# Objective
As someone who is currently learning Bevy, I found the implementation of
the ambient light in the 3d/lighting.rs example unsatisfactory.
## Solution
- I adjusted the brightness of the ambient light in the scene to 200
(where the default is 80). It was previously 0.02, a value so low it has
no noticeable effect.
- I added a keybind (space bar) to toggle the ambient light, allowing
users to see the difference it makes. I also added text showing the
state of the ambient light (on, off) and text showing the keybind.
I'm very new to Bevy and Rust, so apologies if any of this code is not
up to scratch.
## Testing
I checked all the text still updates correctly and all keybinds still
work. In my testing, it looks to work okay.
I'd appreciate others testing too, just to make sure.
---
## Showcase
<details>
<summary>Click to view showcase</summary>
<img width="960" alt="Screenshot (11)"
src="https://github.com/user-attachments/assets/916e569e-cd49-43fd-b81d-aae600890cd3"
/>
<img width="959" alt="Screenshot (12)"
src="https://github.com/user-attachments/assets/0e16bb3a-c38a-4a8d-8248-edf3b820d238"
/>
</details>
# Objective
Closes#19564.
The current `Event` trait looks like this:
```rust
pub trait Event: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
The `Event` trait is used by both buffered events
(`EventReader`/`EventWriter`) and observer events. If they are observer
events, they can optionally be targeted at specific `Entity`s or
`ComponentId`s, and can even be propagated to other entities.
However, there has long been a desire to split the trait semantically
for a variety of reasons, see #14843, #14272, and #16031 for discussion.
Some reasons include:
- It's very uncommon to use a single event type as both a buffered event
and targeted observer event. They are used differently and tend to have
distinct semantics.
- A common footgun is using buffered events with observers or event
readers with observer events, as there is no type-level error that
prevents this kind of misuse.
- #19440 made `Trigger::target` return an `Option<Entity>`. This
*seriously* hurts ergonomics for the general case of entity observers,
as you need to `.unwrap()` each time. If we could statically determine
whether the event is expected to have an entity target, this would be
unnecessary.
There's really two main ways that we can categorize events: push vs.
pull (i.e. "observer event" vs. "buffered event") and global vs.
targeted:
| | Push | Pull |
| ------------ | --------------- | --------------------------- |
| **Global** | Global observer | `EventReader`/`EventWriter` |
| **Targeted** | Entity observer | - |
There are many ways to approach this, each with their tradeoffs.
Ultimately, we kind of want to split events both ways:
- A type-level distinction between observer events and buffered events,
to prevent people from using the wrong kind of event in APIs
- A statically designated entity target for observer events to avoid
accidentally using untargeted events for targeted APIs
This PR achieves these goals by splitting event traits into `Event`,
`EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait
implemented by all events.
## `Event`, `EntityEvent`, and `BufferedEvent`
`Event` is now a very simple trait shared by all events.
```rust
pub trait Event: Send + Sync + 'static {
// Required for observer APIs
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
You can call `trigger` for *any* event, and use a global observer for
listening to the event.
```rust
#[derive(Event)]
struct Speak {
message: String,
}
// ...
app.add_observer(|trigger: On<Speak>| {
println!("{}", trigger.message);
});
// ...
commands.trigger(Speak {
message: "Y'all like these reworked events?".to_string(),
});
```
To allow an event to be targeted at entities and even propagated
further, you can additionally implement the `EntityEvent` trait:
```rust
pub trait EntityEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This lets you call `trigger_targets`, and to use targeted observer APIs
like `EntityCommands::observe`:
```rust
#[derive(Event, EntityEvent)]
#[entity_event(traversal = &'static ChildOf, auto_propagate)]
struct Damage {
amount: f32,
}
// ...
let enemy = commands.spawn((Enemy, Health(100.0))).id();
// Spawn some armor as a child of the enemy entity.
// When the armor takes damage, it will bubble the event up to the enemy.
let armor_piece = commands
.spawn((ArmorPiece, Health(25.0), ChildOf(enemy)))
.observe(|trigger: On<Damage>, mut query: Query<&mut Health>| {
// Note: `On::target` only exists because this is an `EntityEvent`.
let mut health = query.get(trigger.target()).unwrap();
health.0 -= trigger.amount();
});
commands.trigger_targets(Damage { amount: 10.0 }, armor_piece);
```
> [!NOTE]
> You *can* still also trigger an `EntityEvent` without targets using
`trigger`. We probably *could* make this an either-or thing, but I'm not
sure that's actually desirable.
To allow an event to be used with the buffered API, you can implement
`BufferedEvent`:
```rust
pub trait BufferedEvent: Event {}
```
The event can then be used with `EventReader`/`EventWriter`:
```rust
#[derive(Event, BufferedEvent)]
struct Message(String);
fn write_hello(mut writer: EventWriter<Message>) {
writer.write(Message("I hope these examples are alright".to_string()));
}
fn read_messages(mut reader: EventReader<Message>) {
// Process all buffered events of type `Message`.
for Message(message) in reader.read() {
println!("{message}");
}
}
```
In summary:
- Need a basic event you can trigger and observe? Derive `Event`!
- Need the event to be targeted at an entity? Derive `EntityEvent`!
- Need the event to be buffered and support the
`EventReader`/`EventWriter` API? Derive `BufferedEvent`!
## Alternatives
I'll now cover some of the alternative approaches I have considered and
briefly explored. I made this section collapsible since it ended up
being quite long :P
<details>
<summary>Expand this to see alternatives</summary>
### 1. Unified `Event` Trait
One option is not to have *three* separate traits (`Event`,
`EntityEvent`, `BufferedEvent`), and to instead just use associated
constants on `Event` to determine whether an event supports targeting
and buffering or not:
```rust
pub trait Event: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
const TARGETED: bool = false;
const BUFFERED: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
Methods can then use bounds like `where E: Event<TARGETED = true>` or
`where E: Event<BUFFERED = true>` to limit APIs to specific kinds of
events.
This would keep everything under one `Event` trait, but I don't think
it's necessarily a good idea. It makes APIs harder to read, and docs
can't easily refer to specific types of events. You can also create
weird invariants: what if you specify `TARGETED = false`, but have
`Traversal` and/or `AUTO_PROPAGATE` enabled?
### 2. `Event` and `Trigger`
Another option is to only split the traits between buffered events and
observer events, since that is the main thing people have been asking
for, and they have the largest API difference.
If we did this, I think we would need to make the terms *clearly*
separate. We can't really use `Event` and `BufferedEvent` as the names,
since it would be strange that `BufferedEvent` doesn't implement
`Event`. Something like `ObserverEvent` and `BufferedEvent` could work,
but it'd be more verbose.
For this approach, I would instead keep `Event` for the current
`EventReader`/`EventWriter` API, and call the observer event a
`Trigger`, since the "trigger" terminology is already used in the
observer context within Bevy (both as a noun and a verb). This is also
what a long [bikeshed on
Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791)
seemed to land on at the end of last year.
```rust
// For `EventReader`/`EventWriter`
pub trait Event: Send + Sync + 'static {}
// For observers
pub trait Trigger: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
const TARGETED: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
The problem is that "event" is just a really good term for something
that "happens". Observers are rapidly becoming the more prominent API,
so it'd be weird to give them the `Trigger` name and leave the good
`Event` name for the less common API.
So, even though a split like this seems neat on the surface, I think it
ultimately wouldn't really work. We want to keep the `Event` name for
observer events, and there is no good alternative for the buffered
variant. (`Message` was suggested, but saying stuff like "sends a
collision message" is weird.)
### 3. `GlobalEvent` + `TargetedEvent`
What if instead of focusing on the buffered vs. observed split, we
*only* make a distinction between global and targeted events?
```rust
// A shared event trait to allow global observers to work
pub trait Event: Send + Sync + 'static {
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
// For buffered events and non-targeted observer events
pub trait GlobalEvent: Event {}
// For targeted observer events
pub trait TargetedEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This is actually the first approach I implemented, and it has the neat
characteristic that you can only use non-targeted APIs like `trigger`
with a `GlobalEvent` and targeted APIs like `trigger_targets` with a
`TargetedEvent`. You have full control over whether the entity should or
should not have a target, as they are fully distinct at the type-level.
However, there's a few problems:
- There is no type-level indication of whether a `GlobalEvent` supports
buffered events or just non-targeted observer events
- An `Event` on its own does literally nothing, it's just a shared trait
required to make global observers accept both non-targeted and targeted
events
- If an event is both a `GlobalEvent` and `TargetedEvent`, global
observers again have ambiguity on whether an event has a target or not,
undermining some of the benefits
- The names are not ideal
### 4. `Event` and `EntityEvent`
We can fix some of the problems of Alternative 3 by accepting that
targeted events can also be used in non-targeted contexts, and simply
having the `Event` and `EntityEvent` traits:
```rust
// For buffered events and non-targeted observer events
pub trait Event: Send + Sync + 'static {
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
// For targeted observer events
pub trait EntityEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This is essentially identical to this PR, just without a dedicated
`BufferedEvent`. The remaining major "problem" is that there is still
zero type-level indication of whether an `Event` event *actually*
supports the buffered API. This leads us to the solution proposed in
this PR, using `Event`, `EntityEvent`, and `BufferedEvent`.
</details>
## Conclusion
The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR
aims to solve all the common problems with Bevy's current event model
while keeping the "weirdness" factor minimal. It splits in terms of both
the push vs. pull *and* global vs. targeted aspects, while maintaining a
shared concept for an "event".
### Why I Like This
- The term "event" remains as a single concept for all the different
kinds of events in Bevy.
- Despite all event types being "events", they use fundamentally
different APIs. Instead of assuming that you can use an event type with
any pattern (when only one is typically supported), you explicitly opt
in to each one with dedicated traits.
- Using separate traits for each type of event helps with documentation
and clearer function signatures.
- I can safely make assumptions on expected usage.
- If I see that an event is an `EntityEvent`, I can assume that I can
use `observe` on it and get targeted events.
- If I see that an event is a `BufferedEvent`, I can assume that I can
use `EventReader` to read events.
- If I see both `EntityEvent` and `BufferedEvent`, I can assume that
both APIs are supported.
In summary: This allows for a unified concept for events, while limiting
the different ways to use them with opt-in traits. No more guess-work
involved when using APIs.
### Problems?
- Because `BufferedEvent` implements `Event` (for more consistent
semantics etc.), you can still use all buffered events for non-targeted
observers. I think this is fine/good. The important part is that if you
see that an event implements `BufferedEvent`, you know that the
`EventReader`/`EventWriter` API should be supported. Whether it *also*
supports other APIs is secondary.
- I currently only support `trigger_targets` for an `EntityEvent`.
However, you can technically target components too, without targeting
any entities. I consider that such a niche and advanced use case that
it's not a huge problem to only support it for `EntityEvent`s, but we
could also split `trigger_targets` into `trigger_entities` and
`trigger_components` if we wanted to (or implement components as
entities :P).
- You can still trigger an `EntityEvent` *without* targets. I consider
this correct, since `Event` implements the non-targeted behavior, and
it'd be weird if implementing another trait *removed* behavior. However,
it does mean that global observers for entity events can technically
return `Entity::PLACEHOLDER` again (since I got rid of the
`Option<Entity>` added in #19440 for ergonomics). I think that's enough
of an edge case that it's not a huge problem, but it is worth keeping in
mind.
- ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type
currently duplicates the `Event` implementation, so you instead need to
manually implement one of them.~~ Changed to always requiring `Event` to
be derived.
## Related Work
There are plans to implement multi-event support for observers,
especially for UI contexts. [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)
API looked like this:
```rust
// Truncated for brevity
trigger: Trigger<(
OnAdd<Pressed>,
OnRemove<Pressed>,
OnAdd<InteractionDisabled>,
OnRemove<InteractionDisabled>,
OnInsert<Hovered>,
)>,
```
I believe this shouldn't be in conflict with this PR. If anything, this
PR might *help* achieve the multi-event pattern for entity observers
with fewer footguns: by statically enforcing that all of these events
are `EntityEvent`s in the context of `EntityCommands::observe`, we can
avoid misuse or weird cases where *some* events inside the trigger are
targeted while others are not.
# Objective
This is part of the "core widgets" effort: #19236.
## Solution
This PR adds the "core slider" widget to the collection.
## Testing
Tested using examples `core_widgets` and `core_widgets_observers`.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
- Update ron to the latest version.
- This is blocking changes to AnimationGraph (as some valid structs are
not capable of being deserialized).
## Solution
- Bump ron!
## Testing
- The particular issue I was blocked by seems to be resolved!
## Objective
Make it easier to use `IrradianceVolume` with fewer ways to silently
fail. Fix#19614.
## Solution
* Add `#[require(LightProbe)]` to `struct IrradianceVolume`.
* Document this fact.
* Also document the volume being centered on the origin by default (this
was the other thing that was unclear when getting started).
I also looked at the other implementor of `LightProbeComponent`,
`EnvironmentMapLight`, but it has a use which is *not* as a light probe,
so it should not require `LightProbe`.
## Testing
* Confirmed that `examples/3d/irradiance_volumes.rs` still works after
removing `LightProbe`.
* Reviewed generated documentation.
# Bevy Solari
<img
src="https://github.com/user-attachments/assets/94061fc8-01cf-4208-b72a-8eecad610d76"
width="100" />
## Preface
- See release notes.
- Please talk to me in #rendering-dev on discord or open a github
discussion if you have questions about the long term plan, and keep
discussion in this PR limited to the contents of the PR :)
## Connections
- Works towards #639, #16408.
- Spawned https://github.com/bevyengine/bevy/issues/18993.
- Need to fix RT stuff in naga_oil first
https://github.com/bevyengine/naga_oil/pull/116.
## This PR
After nearly two years, I've revived the raytraced lighting effort I
first started in https://github.com/bevyengine/bevy/pull/10000.
Unlike that PR, which has realtime techniques, I've limited this PR to:
* `RaytracingScenePlugin` - BLAS and TLAS building, geometry and texture
binding, sampling functions.
* `PathtracingPlugin` - A non-realtime path tracer intended to serve as
a testbed and reference.
## What's implemented?

* BLAS building on mesh load
* Emissive lights
* Directional lights with soft shadows
* Diffuse (lambert, not Bevy's diffuse BRDF) and emissive materials
* A reference path tracer with:
* Antialiasing
* Direct light sampling (next event estimation) with 0/1 MIS weights
* Importance-sampled BRDF bounces
* Russian roulette
## What's _not_ implemented?
* Anything realtime, including a real-time denoiser
* Integration with Bevy's rasterized gbuffer
* Specular materials
* Non-opaque geometry
* Any sort of CPU or GPU optimizations
* BLAS compaction, proper bindless, and further RT APIs are things that
we need wgpu to add
* PointLights, SpotLights, or skyboxes / environment lighting
* Support for materials other than StandardMaterial (and only a subset
of properties are supported)
* Skinned/morphed or otherwise animating/deformed meshes
* Mipmaps
* Adaptive self-intersection ray bias
* A good way for developers to detect whether the user's GPU supports RT
or not, and fallback to baked lighting.
* Documentation and actual finalized APIs (literally everything is
subject to change)
## End-user Usage
* Have a GPU that supports RT with inline ray queries
* Add `SolariPlugin` to your app
* Ensure any `Mesh` asset you want to use for raytracing has
`enable_raytracing: true` (defaults to true), and that it uses the
standard uncompressed position/normal/uv_0/tangent vertex attribute set,
triangle list topology, and 32-bit indices.
* If you don't want to build a BLAS and use the mesh for RT, set
enable_raytracing to false.
* Add the `RaytracingMesh3d` component to your entity (separate from
`Mesh3d` or `MeshletMesh3d`).
## Testing
- Did you test these changes? If so, how?
- Ran the solari example.
- Are there any parts that need more testing?
- Other test scenes probably. Normal mapping would be good to test.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- See the solari.rs example for how to setup raytracing.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- Windows 11, NVIDIA RTX 3080.
---------
Co-authored-by: atlv <email@atlasdostal.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
## Objective
- Makes `headless_renderer` example work instead of exiting without
effect.
- Guides users who actually just need
[`Screenshot`](https://docs.rs/bevy/0.16.1/bevy/render/view/window/screenshot/struct.Screenshot.html)
to use that instead.
This PR was inspired by my own efforts to do headless rendering, in
which the complexity of the `headless_renderer` example was a
distraction, and this comment from
https://github.com/bevyengine/bevy/issues/12478#issuecomment-2094925039
:
> The example added in https://github.com/bevyengine/bevy/pull/13006
would benefit from this change: be sure to clean it up when tackling
this work :)
That “cleanup” was not done, and I thought to do it, but it seems to me
that using `Screenshot` (in its current form) in the example would not
be correct, because — if I understand correctly — the example is trying
to, potentially, capture many *consecutive* frames, whereas `Screenshot`
by itself gives no means to capture multiple frames without gaps or
duplicates. But perhaps I am wrong (the code is complex and not clearly
documented), or perhaps that feature isn’t worth preserving. In that
case, let me know and I will revise this PR.
## Solution
- Added `exit_condition: bevy:🪟:ExitCondition::DontExit`
- Added a link to `Screenshot` in the crate documentation.
## Testing
- Ran the example and confirmed that it now writes an image file and
then exits.
# Objective
Currently, the observer API looks like this:
```rust
app.add_observer(|trigger: Trigger<Explode>| {
info!("Entity {} exploded!", trigger.target());
});
```
Future plans for observers also include "multi-event observers" with a
trigger that looks like this (see [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)):
```rust
trigger: Trigger<(
OnAdd<Pressed>,
OnRemove<Pressed>,
OnAdd<InteractionDisabled>,
OnRemove<InteractionDisabled>,
OnInsert<Hovered>,
)>,
```
In scenarios like this, there is a lot of repetition of `On`. These are
expected to be very high-traffic APIs especially in UI contexts, so
ergonomics and readability are critical.
By renaming `Trigger` to `On`, we can make these APIs read more cleanly
and get rid of the repetition:
```rust
app.add_observer(|trigger: On<Explode>| {
info!("Entity {} exploded!", trigger.target());
});
```
```rust
trigger: On<(
Add<Pressed>,
Remove<Pressed>,
Add<InteractionDisabled>,
Remove<InteractionDisabled>,
Insert<Hovered>,
)>,
```
Names like `On<Add<Pressed>>` emphasize the actual event listener nature
more than `Trigger<OnAdd<Pressed>>`, and look cleaner. This *also* frees
up the `Trigger` name if we want to use it for the observer event type,
splitting them out from buffered events (bikeshedding this is out of
scope for this PR though).
For prior art:
[`bevy_eventlistener`](https://github.com/aevyrie/bevy_eventlistener)
used
[`On`](https://docs.rs/bevy_eventlistener/latest/bevy_eventlistener/event_listener/struct.On.html)
for its event listener type. Though in our case, the observer is the
event listener, and `On` is just a type containing information about the
triggered event.
## Solution
Steal from `bevy_event_listener` by @aevyrie and use `On`.
- Rename `Trigger` to `On`
- Rename `OnAdd` to `Add`
- Rename `OnInsert` to `Insert`
- Rename `OnReplace` to `Replace`
- Rename `OnRemove` to `Remove`
- Rename `OnDespawn` to `Despawn`
## Discussion
### Naming Conflicts??
Using a name like `Add` might initially feel like a very bad idea, since
it risks conflict with `core::ops::Add`. However, I don't expect this to
be a big problem in practice.
- You rarely need to actually implement the `Add` trait, especially in
modules that would use the Bevy ECS.
- In the rare cases where you *do* get a conflict, it is very easy to
fix by just disambiguating, for example using `ops::Add`.
- The `Add` event is a struct while the `Add` trait is a trait (duh), so
the compiler error should be very obvious.
For the record, renaming `OnAdd` to `Add`, I got exactly *zero* errors
or conflicts within Bevy itself. But this is of course not entirely
representative of actual projects *using* Bevy.
You might then wonder, why not use `Added`? This would conflict with the
`Added` query filter, so it wouldn't work. Additionally, the current
naming convention for observer events does not use past tense.
### Documentation
This does make documentation slightly more awkward when referring to
`On` or its methods. Previous docs often referred to `Trigger::target`
or "sends a `Trigger`" (which is... a bit strange anyway), which would
now be `On::target` and "sends an observer `Event`".
You can see the diff in this PR to see some of the effects. I think it
should be fine though, we may just need to reword more documentation to
read better.
# Objective
- Update the scroll example to use the latest API.
## Solution
- It now uses the 'children![]' API.
## Testing
- I manually verified that the scrolling was working
## Limitations
- Unfortunately, I couldn't find a way to spawn observers targeting the
entity inside the "fn() -> impl Bundle" function.
Link in the "asset settings" example. The struct was moved.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: theotherphil <phil.j.ellison@gmail.com>
# Objective
#19366 implemented core button widgets, which included the `Depressed`
state component.
`Depressed` was chosen instead of `Pressed` to avoid conflict with the
`Pointer<Pressed>` event, but it is problematic and awkward in many
ways:
- Using the word "depressed" for such a high-traffic type is not great
due to the obvious connection to "depressed" as in depression.
- "Depressed" is not what I would search for if I was looking for a
component like this, and I'm not aware of any other engine or UI
framework using the term.
- `Depressed` is not a very natural pair to the `Pointer<Pressed>`
event.
- It might be because I'm not a native English speaker, but I have very
rarely heard someone say "a button is depressed". Seeing it, my mind
initially goes from "depression??" to "oh, de-pressed, meaning released"
and definitely not "is pressed", even though that *is* also a valid
meaning for it.
A related problem is that the current `Pointer<Pressed>` and
`Pointer<Released>` event names use a different verb tense than all of
our other observer events such as `Pointer<Click>` or
`Pointer<DragStart>`. By fixing this and renaming `Pressed` (and
`Released`), we can then use `Pressed` instead of `Depressed` for the
state component.
Additionally, the `IsHovered` and `IsDirectlyHovered` components added
in #19366 use an inconsistent naming; the other similar components don't
use an `Is` prefix. It also makes query filters like `Has<IsHovered>`
and `With<IsHovered>` a bit more awkward.
This is partially related to Cart's [picking concept
proposal](https://gist.github.com/cart/756e48a149db2838028be600defbd24a?permalink_comment_id=5598154).
## Solution
- Rename `Pointer<Pressed>` to `Pointer<Press>`
- Rename `Pointer<Released>` to `Pointer<Release>`
- Rename `Depressed` to `Pressed`
- Rename `IsHovered` to `Hovered`
- Rename `IsDirectlyHovered` to `DirectlyHovered`
# Objective
Part of #19236
## Solution
Adds a new `bevy_core_widgets` crate containing headless widget
implementations. This PR adds a single `CoreButton` widget, more widgets
to be added later once this is approved.
## Testing
There's an example, ui/core_widgets.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fixes#17183
## Solution
- Copied the stress settings from the `many_animated_sprite` example
that were mentioned in the ticket
## Testing
- Run the example
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
I set out with one simple goal: clearly document the differences between
each of the component lifecycle events via module docs.
Unfortunately, no such module existed: the various lifecycle code was
scattered to the wind.
Without a unified module, it's very hard to discover the related types,
and there's nowhere good to put my shiny new documentation.
## Solution
1. Unify the assorted types into a single
`bevy_ecs::component_lifecycle` module.
2. Write docs.
3. Write a migration guide.
## Testing
Thanks CI!
## Follow-up
1. The lifecycle event names are pretty confusing, especially
`OnReplace`. We should consider renaming those. No bikeshedding in my PR
though!
2. Observers need real module docs too :(
3. Any additional functional changes should be done elsewhere; this is a
simple docs and re-org PR.
---------
Co-authored-by: theotherphil <phil.j.ellison@gmail.com>
# Objective
Rename `JustifyText`:
* The name `JustifyText` is just ugly.
* It's inconsistent since no other `bevy_text` types have a `Text-`
suffix, only prefix.
* It's inconsistent with the other text layout enum `Linebreak` which
doesn't have a prefix or suffix.
Fixes#19521.
## Solution
Rename `JustifyText` to `Justify`.
Without other context, it's natural to assume the name `Justify` refers
to text justification.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
`Entity::PLACEHOLDER` acts as a magic number that will *probably* never
really exist, but it certainly could. And, `Entity` has a niche, so the
only reason to use `PLACEHOLDER` is as an alternative to `MaybeUninit`
that trades safety risks for logic risks.
As a result, bevy has generally advised against using `PLACEHOLDER`, but
we still use if for a lot internally. This pr starts removing internal
uses of it, starting from observers.
## Solution
Change all trigger target related types from `Entity` to
`Option<Entity>`
Small migration guide to come.
## Testing
CI
## Future Work
This turned a lot of code from
```rust
trigger.target()
```
to
```rust
trigger.target().unwrap()
```
The extra panic is no worse than before; it's just earlier than
panicking after passing the placeholder to something else.
But this is kinda annoying.
I would like to add a `TriggerMode` or something to `Event` that would
restrict what kinds of targets can be used for that event. Many events
like `Removed` etc, are always triggered with a target. We can make
those have a way to assume Some, etc. But I wanted to save that for a
future pr.
# Objective
Add specialized UI transform `Component`s and fix some related problems:
* Animating UI elements by modifying the `Transform` component of UI
nodes doesn't work very well because `ui_layout_system` overwrites the
translations each frame. The `overflow_debug` example uses a horrible
hack where it copies the transform into the position that'll likely
cause a panic if any users naively copy it.
* Picking ignores rotation and scaling and assumes UI nodes are always
axis aligned.
* The clipping geometry stored in `CalculatedClip` is wrong for rotated
and scaled elements.
* Transform propagation is unnecessary for the UI, the transforms can be
updated during layout updates.
* The UI internals use both object-centered and top-left-corner-based
coordinates systems for UI nodes. Depending on the context you have to
add or subtract the half-size sometimes before transforming between
coordinate spaces. We should just use one system consistantly so that
the transform can always be directly applied.
* `Transform` doesn't support responsive coordinates.
## Solution
* Unrequire `Transform` from `Node`.
* New components `UiTransform`, `UiGlobalTransform`:
- `Node` requires `UiTransform`, `UiTransform` requires
`UiGlobalTransform`
- `UiTransform` is a 2d-only equivalent of `Transform` with a
translation in `Val`s.
- `UiGlobalTransform` newtypes `Affine2` and is updated in
`ui_layout_system`.
* New helper functions on `ComputedNode` for mapping between viewport
and local node space.
* The cursor position is transformed to local node space during picking
so that it respects rotations and scalings.
* To check if the cursor hovers a node recursively walk up the tree to
the root checking if any of the ancestor nodes clip the point at the
cursor. If the point is clipped the interaction is ignored.
* Use object-centered coordinates for UI nodes.
* `RelativeCursorPosition`'s coordinates are now object-centered with
(0,0) at the the center of the node and the corners at (±0.5, ±0.5).
* Replaced the `normalized_visible_node_rect: Rect` field of
`RelativeCursorPosition` with `cursor_over: bool`, which is set to true
when the cursor is over an unclipped point on the node. The visible area
of the node is not necessarily a rectangle, so the previous
implementation didn't work.
This should fix all the logical bugs with non-axis aligned interactions
and clipping. Rendering still needs changes but they are far outside the
scope of this PR.
Tried and abandoned two other approaches:
* New `transform` field on `Node`, require `GlobalTransform` on `Node`,
and unrequire `Transform` on `Node`. Unrequiring `Transform` opts out of
transform propagation so there is then no conflict with updating the
`GlobalTransform` in `ui_layout_system`. This was a nice change in its
simplicity but potentially confusing for users I think, all the
`GlobalTransform` docs mention `Transform` and having special rules for
how it's updated just for the UI is unpleasently surprising.
* New `transform` field on `Node`. Unrequire `Transform` on `Node`. New
`transform: Affine2` field on `ComputedNode`.
This was okay but I think most users want a separate specialized UI
transform components. The fat `ComputedNode` doesn't work well with
change detection.
Fixes#18929, #18930
## Testing
There is an example you can look at:
```
cargo run --example ui_transform
```
Sometimes in the example if you press the rotate button couple of times
the first glyph from the top label disappears , I'm not sure what's
causing it yet but I don't think it's related to this PR.
## Migration Guide
New specialized 2D UI transform components `UiTransform` and
`UiGlobalTransform`. `UiTransform` is a 2d-only equivalent of
`Transform` with a translation in `Val`s. `UiGlobalTransform` newtypes
`Affine2` and is updated in `ui_layout_system`.
`Node` now requires `UiTransform` instead of `Transform`. `UiTransform`
requires `UiGlobalTransform`.
In previous versions of Bevy `ui_layout_system` would overwrite UI
node's `Transform::translation` each frame. `UiTransform`s aren't
overwritten and there is no longer any need for systems that cache and
rewrite the transform for translated UI elements.
`RelativeCursorPosition`'s coordinates are now object-centered with
(0,0) at the the center of the node and the corners at (±0.5, ±0.5). Its
`normalized_visible_node_rect` field has been removed and replaced with
a new `cursor_over: bool` field which is set to true when the cursor is
hovering an unclipped area of the UI node.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
When running the `gradient` example, part of the content doesn't fit
within the initial window:

The UI requires 1830×930 pixels, but the initial window size is
1280×720.
## Solution
Make ui elements smaller:

Alternative: Use a larger initial window size. I decided against this
because that would make the examples less uniform, make the code less
focused on gradients and not help on web.
# Objective
Certain classes of games, usually those with enormous worlds, require
some amount of support for double-precision. Libraries like `big_space`
exist to allow for large worlds while integrating cleanly with Bevy's
primarily single-precision ecosystem, but even then, games will often
still work directly in double-precision throughout the part of the
pipeline that feeds into the Bevy interface.
Currently, working with double-precision types in Bevy is a pain. `glam`
provides types like `DVec3`, but Bevy doesn't provide double-precision
analogs for `glam` wrappers like `Dir3`. This is mostly because doing so
involves one of:
- code duplication
- generics
- templates (like `glam` uses)
- macros
Each of these has issues that are enough to be deal-breakers as far as
maintainability, usability or readability. To work around this, I'm
putting together `bevy_dmath`, a crate that duplicates `bevy_math` types
and functionality to allow downstream users to enjoy the ergonomics and
power of `bevy_math` in double-precision. For the most part, it's a
smooth process, but in order to fully integrate, there are some
necessary changes that can only be made in `bevy_math`.
## Solution
This PR addresses the first and easiest issue with downstream
double-precision math support: `VectorSpace` currently can only
represent vector spaces over `f32`. This automatically closes the door
to double-precision curves, among other things. This restriction can be
easily lifted by allowing vector spaces to specify the underlying scalar
field. This PR adds a new trait `ScalarField` that satisfies the
properties of a scalar field (the ones that can be upheld statically)
and adds a new associated type `type Scalar: ScalarField` to
`VectorSpace`. It's mostly an unintrusive change. The biggest annoyances
are:
- it touches a lot of curve code
- `bevy_math::ops` doesn't support `f64`, so there are some annoying
workarounds
As far as curves code, I wanted to make this change unintrusive and
bite-sized, so I'm trying to touch as little code as possible. To prove
to myself it can be done, I went ahead and (*not* in this PR) migrated
most of the curves API to support different `ScalarField`s and it went
really smoothly! The ugliest thing was adding `P::Scalar: From<usize>`
in several places. There's an argument to be made here that we should be
using `num-traits`, but that's not immediately relevant. The point is
that for now, the smallest change I could make was to go into every
curve impl and make them generic over `VectorSpace<Scalar = f32>`.
Curves work exactly like before and don't change the user API at all.
# Follow-up
- **Extend `bevy_math::ops` to work with `f64`.** `bevy_math::ops` is
used all over, and if curves are ever going to support different
`ScalarField` types, we'll need to be able to use the correct `std` or
`libm` ops for `f64` types as well. Adding an `ops64` mod turned out to
be really ugly, but I'll point out the maintenance burden is low because
we're not going to be adding new floating-point ops anytime soon.
Another solution is to build a floating-point trait that calls the right
op variant and impl it for `f32` and `f64`. This reduces maintenance
burden because on the off chance we ever *do* want to go modify it, it's
all tied together: you can't change the interface on one without
changing the trait, which forces you to update the other. A third option
is to use `num-traits`, which is basically option 2 but someone else did
the work for us. They already support `no_std` using `libm`, so it would
be more or less a drop-in replacement. They're missing a couple
floating-point ops like `floor` and `ceil`, but we could make our own
floating-point traits for those (there's even the potential for
upstreaming them into `num-traits`).
- **Tweak curves to accept vector spaces over any `ScalarField`.**
Curves are ready to support custom scalar types as soon as the bullet
above is addressed. I will admit that the code is not as fun to look at:
`P::Scalar` instead of `f32` everywhere. We could consider an alternate
design where we use `f32` even to interpolate something like a `DVec3`,
but personally I think that's a worse solution than parameterizing
curves over the vector space's scalar type. At the end of the day, it's
not really bad to deal with in my opinion... `ScalarType` supports
enough operations that working with them is almost like working with raw
float types, and it unlocks a whole ecosystem for games that want to use
double-precision.
fix: [Ensure linear volume subtraction does not go below zero
](https://github.com/bevyengine/bevy/issues/19417)
## Solution
- Clamp the result of linear volume subtraction to a minimum of 0.0
- Add a new test case to verify behavior when subtracting beyond zero
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
# Objective
- Enable hot patching systems with subsecond
- Fixes#19296
## Solution
- First commit is the naive thin layer
- Second commit only check the jump table when the code is hot patched
instead of on every system execution
- Depends on https://github.com/DioxusLabs/dioxus/pull/4153 for a nicer
API, but could be done without
- Everything in second commit is feature gated, it has no impact when
the feature is not enabled
## Testing
- Check dependencies without the feature enabled: nothing dioxus in tree
- Run the new example: text and color can be changed
---------
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
The first 4 commits are designed to be reviewed independently.
- Mark TAA non-experimental now that motion vectors are written for
skinned and morphed meshes, along with skyboxes, and add it to
DefaultPlugins
- Adjust halton sequence to match what DLSS is going to use, doesn't
really affect anything, but may as well
- Make MipBias a required component on TAA instead of inserting it in
the render world
- Remove MipBias, TemporalJitter, RenderLayers, etc from the render
world if they're removed from the main world (fixes a retained render
world bug)
- Remove TAA components from the render world properly if
TemporalAntiAliasing is removed from the main world (fixes a retained
render world bug)
- extract_taa_settings() now has to query over `Option<&mut
TemporalAntiAliasing>`, which will match every single camera, in order
to cover cameras that had TemporalAntiAliasing removed this frame. This
kind of sucks, but I can't think of anything better.
- We probably have the same bug with every other rendering feature
component we have.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Due to recent changes related to #19024, the
`compute_shader_game_of_life` example panics on some machines especially
on Linux.
- This is due to us switching more shaders to embedded shaders - this
means the compute shader in this example takes more than one frame to
load.
- The panic in the example occurs if the shader fails to load by the
first frame (since the pipeline considers that an error).
## Solution
- Make the example do nothing if the shader isn't loaded yet. This has
the effect of waiting for the shader to load.
## Testing
- Tested the example on my Linux laptop.
# Objective
Minimal effort to address feedback here:
https://github.com/bevyengine/bevy/pull/19345#discussion_r2107844018
more thoroughly.
## Solution
- Remove hardcoded label string comparisons and make more use of the new
enum added during review
- Resist temptation to let this snowball this into a huge refactor
- Maybe come back later for a few other small improvements
## Testing
`cargo run --example box_shadow`
# Objective
Renames `Timer::finished` and `Timer::paused` to `Timer::is_finished`
and `Timer::is_paused` to align the public APIs for `Time`, `Timer`, and
`Stopwatch`.
Fixes#19110
# Objective
Fixes#19385
Note: this has shader errors due to #19383 and should probably be merged
after #19384
## Solution
- Move the example to the UI testbed
- Adjust label contents and cell size so that every test case fits on
the screen
- Minor tidying, slightly less harsh colors while preserving the
intentional debug coloring
## Testing
`cargo run --example testbed_ui`

---------
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
- Addresses the previous example's lack of visual appeal and clarity. It
was missing labels for clear distinction of the shadow settings used on
each of the shapes. The suggestion in the linked issue was to either
just visually update and add labels or to collapse example to a single
node with adjustable settings.
- Fixes#19240
## Solution
- Replace the previous static example with a single, central node with
adjustable settings as per issue suggestion.
- Implement button-based setting adjustments. Unfortunately slider
widgets don't seem available yet and I didn't want to further bloat the
example.
- Improve overall aesthetics of the example -- although color pallette
could still be improved. flat gray tones are probably not the best
choice as a contrast to the shadow, but the white border does help in
that aspect.
- Dynamically recolor shadows for visual clarity when increasing shadow
count.
- Add Adjustable Settings:
- Shape selection
- Shadow X/Y offset, blur, spread, and count
- Add Reset button to restore default settings
The disadvantage of this solution is that the old example code would
have probably been easier to digest as the new example is quite bloated
in comparison. Alternatively I could also just implement labels and fix
aesthetics of the old example without adding functionality for
adjustable settings, _but_ I personally feel like interactive examples
are more engaging to users.
## Testing
- Did you test these changes? If so, how? `cargo run --example
box_shadow` and functionality of all features of the example.
- Are there any parts that need more testing? Not that I am aware of.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know? Not really, it should be pretty
straightforward just running the new example and testing the feats.
---
## Showcase


---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
Remove `ArchetypeComponentId` and `archetype_component_access`.
Following #16885, they are no longer used by the engine, so we can stop
spending time calculating them or space storing them.
## Solution
Remove `ArchetypeComponentId` and everything that touches it.
The `System::update_archetype_component_access` method no longer needs
to update `archetype_component_access`. We do still need to update query
caches, but we no longer need to do so *before* running the system. We'd
have to touch every caller anyway if we gave the method a better name,
so just remove `System::update_archetype_component_access` and
`SystemParam::new_archetype` entirely, and update the query cache in
`Query::get_param`.
The `Single` and `Populated` params also need their query caches updated
in `SystemParam::validate_param`, so change `validate_param` to take
`&mut Self::State` instead of `&Self::State`.
# Objective
- Enable state scoped entities by default
- Provide a way to disable it when needed
---------
Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
# Objective
Improve the `tab_navigation` example.
## Solution
* Set different `TabIndex`s for the buttons of each group.
* Label each button with its associated `TabIndex`.
* Reduce the code duplication using a loop.
I tried to flatten it further using the new spawning APIs and
`children!` macro but not sure what the current best way to attach the
observers is.
# Objective
Fix some grammatical errors: it's -> its
Not the most useful commit in the world, but I saw a couple of these and
decided to fix the lot.
## Solution
-
## Testing
-
# Objective
We want to extend our examples with a new category "usage" to
demonstrate common use cases (see bevyengine/bevy-website#2131). This PR
adds an example of animated cooldowns on button clicks.
## Solution
- New example in "usage" directory
- Implement a cooldown with an animated child Node
## Testing
- I ran this on Linux
- [x] test web (with bevy CLI: `bevy run --example cooldown web --open`)
---------
Co-authored-by: Thierry Berger <contact@thierryberger.com>
Co-authored-by: Ida "Iyes" <40234599+inodentry@users.noreply.github.com>
# Objective
- Simplify `Camera` initialization
- allow effects to require HDR
## Solution
- Split out `Camera.hdr` into a marker `Hdr` component
## Testing
- ran `bloom_3d` example
---
## Showcase
```rs
// before
commands.spawn((
Camera3d
Camera {
hdr: true
..Default::default()
}
))
// after
commands.spawn((Camera3d, Hdr));
// other rendering components can require that the camera enables hdr!
// currently implemented for Bloom, AutoExposure, and Atmosphere.
#[require(Hdr)]
pub struct Bloom;
```
[Explanation](https://bevyengine.org/learn/contribute/helping-out/explaining-examples/)
for the 2d shapes example, taken from the original HackMD document and
edited a bit.
This example is a strange one, it's eye-catching mostly because it's the
first example (at time of writing) in the examples page. That being
said, the example does a decent amount of teaching utility to it: we can
explain the bevy math-shape to mesh pipeline, which illuminates a way of
transforming one form of data (abstract, mathematical shape
descriptions) into another (meshes) which may be novel or inspirational
to some users.
---------
Co-authored-by: theotherphil <phil.j.ellison@gmail.com>
# Objective
When user presses <kbd>3</kbd>, the falloff mode should be changed to
`ExponentialSquared` as described in the instructions, but it's not in
fact.
Online Example: https://bevyengine.org/examples-webgpu/3d-rendering/fog/
## Solution
Change it to `ExponentialSquared`
## Testing
- Did you test these changes? If so, how?
Yes, by `cargo run --example fog`
- Are there any parts that need more testing?
No.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
```
cargo run --example fog
```
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
N/A
# Objective
- Allow users to get the playback position of playing audio.
## Solution
- Add a `position` method to `AudioSinkPlayback`
- Implement it for `AudioSink` and `SpatialAudioSink`
## Testing
- Updated `audio_control` example to show playback position
# Objective
The new viewport example allocates a texture in main memory, even though
it's only needed on the GPU. Also fix an unnecessary warning when a
viewport's texture doesn't exist CPU-side.
## Testing
Run the `viewport_node` example.
# Objective
allow specifying the left/top/right/bottom border colors separately for
ui elements
fixes#14773
## Solution
- change `BorderColor` to
```rs
pub struct BorderColor {
pub left: Color,
pub top: Color,
pub right: Color,
pub bottom: Color,
}
```
- generate one ui node per distinct border color, set flags for the
active borders
- render only the active borders
i chose to do this rather than adding multiple colors to the
ExtractedUiNode in order to minimize the impact for the common case
where all border colors are the same.
## Testing
modified the `borders` example to use separate colors:

the behaviour is a bit weird but it mirrors html/css border behaviour.
---
## Migration:
To keep the existing behaviour, just change `BorderColor(color)` into
`BorderColor::all(color)`.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
Accessibility features don't work with the UI `button` example because
`InputFocus` must be set for the accessibility systems to recognise the
button.
Fixes#18760
## Solution
* Set the button entity as the `InputFocus` when it is hovered or
pressed.
* Call `set_changed` on the `Button` component when the button's state
changes to hovered or pressed (the accessibility system's only update
the button's state when the `Button` component is marked as changed).
## Testing
Install NVDA, it should say "hover" when the button is hovered and
"pressed" when the button is pressed.
The bounds of the accessibility node are reported incorrectly. I thought
we fixed this, I'll take another look at it. It's not a problem with
this PR.
Stores mesh names from glTF files in GltfMeshName component rather than
Name component, making both GltfMeshName and GltfMaterialName behave
like strings via Deref.
# Objective
Fixed the side effects of #19287
Fixes Examples that modify gltf materials are broken #19322
## Solution
Add GltfMeshName component and Deref implementations
Stores mesh names from glTF files in GltfMeshName component rather than
Name component, making both GltfMeshName and GltfMaterialName behave
like strings via Deref.
## Testing
cargo run --example depth_of_field
cargo run --example lightmaps
cargo run --example mixed_lighting
They are consistent with the situation before the error occurred.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
Closes#19175
Make `LogDiagnosticsState` public to be able to edit its filters
## Solution
Make `LogDiagnosticsState` public and add methods to allow editing the
duration and filter
## Testing
`cargo run -p ci`
## Showcase
Updated `log_diagnostics` example

## Objective
Fix the misleading 2d anchor API where `Anchor` is a component and
required by `Text2d` but is stored on a field for sprites.
Fixes#18367
## Solution
Remove the `anchor` field from `Sprite` and require `Anchor` instead.
## Migration Guide
The `anchor` field has been removed from `Sprite`. Instead the `Anchor`
component is now a required component on `Sprite`.