results in the following code:
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(&RenderEntity, &Clusters, &Camera)>>,
) {
for (render_entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(render_entity.id()).insert(...);
}
}
// in main world, when spawning
world.spawn(Clusters::default(), Camera::default(), SyncToRenderWorld)
```
### Looking up `Entity` ids in the render world
As previously stated, there's now no correspondence between main world
and render world `Entity` identifiers.
Querying for `Entity` in the render world will return the `Entity` id in
the render world: query for `MainEntity` (and use its `id()` method) to
get the corresponding entity in the main world.
This is also a good way to tell the difference between synced and
unsynced entities in the render world, because unsynced entities won't
have a `MainEntity` component.
---------
Co-authored-by: re0312 <re0312@outlook.com>
Co-authored-by: re0312 <45868716+re0312@users.noreply.github.com>
Co-authored-by: Periwink <charlesbour@gmail.com>
Co-authored-by: Anselmo Sampietro <ans.samp@gmail.com>
Co-authored-by: Emerson Coskey <56370779+ecoskey@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Fixes#14883
## Solution
Pretty simple update to `EntityCommands` methods to consume `self` and
return it rather than taking `&mut self`. The things probably worth
noting:
* I added `#[allow(clippy::should_implement_trait)]` to the `add` method
because it causes a linting conflict with `std::ops::Add`.
* `despawn` and `log_components` now return `Self`. I'm not sure if
that's exactly the desired behavior so I'm happy to adjust if that seems
wrong.
## Testing
Tested with `cargo run -p ci`. I think that should be sufficient to call
things good.
## Migration Guide
The most likely migration needed is changing code from this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity.insert(DepthPrepass);
}
if normal_prepass {
entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
to this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity = entity.insert(DepthPrepass);
}
if normal_prepass {
entity = entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity = entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
as can be seen in several of the example code updates here. There will
probably also be instances where mutable `EntityCommands` vars no longer
need to be mutable.
# Objective
Adding more features to `AsBindGroup` proc macro means making the trait
arguments uglier. Downstream implementors of the trait without the proc
macro might want to do different things than our default arguments.
## Solution
Make `AsBindGroup` take an associated `Param` type.
## Migration Guide
`AsBindGroup` now allows the user to specify a `SystemParam` to be used
for creating bind groups.
# Objective
currently if we use an image with the wrong sampler type in a material,
wgpu panics with an invalid texture format. turn this into a warning and
fail more gracefully.
## Solution
the expected sampler type is specified in the AsBindGroup derive, so we
can just check the image sampler is what it should be.
i am not totally sure about the mapping of image sampler type to
#[sampler(type)], i assumed:
```
"filtering" => [ TextureSampleType::Float { filterable: true } ],
"non_filtering" => [
TextureSampleType::Float { filterable: false },
TextureSampleType::Sint,
TextureSampleType::Uint,
],
"comparison" => [ TextureSampleType::Depth ],
```
# Objective
- Bevy now supports an opaque phase for mesh2d, but it's very common for
2d textures to have a transparent alpha channel.
## Solution
- Add an alpha mask phase identical to the one in 3d. It will do the
alpha masking in the shader before drawing the mesh.
- Uses the BinnedRenderPhase
- Since it's an opaque draw it also correctly writes to depth
## Testing
- Tested the mes2d_alpha_mode example and the bevymark example with
alpha mask mode enabled
---
## Showcase

The white logo on the right is rendered with alpha mask enabled.
Running the bevymark example I can get 65fps for 120k mesh2d all using
alpha mask.
## Notes
This is one more step for mesh2d improvements
https://github.com/bevyengine/bevy/issues/13265
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
- Wireframe plugins have inconsistencies between 3D and 2D versions.
This PR addresses the following
- 2d version uses `Srgba` for colors, 3d version uses `Color`.
## Solution
- This PR brings consistency by doing the following change
- `Wireframe2d` now uses `Color` instead of `Srgba`
## Testing
- `wireframe_2d` and `wireframe` examples were verified and they work as
before.
---
## Migration Guide
- `Wireframe2dConfig`.`default_color` type is now `Color` instead of
`Srgba`. Use `.into()` to convert between them.
- `Wireframe2dColor`.`color` type is now `Color` instead of `Srgba`. Use
`.into()` to convert between them.
Based on top of #12982 and #13069
# Objective
- Opaque2d was implemented with SortedRenderPhase but BinnedRenderPhase
should be much faster
## Solution
- Implement BinnedRenderPhase for Opaque2d
## Notes
While testing this PR, before the change I had ~14 fps in bevymark with
100k entities. After this change I get ~71 fps, compared to using
sprites where I only get ~63 fps. This means that after this PR mesh2d
with opaque meshes will be faster than the sprite path. This is not a 1
to 1 comparison since sprites do alpha blending.
This PR is based on top of #12982
# Objective
- Mesh2d currently only has an alpha blended phase. Most sprites don't
need transparency though.
- For some 2d games it can be useful to have a 2d depth buffer
## Solution
- Add an opaque phase to render Mesh2d that don't need transparency
- This phase currently uses the `SortedRenderPhase` to make it easier to
implement based on the already existing transparent phase. A follow up
PR will switch this to `BinnedRenderPhase`.
- Add a 2d depth buffer
- Use that depth buffer in the transparent phase to make sure that
sprites and transparent mesh2d are displayed correctly
## Testing
I added the mesh2d_transforms example that layers many opaque and
transparent mesh2d to make sure they all get displayed correctly. I also
confirmed it works with sprites by modifying that example locally.
---
## Changelog
- Added `AlphaMode2d`
- Added `Opaque2d` render phase
- Camera2d now have a `ViewDepthTexture` component
## Migration Guide
- `ColorMaterial` now contains `AlphaMode2d`. To keep previous
behaviour, use `AlphaMode::BLEND`. If you know your sprite is opaque,
use `AlphaMode::OPAQUE`
## Follow up PRs
- See tracking issue: #13265
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christopher Biscardi <chris@christopherbiscardi.com>
# Objective
- Before this fix, the view query in `prepare_mesh2d_view_bind_groups`
matched all views – leading to 2D view bind groups being prepared for 3D
cameras.
## Solution
- Added `With<Camera2d>` to the views query.
## Testing
- Verified the examples still work.
# Objective
- It's possible to have errors in a draw command, but these errors are
ignored
## Solution
- Return a result with the error
## Changelog
Renamed `RenderCommandResult::Failure` to `RenderCommandResult::Skip`
Added a `reason` string parameter to `RenderCommandResult::Failure`
## Migration Guide
If you were using `RenderCommandResult::Failure` to just ignore an error
and retry later, use `RenderCommandResult::Skip` instead.
This wasn't intentional, but this PR should also help with
https://github.com/bevyengine/bevy/issues/12660 since we can turn a few
unwraps into error messages now.
---------
Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
Switches `Msaa` from being a globally configured resource to a per
camera view component.
Closes#7194
# Objective
Allow individual views to describe their own MSAA settings. For example,
when rendering to different windows or to different parts of the same
view.
## Solution
Make `Msaa` a component that is required on all camera bundles.
## Testing
Ran a variety of examples to ensure that nothing broke.
TODO:
- [ ] Make sure android still works per previous comment in
`extract_windows`.
---
## Migration Guide
`Msaa` is no longer configured as a global resource, and should be
specified on each spawned camera if a non-default setting is desired.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
This commit uses the [`offset-allocator`] crate to combine vertex and
index arrays from different meshes into single buffers. Since the
primary source of `wgpu` overhead is from validation and synchronization
when switching buffers, this significantly improves Bevy's rendering
performance on many scenes.
This patch is a more flexible version of #13218, which also used slabs.
Unlike #13218, which used slabs of a fixed size, this commit implements
slabs that start small and can grow. In addition to reducing memory
usage, supporting slab growth reduces the number of vertex and index
buffer switches that need to happen during rendering, leading to
improved performance. To prevent pathological fragmentation behavior,
slabs are capped to a maximum size, and mesh arrays that are too large
get their own dedicated slabs.
As an additional improvement over #13218, this commit allows the
application to customize all allocator heuristics. The
`MeshAllocatorSettings` resource contains values that adjust the minimum
and maximum slab sizes, the cutoff point at which meshes get their own
dedicated slabs, and the rate at which slabs grow. Hopefully-sensible
defaults have been chosen for each value.
Unfortunately, WebGL 2 doesn't support the *base vertex* feature, which
is necessary to pack vertex arrays from different meshes into the same
buffer. `wgpu` represents this restriction as the downlevel flag
`BASE_VERTEX`. This patch detects that bit and ensures that all vertex
buffers get dedicated slabs on that platform. Even on WebGL 2, though,
we can combine all *index* arrays into single buffers to reduce buffer
changes, and we do so.
The following measurements are on Bistro:
Overall frame time improves from 8.74 ms to 5.53 ms (1.58x speedup):

Render system time improves from 6.57 ms to 3.54 ms (1.86x speedup):

Opaque pass time improves from 4.64 ms to 2.33 ms (1.99x speedup):

## Migration Guide
### Changed
* Vertex and index buffers for meshes may now be packed alongside other
buffers, for performance.
* `GpuMesh` has been renamed to `RenderMesh`, to reflect the fact that
it no longer directly stores handles to GPU objects.
* Because meshes no longer have their own vertex and index buffers, the
responsibility for the buffers has moved from `GpuMesh` (now called
`RenderMesh`) to the `MeshAllocator` resource. To access the vertex data
for a mesh, use `MeshAllocator::mesh_vertex_slice`. To access the index
data for a mesh, use `MeshAllocator::mesh_index_slice`.
[`offset-allocator`]: https://github.com/pcwalton/offset-allocator
# Objective / Solution
Make it possible to construct `Material2dBindGroupId` for custom 2D
material pipelines by making the inner field public.
---
The 3D variant (`MaterialBindGroupId`) had this done in
e79b9b62ce
# Objective
Closes#13738
## Solution
Added `from_color` to materials that would support it. Didn't add
`from_color` to `WireframeMaterial` as it doesn't seem we expect users
to be constructing them themselves.
## Testing
None
---
## Changelog
### Added
- `from_color` to `StandardMaterial` so you can construct this material
from any color type.
- `from_color` to `ColorMaterial` so you can construct this material
from any color type.
# Objective
One thing missing from the new Color implementation in 0.14 is the
ability to easily convert to a u8 representation of the rgb color.
(note this is a redo of PR https://github.com/bevyengine/bevy/pull/13739
as I needed to move the source branch
## Solution
I have added to_u8_array and to_u8_array_no_alpha to a new trait called
ColorToPacked to mirror the f32 conversions in ColorToComponents and
implemented the new trait for Srgba and LinearRgba.
To go with those I also added matching from_u8... functions and
converted a couple of cases that used ad-hoc implementations of that
conversion to use these.
After discussion on Discord of the experience of using the API I renamed
Color::linear to Color::to_linear, as without that it looks like a
constructor (like Color::rgb).
I also added to_srgba which is the other commonly converted to type of
color (for UI and 2D) to match to_linear.
Removed a redundant extra implementation of to_f32_array for LinearColor
as it is also supplied in ColorToComponents (I'm surprised that's
allowed?)
## Testing
Ran all tests and manually tested.
Added to_and_from_u8 to linear_rgba::tests
## Changelog
visible change is Color::linear becomes Color::to_linear.
---------
Co-authored-by: John Payne <20407779+johngpayne@users.noreply.github.com>
# Objective
- Fixes#10909
- Fixes#8492
## Solution
- Name all matrices `x_from_y`, for example `world_from_view`.
## Testing
- I've tested most of the 3D examples. The `lighting` example
particularly should hit a lot of the changes and appears to run fine.
---
## Changelog
- Renamed matrices across the engine to follow a `y_from_x` naming,
making the space conversion more obvious.
## Migration Guide
- `Frustum`'s `from_view_projection`, `from_view_projection_custom_far`
and `from_view_projection_no_far` were renamed to
`from_clip_from_world`, `from_clip_from_world_custom_far` and
`from_clip_from_world_no_far`.
- `ComputedCameraValues::projection_matrix` was renamed to
`clip_from_view`.
- `CameraProjection::get_projection_matrix` was renamed to
`get_clip_from_view` (this affects implementations on `Projection`,
`PerspectiveProjection` and `OrthographicProjection`).
- `ViewRangefinder3d::from_view_matrix` was renamed to
`from_world_from_view`.
- `PreviousViewData`'s members were renamed to `view_from_world` and
`clip_from_world`.
- `ExtractedView`'s `projection`, `transform` and `view_projection` were
renamed to `clip_from_view`, `world_from_view` and `clip_from_world`.
- `ViewUniform`'s `view_proj`, `unjittered_view_proj`,
`inverse_view_proj`, `view`, `inverse_view`, `projection` and
`inverse_projection` were renamed to `clip_from_world`,
`unjittered_clip_from_world`, `world_from_clip`, `world_from_view`,
`view_from_world`, `clip_from_view` and `view_from_clip`.
- `GpuDirectionalCascade::view_projection` was renamed to
`clip_from_world`.
- `MeshTransforms`' `transform` and `previous_transform` were renamed to
`world_from_local` and `previous_world_from_local`.
- `MeshUniform`'s `transform`, `previous_transform`,
`inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed
to `world_from_local`, `previous_world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh` type in WGSL mirrors this, however `transform` and
`previous_transform` were named `model` and `previous_model`).
- `Mesh2dTransforms::transform` was renamed to `world_from_local`.
- `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and
`inverse_transpose_model_b` were renamed to `world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh2d` type in WGSL mirrors this).
- In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and
`get_previous_model_matrix` were renamed to `get_world_from_local` and
`get_previous_world_from_local`.
- In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed
to `get_world_from_local`.
Fixes#13118
If you use `Sprite` or `Mesh2d` and create `Camera` with
* hdr=false
* any tonemapper
You would get
```
wgpu error: Validation Error
Caused by:
In Device::create_render_pipeline
note: label = `sprite_pipeline`
Error matching ShaderStages(FRAGMENT) shader requirements against the pipeline
Shader global ResourceBinding { group: 0, binding: 19 } is not available in the pipeline layout
Binding is missing from the pipeline layout
```
Because of missing tonemapping LUT bindings
## Solution
Add missing bindings for tonemapping LUT's to `SpritePipeline` &
`Mesh2dPipeline`
## Testing
I checked that
* `tonemapping`
* `color_grading`
* `sprite_animations`
* `2d_shapes`
* `meshlet`
* `deferred_rendering`
examples are still working
2d cases I checked with this code:
```
use bevy::{
color::palettes::css::PURPLE, core_pipeline::tonemapping::Tonemapping, prelude::*,
sprite::MaterialMesh2dBundle,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, toggle_tonemapping_method)
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<ColorMaterial>>,
asset_server: Res<AssetServer>,
) {
commands.spawn(Camera2dBundle {
camera: Camera {
hdr: false,
..default()
},
tonemapping: Tonemapping::BlenderFilmic,
..default()
});
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Rectangle::default()).into(),
transform: Transform::default().with_scale(Vec3::splat(128.)),
material: materials.add(Color::from(PURPLE)),
..default()
});
commands.spawn(SpriteBundle {
texture: asset_server.load("asd.png"),
..default()
});
}
fn toggle_tonemapping_method(
keys: Res<ButtonInput<KeyCode>>,
mut tonemapping: Query<&mut Tonemapping>,
) {
let mut method = tonemapping.single_mut();
if keys.just_pressed(KeyCode::Digit1) {
*method = Tonemapping::None;
} else if keys.just_pressed(KeyCode::Digit2) {
*method = Tonemapping::Reinhard;
} else if keys.just_pressed(KeyCode::Digit3) {
*method = Tonemapping::ReinhardLuminance;
} else if keys.just_pressed(KeyCode::Digit4) {
*method = Tonemapping::AcesFitted;
} else if keys.just_pressed(KeyCode::Digit5) {
*method = Tonemapping::AgX;
} else if keys.just_pressed(KeyCode::Digit6) {
*method = Tonemapping::SomewhatBoringDisplayTransform;
} else if keys.just_pressed(KeyCode::Digit7) {
*method = Tonemapping::TonyMcMapface;
} else if keys.just_pressed(KeyCode::Digit8) {
*method = Tonemapping::BlenderFilmic;
}
}
```
---
## Changelog
Fix the bug which led to the crash when user uses any tonemapper without
hdr for rendering sprites and 2d meshes.
This commit makes us stop using the render world ECS for
`BinnedRenderPhase` and `SortedRenderPhase` and instead use resources
with `EntityHashMap`s inside. There are three reasons to do this:
1. We can use `clear()` to clear out the render phase collections
instead of recreating the components from scratch, allowing us to reuse
allocations.
2. This is a prerequisite for retained bins, because components can't be
retained from frame to frame in the render world, but resources can.
3. We want to move away from storing anything in components in the
render world ECS, and this is a step in that direction.
This patch results in a small performance benefit, due to point (1)
above.
## Changelog
### Changed
* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources.
## Migration Guide
* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources. Instead of querying for the
components, look the camera entity up in the
`ViewBinnedRenderPhases`/`ViewSortedRenderPhases` tables.
# Objective
Currently, the 2d pipeline only has a transparent pass that is used for
everything. I want to have separate passes for opaque/alpha
mask/transparent meshes just like in 3d.
This PR does the basic work to start adding new phases to the 2d
pipeline and get the current setup a bit closer to 3d.
## Solution
- Use `ViewNode` for `MainTransparentPass2dNode`
- Added `Node2d::StartMainPass`, `Node2d::EndMainPass`
- Rename everything to clarify that the main pass is currently the
transparent pass
---
## Changelog
- Added `Node2d::StartMainPass`, `Node2d::EndMainPass`
## Migration Guide
If you were using `Node2d::MainPass` to order your own custom render
node. You now need to order it relative to `Node2d::StartMainPass` or
`Node2d::EndMainPass`.
This commit implements opt-in GPU frustum culling, built on top of the
infrastructure in https://github.com/bevyengine/bevy/pull/12773. To
enable it on a camera, add the `GpuCulling` component to it. To
additionally disable CPU frustum culling, add the `NoCpuCulling`
component. Note that adding `GpuCulling` without `NoCpuCulling`
*currently* does nothing useful. The reason why `GpuCulling` doesn't
automatically imply `NoCpuCulling` is that I intend to follow this patch
up with GPU two-phase occlusion culling, and CPU frustum culling plus
GPU occlusion culling seems like a very commonly-desired mode.
Adding the `GpuCulling` component to a view puts that view into
*indirect mode*. This mode makes all drawcalls indirect, relying on the
mesh preprocessing shader to allocate instances dynamically. In indirect
mode, the `PreprocessWorkItem` `output_index` points not to a
`MeshUniform` instance slot but instead to a set of `wgpu`
`IndirectParameters`, from which it allocates an instance slot
dynamically if frustum culling succeeds. Batch building has been updated
to allocate and track indirect parameter slots, and the AABBs are now
supplied to the GPU as `MeshCullingData`.
A small amount of code relating to the frustum culling has been borrowed
from meshlets and moved into `maths.wgsl`. Note that standard Bevy
frustum culling uses AABBs, while meshlets use bounding spheres; this
means that not as much code can be shared as one might think.
This patch doesn't provide any way to perform GPU culling on shadow
maps, to avoid making this patch bigger than it already is. That can be
a followup.
## Changelog
### Added
* Frustum culling can now optionally be done on the GPU. To enable it,
add the `GpuCulling` component to a camera.
* To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note
that `GpuCulling` doesn't automatically imply `NoCpuCulling`.
# Objective
- `cargo run --release --example bevymark -- --benchmark --waves 160
--per-wave 1000 --mode mesh2d` runs slower and slower over time due to
`no_gpu_preprocessing::write_batched_instance_buffer<bevy_sprite::mesh2d::mesh::Mesh2dPipeline>`
taking longer and longer because the `BatchedInstanceBuffer` is not
cleared
## Solution
- Split the `clear_batched_instance_buffers` system into CPU and GPU
versions
- Use the CPU version for 2D meshes
`Sprite`, `Text`, and `Handle<MeshletMesh>` were types of renderable
entities that the new segregated visible entity system didn't handle, so
they didn't appear.
Because `bevy_text` depends on `bevy_sprite`, and the visibility
computation of text happens in the latter crate, I had to introduce a
new marker component, `SpriteSource`. `SpriteSource` marks entities that
aren't themselves sprites but become sprites during rendering. I added
this component to `Text2dBundle`. Unfortunately, this is technically a
breaking change, although I suspect it won't break anybody in practice
except perhaps editors.
Fixes#12935.
## Changelog
### Changed
* `Text2dBundle` now includes a new marker component, `SpriteSource`.
Bevy uses this internally to optimize visibility calculation.
## Migration Guide
* `Text` now requires a `SpriteSource` marker component in order to
appear. This component has been added to `Text2dBundle`.