create-pull-request/patch
540 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
83a1c07c01
|
lighting.rs example: Improved ambient light showcase (#19658)
# Objective As someone who is currently learning Bevy, I found the implementation of the ambient light in the 3d/lighting.rs example unsatisfactory. ## Solution - I adjusted the brightness of the ambient light in the scene to 200 (where the default is 80). It was previously 0.02, a value so low it has no noticeable effect. - I added a keybind (space bar) to toggle the ambient light, allowing users to see the difference it makes. I also added text showing the state of the ambient light (on, off) and text showing the keybind. I'm very new to Bevy and Rust, so apologies if any of this code is not up to scratch. ## Testing I checked all the text still updates correctly and all keybinds still work. In my testing, it looks to work okay. I'd appreciate others testing too, just to make sure. --- ## Showcase <details> <summary>Click to view showcase</summary> <img width="960" alt="Screenshot (11)" src="https://github.com/user-attachments/assets/916e569e-cd49-43fd-b81d-aae600890cd3" /> <img width="959" alt="Screenshot (12)" src="https://github.com/user-attachments/assets/0e16bb3a-c38a-4a8d-8248-edf3b820d238" /> </details> |
||
![]() |
38c3423693
|
Event Split: Event , EntityEvent , and BufferedEvent (#19647)
# Objective Closes #19564. The current `Event` trait looks like this: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The `Event` trait is used by both buffered events (`EventReader`/`EventWriter`) and observer events. If they are observer events, they can optionally be targeted at specific `Entity`s or `ComponentId`s, and can even be propagated to other entities. However, there has long been a desire to split the trait semantically for a variety of reasons, see #14843, #14272, and #16031 for discussion. Some reasons include: - It's very uncommon to use a single event type as both a buffered event and targeted observer event. They are used differently and tend to have distinct semantics. - A common footgun is using buffered events with observers or event readers with observer events, as there is no type-level error that prevents this kind of misuse. - #19440 made `Trigger::target` return an `Option<Entity>`. This *seriously* hurts ergonomics for the general case of entity observers, as you need to `.unwrap()` each time. If we could statically determine whether the event is expected to have an entity target, this would be unnecessary. There's really two main ways that we can categorize events: push vs. pull (i.e. "observer event" vs. "buffered event") and global vs. targeted: | | Push | Pull | | ------------ | --------------- | --------------------------- | | **Global** | Global observer | `EventReader`/`EventWriter` | | **Targeted** | Entity observer | - | There are many ways to approach this, each with their tradeoffs. Ultimately, we kind of want to split events both ways: - A type-level distinction between observer events and buffered events, to prevent people from using the wrong kind of event in APIs - A statically designated entity target for observer events to avoid accidentally using untargeted events for targeted APIs This PR achieves these goals by splitting event traits into `Event`, `EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait implemented by all events. ## `Event`, `EntityEvent`, and `BufferedEvent` `Event` is now a very simple trait shared by all events. ```rust pub trait Event: Send + Sync + 'static { // Required for observer APIs fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` You can call `trigger` for *any* event, and use a global observer for listening to the event. ```rust #[derive(Event)] struct Speak { message: String, } // ... app.add_observer(|trigger: On<Speak>| { println!("{}", trigger.message); }); // ... commands.trigger(Speak { message: "Y'all like these reworked events?".to_string(), }); ``` To allow an event to be targeted at entities and even propagated further, you can additionally implement the `EntityEvent` trait: ```rust pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This lets you call `trigger_targets`, and to use targeted observer APIs like `EntityCommands::observe`: ```rust #[derive(Event, EntityEvent)] #[entity_event(traversal = &'static ChildOf, auto_propagate)] struct Damage { amount: f32, } // ... let enemy = commands.spawn((Enemy, Health(100.0))).id(); // Spawn some armor as a child of the enemy entity. // When the armor takes damage, it will bubble the event up to the enemy. let armor_piece = commands .spawn((ArmorPiece, Health(25.0), ChildOf(enemy))) .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| { // Note: `On::target` only exists because this is an `EntityEvent`. let mut health = query.get(trigger.target()).unwrap(); health.0 -= trigger.amount(); }); commands.trigger_targets(Damage { amount: 10.0 }, armor_piece); ``` > [!NOTE] > You *can* still also trigger an `EntityEvent` without targets using `trigger`. We probably *could* make this an either-or thing, but I'm not sure that's actually desirable. To allow an event to be used with the buffered API, you can implement `BufferedEvent`: ```rust pub trait BufferedEvent: Event {} ``` The event can then be used with `EventReader`/`EventWriter`: ```rust #[derive(Event, BufferedEvent)] struct Message(String); fn write_hello(mut writer: EventWriter<Message>) { writer.write(Message("I hope these examples are alright".to_string())); } fn read_messages(mut reader: EventReader<Message>) { // Process all buffered events of type `Message`. for Message(message) in reader.read() { println!("{message}"); } } ``` In summary: - Need a basic event you can trigger and observe? Derive `Event`! - Need the event to be targeted at an entity? Derive `EntityEvent`! - Need the event to be buffered and support the `EventReader`/`EventWriter` API? Derive `BufferedEvent`! ## Alternatives I'll now cover some of the alternative approaches I have considered and briefly explored. I made this section collapsible since it ended up being quite long :P <details> <summary>Expand this to see alternatives</summary> ### 1. Unified `Event` Trait One option is not to have *three* separate traits (`Event`, `EntityEvent`, `BufferedEvent`), and to instead just use associated constants on `Event` to determine whether an event supports targeting and buffering or not: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; const BUFFERED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` Methods can then use bounds like `where E: Event<TARGETED = true>` or `where E: Event<BUFFERED = true>` to limit APIs to specific kinds of events. This would keep everything under one `Event` trait, but I don't think it's necessarily a good idea. It makes APIs harder to read, and docs can't easily refer to specific types of events. You can also create weird invariants: what if you specify `TARGETED = false`, but have `Traversal` and/or `AUTO_PROPAGATE` enabled? ### 2. `Event` and `Trigger` Another option is to only split the traits between buffered events and observer events, since that is the main thing people have been asking for, and they have the largest API difference. If we did this, I think we would need to make the terms *clearly* separate. We can't really use `Event` and `BufferedEvent` as the names, since it would be strange that `BufferedEvent` doesn't implement `Event`. Something like `ObserverEvent` and `BufferedEvent` could work, but it'd be more verbose. For this approach, I would instead keep `Event` for the current `EventReader`/`EventWriter` API, and call the observer event a `Trigger`, since the "trigger" terminology is already used in the observer context within Bevy (both as a noun and a verb). This is also what a long [bikeshed on Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791) seemed to land on at the end of last year. ```rust // For `EventReader`/`EventWriter` pub trait Event: Send + Sync + 'static {} // For observers pub trait Trigger: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The problem is that "event" is just a really good term for something that "happens". Observers are rapidly becoming the more prominent API, so it'd be weird to give them the `Trigger` name and leave the good `Event` name for the less common API. So, even though a split like this seems neat on the surface, I think it ultimately wouldn't really work. We want to keep the `Event` name for observer events, and there is no good alternative for the buffered variant. (`Message` was suggested, but saying stuff like "sends a collision message" is weird.) ### 3. `GlobalEvent` + `TargetedEvent` What if instead of focusing on the buffered vs. observed split, we *only* make a distinction between global and targeted events? ```rust // A shared event trait to allow global observers to work pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For buffered events and non-targeted observer events pub trait GlobalEvent: Event {} // For targeted observer events pub trait TargetedEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is actually the first approach I implemented, and it has the neat characteristic that you can only use non-targeted APIs like `trigger` with a `GlobalEvent` and targeted APIs like `trigger_targets` with a `TargetedEvent`. You have full control over whether the entity should or should not have a target, as they are fully distinct at the type-level. However, there's a few problems: - There is no type-level indication of whether a `GlobalEvent` supports buffered events or just non-targeted observer events - An `Event` on its own does literally nothing, it's just a shared trait required to make global observers accept both non-targeted and targeted events - If an event is both a `GlobalEvent` and `TargetedEvent`, global observers again have ambiguity on whether an event has a target or not, undermining some of the benefits - The names are not ideal ### 4. `Event` and `EntityEvent` We can fix some of the problems of Alternative 3 by accepting that targeted events can also be used in non-targeted contexts, and simply having the `Event` and `EntityEvent` traits: ```rust // For buffered events and non-targeted observer events pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For targeted observer events pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is essentially identical to this PR, just without a dedicated `BufferedEvent`. The remaining major "problem" is that there is still zero type-level indication of whether an `Event` event *actually* supports the buffered API. This leads us to the solution proposed in this PR, using `Event`, `EntityEvent`, and `BufferedEvent`. </details> ## Conclusion The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR aims to solve all the common problems with Bevy's current event model while keeping the "weirdness" factor minimal. It splits in terms of both the push vs. pull *and* global vs. targeted aspects, while maintaining a shared concept for an "event". ### Why I Like This - The term "event" remains as a single concept for all the different kinds of events in Bevy. - Despite all event types being "events", they use fundamentally different APIs. Instead of assuming that you can use an event type with any pattern (when only one is typically supported), you explicitly opt in to each one with dedicated traits. - Using separate traits for each type of event helps with documentation and clearer function signatures. - I can safely make assumptions on expected usage. - If I see that an event is an `EntityEvent`, I can assume that I can use `observe` on it and get targeted events. - If I see that an event is a `BufferedEvent`, I can assume that I can use `EventReader` to read events. - If I see both `EntityEvent` and `BufferedEvent`, I can assume that both APIs are supported. In summary: This allows for a unified concept for events, while limiting the different ways to use them with opt-in traits. No more guess-work involved when using APIs. ### Problems? - Because `BufferedEvent` implements `Event` (for more consistent semantics etc.), you can still use all buffered events for non-targeted observers. I think this is fine/good. The important part is that if you see that an event implements `BufferedEvent`, you know that the `EventReader`/`EventWriter` API should be supported. Whether it *also* supports other APIs is secondary. - I currently only support `trigger_targets` for an `EntityEvent`. However, you can technically target components too, without targeting any entities. I consider that such a niche and advanced use case that it's not a huge problem to only support it for `EntityEvent`s, but we could also split `trigger_targets` into `trigger_entities` and `trigger_components` if we wanted to (or implement components as entities :P). - You can still trigger an `EntityEvent` *without* targets. I consider this correct, since `Event` implements the non-targeted behavior, and it'd be weird if implementing another trait *removed* behavior. However, it does mean that global observers for entity events can technically return `Entity::PLACEHOLDER` again (since I got rid of the `Option<Entity>` added in #19440 for ergonomics). I think that's enough of an edge case that it's not a huge problem, but it is worth keeping in mind. - ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type currently duplicates the `Event` implementation, so you instead need to manually implement one of them.~~ Changed to always requiring `Event` to be derived. ## Related Work There are plans to implement multi-event support for observers, especially for UI contexts. [Cart's example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508) API looked like this: ```rust // Truncated for brevity trigger: Trigger<( OnAdd<Pressed>, OnRemove<Pressed>, OnAdd<InteractionDisabled>, OnRemove<InteractionDisabled>, OnInsert<Hovered>, )>, ``` I believe this shouldn't be in conflict with this PR. If anything, this PR might *help* achieve the multi-event pattern for entity observers with fewer footguns: by statically enforcing that all of these events are `EntityEvent`s in the context of `EntityCommands::observe`, we can avoid misuse or weird cases where *some* events inside the trigger are targeted while others are not. |
||
![]() |
ce3db843bc
|
Make IrradianceVolume require LightProbe (and document this). (#19621)
## Objective Make it easier to use `IrradianceVolume` with fewer ways to silently fail. Fix #19614. ## Solution * Add `#[require(LightProbe)]` to `struct IrradianceVolume`. * Document this fact. * Also document the volume being centered on the origin by default (this was the other thing that was unclear when getting started). I also looked at the other implementor of `LightProbeComponent`, `EnvironmentMapLight`, but it has a use which is *not* as a light probe, so it should not require `LightProbe`. ## Testing * Confirmed that `examples/3d/irradiance_volumes.rs` still works after removing `LightProbe`. * Reviewed generated documentation. |
||
![]() |
bab31e3777
|
Initial raytraced lighting progress (bevy_solari) (#19058)
# Bevy Solari <img src="https://github.com/user-attachments/assets/94061fc8-01cf-4208-b72a-8eecad610d76" width="100" /> ## Preface - See release notes. - Please talk to me in #rendering-dev on discord or open a github discussion if you have questions about the long term plan, and keep discussion in this PR limited to the contents of the PR :) ## Connections - Works towards #639, #16408. - Spawned https://github.com/bevyengine/bevy/issues/18993. - Need to fix RT stuff in naga_oil first https://github.com/bevyengine/naga_oil/pull/116. ## This PR After nearly two years, I've revived the raytraced lighting effort I first started in https://github.com/bevyengine/bevy/pull/10000. Unlike that PR, which has realtime techniques, I've limited this PR to: * `RaytracingScenePlugin` - BLAS and TLAS building, geometry and texture binding, sampling functions. * `PathtracingPlugin` - A non-realtime path tracer intended to serve as a testbed and reference. ## What's implemented?  * BLAS building on mesh load * Emissive lights * Directional lights with soft shadows * Diffuse (lambert, not Bevy's diffuse BRDF) and emissive materials * A reference path tracer with: * Antialiasing * Direct light sampling (next event estimation) with 0/1 MIS weights * Importance-sampled BRDF bounces * Russian roulette ## What's _not_ implemented? * Anything realtime, including a real-time denoiser * Integration with Bevy's rasterized gbuffer * Specular materials * Non-opaque geometry * Any sort of CPU or GPU optimizations * BLAS compaction, proper bindless, and further RT APIs are things that we need wgpu to add * PointLights, SpotLights, or skyboxes / environment lighting * Support for materials other than StandardMaterial (and only a subset of properties are supported) * Skinned/morphed or otherwise animating/deformed meshes * Mipmaps * Adaptive self-intersection ray bias * A good way for developers to detect whether the user's GPU supports RT or not, and fallback to baked lighting. * Documentation and actual finalized APIs (literally everything is subject to change) ## End-user Usage * Have a GPU that supports RT with inline ray queries * Add `SolariPlugin` to your app * Ensure any `Mesh` asset you want to use for raytracing has `enable_raytracing: true` (defaults to true), and that it uses the standard uncompressed position/normal/uv_0/tangent vertex attribute set, triangle list topology, and 32-bit indices. * If you don't want to build a BLAS and use the mesh for RT, set enable_raytracing to false. * Add the `RaytracingMesh3d` component to your entity (separate from `Mesh3d` or `MeshletMesh3d`). ## Testing - Did you test these changes? If so, how? - Ran the solari example. - Are there any parts that need more testing? - Other test scenes probably. Normal mapping would be good to test. - How can other people (reviewers) test your changes? Is there anything specific they need to know? - See the solari.rs example for how to setup raytracing. - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? - Windows 11, NVIDIA RTX 3080. --------- Co-authored-by: atlv <email@atlasdostal.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
e5dc177b4b
|
Rename Trigger to On (#19596)
# Objective Currently, the observer API looks like this: ```rust app.add_observer(|trigger: Trigger<Explode>| { info!("Entity {} exploded!", trigger.target()); }); ``` Future plans for observers also include "multi-event observers" with a trigger that looks like this (see [Cart's example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)): ```rust trigger: Trigger<( OnAdd<Pressed>, OnRemove<Pressed>, OnAdd<InteractionDisabled>, OnRemove<InteractionDisabled>, OnInsert<Hovered>, )>, ``` In scenarios like this, there is a lot of repetition of `On`. These are expected to be very high-traffic APIs especially in UI contexts, so ergonomics and readability are critical. By renaming `Trigger` to `On`, we can make these APIs read more cleanly and get rid of the repetition: ```rust app.add_observer(|trigger: On<Explode>| { info!("Entity {} exploded!", trigger.target()); }); ``` ```rust trigger: On<( Add<Pressed>, Remove<Pressed>, Add<InteractionDisabled>, Remove<InteractionDisabled>, Insert<Hovered>, )>, ``` Names like `On<Add<Pressed>>` emphasize the actual event listener nature more than `Trigger<OnAdd<Pressed>>`, and look cleaner. This *also* frees up the `Trigger` name if we want to use it for the observer event type, splitting them out from buffered events (bikeshedding this is out of scope for this PR though). For prior art: [`bevy_eventlistener`](https://github.com/aevyrie/bevy_eventlistener) used [`On`](https://docs.rs/bevy_eventlistener/latest/bevy_eventlistener/event_listener/struct.On.html) for its event listener type. Though in our case, the observer is the event listener, and `On` is just a type containing information about the triggered event. ## Solution Steal from `bevy_event_listener` by @aevyrie and use `On`. - Rename `Trigger` to `On` - Rename `OnAdd` to `Add` - Rename `OnInsert` to `Insert` - Rename `OnReplace` to `Replace` - Rename `OnRemove` to `Remove` - Rename `OnDespawn` to `Despawn` ## Discussion ### Naming Conflicts?? Using a name like `Add` might initially feel like a very bad idea, since it risks conflict with `core::ops::Add`. However, I don't expect this to be a big problem in practice. - You rarely need to actually implement the `Add` trait, especially in modules that would use the Bevy ECS. - In the rare cases where you *do* get a conflict, it is very easy to fix by just disambiguating, for example using `ops::Add`. - The `Add` event is a struct while the `Add` trait is a trait (duh), so the compiler error should be very obvious. For the record, renaming `OnAdd` to `Add`, I got exactly *zero* errors or conflicts within Bevy itself. But this is of course not entirely representative of actual projects *using* Bevy. You might then wonder, why not use `Added`? This would conflict with the `Added` query filter, so it wouldn't work. Additionally, the current naming convention for observer events does not use past tense. ### Documentation This does make documentation slightly more awkward when referring to `On` or its methods. Previous docs often referred to `Trigger::target` or "sends a `Trigger`" (which is... a bit strange anyway), which would now be `On::target` and "sends an observer `Event`". You can see the diff in this PR to see some of the effects. I think it should be fine though, we may just need to reword more documentation to read better. |
||
![]() |
8537718c6b
|
Fix pbr example text rotation (#19571)
# Objective This example migration was missed in #16615 https://pixel-eagle.com/project/b25a040a-a980-4602-b90c-d480ab84076d/run/10633/compare/10627?screenshot=3D+Rendering/pbr.png ## Solution Use new `UiTransform` ## Testing `cargo run --example pbr` |
||
![]() |
02fa833be1
|
Rename JustifyText to Justify (#19522)
# Objective Rename `JustifyText`: * The name `JustifyText` is just ugly. * It's inconsistent since no other `bevy_text` types have a `Text-` suffix, only prefix. * It's inconsistent with the other text layout enum `Linebreak` which doesn't have a prefix or suffix. Fixes #19521. ## Solution Rename `JustifyText` to `Justify`. Without other context, it's natural to assume the name `Justify` refers to text justification. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
064e5e48b4
|
Remove entity placeholder from observers (#19440)
# Objective `Entity::PLACEHOLDER` acts as a magic number that will *probably* never really exist, but it certainly could. And, `Entity` has a niche, so the only reason to use `PLACEHOLDER` is as an alternative to `MaybeUninit` that trades safety risks for logic risks. As a result, bevy has generally advised against using `PLACEHOLDER`, but we still use if for a lot internally. This pr starts removing internal uses of it, starting from observers. ## Solution Change all trigger target related types from `Entity` to `Option<Entity>` Small migration guide to come. ## Testing CI ## Future Work This turned a lot of code from ```rust trigger.target() ``` to ```rust trigger.target().unwrap() ``` The extra panic is no worse than before; it's just earlier than panicking after passing the placeholder to something else. But this is kinda annoying. I would like to add a `TriggerMode` or something to `Event` that would restrict what kinds of targets can be used for that event. Many events like `Removed` etc, are always triggered with a target. We can make those have a way to assume Some, etc. But I wanted to save that for a future pr. |
||
![]() |
8255e6cda9
|
Make TAA non-experimental, fixes (#18349)
The first 4 commits are designed to be reviewed independently. - Mark TAA non-experimental now that motion vectors are written for skinned and morphed meshes, along with skyboxes, and add it to DefaultPlugins - Adjust halton sequence to match what DLSS is going to use, doesn't really affect anything, but may as well - Make MipBias a required component on TAA instead of inserting it in the render world - Remove MipBias, TemporalJitter, RenderLayers, etc from the render world if they're removed from the main world (fixes a retained render world bug) - Remove TAA components from the render world properly if TemporalAntiAliasing is removed from the main world (fixes a retained render world bug) - extract_taa_settings() now has to query over `Option<&mut TemporalAntiAliasing>`, which will match every single camera, in order to cover cameras that had TemporalAntiAliasing removed this frame. This kind of sucks, but I can't think of anything better. - We probably have the same bug with every other rendering feature component we have. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
7ab00ca185
|
Split Camera.hdr out into a new component (#18873)
# Objective - Simplify `Camera` initialization - allow effects to require HDR ## Solution - Split out `Camera.hdr` into a marker `Hdr` component ## Testing - ran `bloom_3d` example --- ## Showcase ```rs // before commands.spawn(( Camera3d Camera { hdr: true ..Default::default() } )) // after commands.spawn((Camera3d, Hdr)); // other rendering components can require that the camera enables hdr! // currently implemented for Bloom, AutoExposure, and Atmosphere. #[require(Hdr)] pub struct Bloom; ``` |
||
![]() |
d1f6470cc2
|
Fix mismatched FogFalloff (#19174)
# Objective When user presses <kbd>3</kbd>, the falloff mode should be changed to `ExponentialSquared` as described in the instructions, but it's not in fact. Online Example: https://bevyengine.org/examples-webgpu/3d-rendering/fog/ ## Solution Change it to `ExponentialSquared` ## Testing - Did you test these changes? If so, how? Yes, by `cargo run --example fog` - Are there any parts that need more testing? No. - How can other people (reviewers) test your changes? Is there anything specific they need to know? ``` cargo run --example fog ``` - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? N/A |
||
![]() |
b641aa0ecf
|
separate border colors (#18682)
# Objective allow specifying the left/top/right/bottom border colors separately for ui elements fixes #14773 ## Solution - change `BorderColor` to ```rs pub struct BorderColor { pub left: Color, pub top: Color, pub right: Color, pub bottom: Color, } ``` - generate one ui node per distinct border color, set flags for the active borders - render only the active borders i chose to do this rather than adding multiple colors to the ExtractedUiNode in order to minimize the impact for the common case where all border colors are the same. ## Testing modified the `borders` example to use separate colors:  the behaviour is a bit weird but it mirrors html/css border behaviour. --- ## Migration: To keep the existing behaviour, just change `BorderColor(color)` into `BorderColor::all(color)`. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> |
||
![]() |
cf3f26f10b
|
Add GltfMeshName component and Deref implementations (#19331)
Stores mesh names from glTF files in GltfMeshName component rather than Name component, making both GltfMeshName and GltfMaterialName behave like strings via Deref. # Objective Fixed the side effects of #19287 Fixes Examples that modify gltf materials are broken #19322 ## Solution Add GltfMeshName component and Deref implementations Stores mesh names from glTF files in GltfMeshName component rather than Name component, making both GltfMeshName and GltfMaterialName behave like strings via Deref. ## Testing cargo run --example depth_of_field cargo run --example lightmaps cargo run --example mixed_lighting They are consistent with the situation before the error occurred. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> |
||
![]() |
7b1c9f192e
|
Adopt consistent FooSystems naming convention for system sets (#18900)
# Objective Fixes a part of #14274. Bevy has an incredibly inconsistent naming convention for its system sets, both internally and across the ecosystem. <img alt="System sets in Bevy" src="https://github.com/user-attachments/assets/d16e2027-793f-4ba4-9cc9-e780b14a5a1b" width="450" /> *Names of public system set types in Bevy* Most Bevy types use a naming of `FooSystem` or just `Foo`, but there are also a few `FooSystems` and `FooSet` types. In ecosystem crates on the other hand, `FooSet` is perhaps the most commonly used name in general. Conventions being so wildly inconsistent can make it harder for users to pick names for their own types, to search for system sets on docs.rs, or to even discern which types *are* system sets. To reign in the inconsistency a bit and help unify the ecosystem, it would be good to establish a common recommended naming convention for system sets in Bevy itself, similar to how plugins are commonly suffixed with `Plugin` (ex: `TimePlugin`). By adopting a consistent naming convention in first-party Bevy, we can softly nudge ecosystem crates to follow suit (for types where it makes sense to do so). Choosing a naming convention is also relevant now, as the [`bevy_cli` recently adopted lints](https://github.com/TheBevyFlock/bevy_cli/pull/345) to enforce naming for plugins and system sets, and the recommended naming used for system sets is still a bit open. ## Which Name To Use? Now the contentious part: what naming convention should we actually adopt? This was discussed on the Bevy Discord at the end of last year, starting [here](<https://discord.com/channels/691052431525675048/692572690833473578/1310659954683936789>). `FooSet` and `FooSystems` were the clear favorites, with `FooSet` very narrowly winning an unofficial poll. However, it seems to me like the consensus was broadly moving towards `FooSystems` at the end and after the poll, with Cart ([source](https://discord.com/channels/691052431525675048/692572690833473578/1311140204974706708)) and later Alice ([source](https://discord.com/channels/691052431525675048/692572690833473578/1311092530732859533)) and also me being in favor of it. Let's do a quick pros and cons list! Of course these are just what I thought of, so take it with a grain of salt. `FooSet`: - Pro: Nice and short! - Pro: Used by many ecosystem crates. - Pro: The `Set` suffix comes directly from the trait name `SystemSet`. - Pro: Pairs nicely with existing APIs like `in_set` and `configure_sets`. - Con: `Set` by itself doesn't actually indicate that it's related to systems *at all*, apart from the implemented trait. A set of what? - Con: Is `FooSet` a set of `Foo`s or a system set related to `Foo`? Ex: `ContactSet`, `MeshSet`, `EnemySet`... `FooSystems`: - Pro: Very clearly indicates that the type represents a collection of systems. The actual core concept, system(s), is in the name. - Pro: Parallels nicely with `FooPlugins` for plugin groups. - Pro: Low risk of conflicts with other names or misunderstandings about what the type is. - Pro: In most cases, reads *very* nicely and clearly. Ex: `PhysicsSystems` and `AnimationSystems` as opposed to `PhysicsSet` and `AnimationSet`. - Pro: Easy to search for on docs.rs. - Con: Usually results in longer names. - Con: Not yet as widely used. Really the big problem with `FooSet` is that it doesn't actually describe what it is. It describes what *kind of thing* it is (a set of something), but not *what it is a set of*, unless you know the type or check its docs or implemented traits. `FooSystems` on the other hand is much more self-descriptive in this regard, at the cost of being a bit longer to type. Ultimately, in some ways it comes down to preference and how you think of system sets. Personally, I was originally in favor of `FooSet`, but have been increasingly on the side of `FooSystems`, especially after seeing what the new names would actually look like in Avian and now Bevy. I prefer it because it usually reads better, is much more clearly related to groups of systems than `FooSet`, and overall *feels* more correct and natural to me in the long term. For these reasons, and because Alice and Cart also seemed to share a preference for it when it was previously being discussed, I propose that we adopt a `FooSystems` naming convention where applicable. ## Solution Rename Bevy's system set types to use a consistent `FooSet` naming where applicable. - `AccessibilitySystem` → `AccessibilitySystems` - `GizmoRenderSystem` → `GizmoRenderSystems` - `PickSet` → `PickingSystems` - `RunFixedMainLoopSystem` → `RunFixedMainLoopSystems` - `TransformSystem` → `TransformSystems` - `RemoteSet` → `RemoteSystems` - `RenderSet` → `RenderSystems` - `SpriteSystem` → `SpriteSystems` - `StateTransitionSteps` → `StateTransitionSystems` - `RenderUiSystem` → `RenderUiSystems` - `UiSystem` → `UiSystems` - `Animation` → `AnimationSystems` - `AssetEvents` → `AssetEventSystems` - `TrackAssets` → `AssetTrackingSystems` - `UpdateGizmoMeshes` → `GizmoMeshSystems` - `InputSystem` → `InputSystems` - `InputFocusSet` → `InputFocusSystems` - `ExtractMaterialsSet` → `MaterialExtractionSystems` - `ExtractMeshesSet` → `MeshExtractionSystems` - `RumbleSystem` → `RumbleSystems` - `CameraUpdateSystem` → `CameraUpdateSystems` - `ExtractAssetsSet` → `AssetExtractionSystems` - `Update2dText` → `Text2dUpdateSystems` - `TimeSystem` → `TimeSystems` - `AudioPlaySet` → `AudioPlaybackSystems` - `SendEvents` → `EventSenderSystems` - `EventUpdates` → `EventUpdateSystems` A lot of the names got slightly longer, but they are also a lot more consistent, and in my opinion the majority of them read much better. For a few of the names I took the liberty of rewording things a bit; definitely open to any further naming improvements. There are still also cases where the `FooSystems` naming doesn't really make sense, and those I left alone. This primarily includes system sets like `Interned<dyn SystemSet>`, `EnterSchedules<S>`, `ExitSchedules<S>`, or `TransitionSchedules<S>`, where the type has some special purpose and semantics. ## Todo - [x] Should I keep all the old names as deprecated type aliases? I can do this, but to avoid wasting work I'd prefer to first reach consensus on whether these renames are even desired. - [x] Migration guide - [x] Release notes |
||
![]() |
235257ff62
|
Fix occlusion culling not respecting device limits (#18974)
The occlusion culling plugin checks for a GPU feature by looking at `RenderAdapter`. This is wrong - it should be checking `RenderDevice`. See these notes for background: https://github.com/bevyengine/bevy/discussions/18973 I don't have any evidence that this was causing any bugs, so right now it's just a precaution. ## Testing ``` cargo run --example occlusion_culling ``` Tested on Win10/Nvidia across Vulkan, WebGL/Chrome, WebGPU/Chrome. |
||
![]() |
20b2b5e6b1
|
Fix tonemapping example when using a local image (#19061)
# Objective - The tonemapping example allows using a local image to try out different color grading. However, using a local file stopped working when we added the `UnapprovedPathMode` setting to the assets plugin. ## Solution - Set `unapproved_path_mode: UnapprovedPathMode::Allow` in the example ## Testing - I tried out the example with local images, previously it would fail saying it's an untrusted path. |
||
![]() |
e9a0ef49f9
|
Rename bevy_platform_support to bevy_platform (#18813)
# Objective The goal of `bevy_platform_support` is to provide a set of platform agnostic APIs, alongside platform-specific functionality. This is a high traffic crate (providing things like HashMap and Instant). Especially in light of https://github.com/bevyengine/bevy/discussions/18799, it deserves a friendlier / shorter name. Given that it hasn't had a full release yet, getting this change in before Bevy 0.16 makes sense. ## Solution - Rename `bevy_platform_support` to `bevy_platform`. |
||
![]() |
e799625ea5
|
Add binned 2d/3d Wireframe render phase (#18587)
# Objective Fixes #16896 Fixes #17737 ## Solution Adds a new render phase, including all the new cold specialization patterns, for wireframes. There's a *lot* of regrettable duplication here between 3d/2d. ## Testing All the examples. ## Migration Guide - `WireframePlugin` must now be created with `WireframePlugin::default()`. |
||
![]() |
a1fd3a4c69
|
Remove WebGL padding from MotionBlur (#18727)
## Objective The `MotionBlur` component exposes renderer internals. Users shouldn't have to deal with this. ```rust MotionBlur { shutter_angle: 1.0, samples: 2, #[cfg(all(feature = "webgl2", target_arch = "wasm32", not(feature = "webgpu")))] _webgl2_padding: Default::default(), }, ``` ## Solution The renderer now uses a separate `MotionBlurUniform` struct for its internals. `MotionBlur` no longer needs padding. I was a bit unsure about the name `MotionBlurUniform`. Other modules use a mix of `Uniform` and `Uniforms`. ## Testing ``` cargo run --example motion_blur ``` Tested on Win10/Nvidia across Vulkan, WebGL/Chrome, WebGPU/Chrome. |
||
![]() |
d8fa57bd7b
|
Switch ChildOf back to tuple struct (#18672)
# Objective In #17905 we swapped to a named field on `ChildOf` to help resolve variable naming ambiguity of child vs parent (ex: `child_of.parent` clearly reads as "I am accessing the parent of the child_of relationship", whereas `child_of.0` is less clear). Unfortunately this has the side effect of making initialization less ideal. `ChildOf { parent }` reads just as well as `ChildOf(parent)`, but `ChildOf { parent: root }` doesn't read nearly as well as `ChildOf(root)`. ## Solution Move back to `ChildOf(pub Entity)` but add a `child_of.parent()` function and use it for all accesses. The downside here is that users are no longer "forced" to access the parent field with `parent` nomenclature, but I think this strikes the right balance. Take a look at the diff. I think the results provide strong evidence for this change. Initialization has the benefit of reading much better _and_ of taking up significantly less space, as many lines go from 3 to 1, and we're cutting out a bunch of syntax in some cases. Sadly I do think this should land in 0.16 as the cost of doing this _after_ the relationships migration is high. |
||
![]() |
06bae05ba2
|
Add bevy_anti_aliasing (#18323)
# Objective - bevy_core_pipeline is getting really big and it's a big bottleneck for compilation time. A lot of parts of it can be broken up ## Solution - Add a new bevy_anti_aliasing crate that contains all the anti_aliasing implementations - I didn't move any MSAA related code to this new crate because that's a lot more invasive ## Testing - Tested the anti_aliasing example to make sure all methods still worked --- ## Showcase before:  after:  Notice that now bevy_core_pipeline is 1s shorter and bevy_anti_aliasing now compiles in parallel with bevy_pbr. ## Migration Guide When using anti aliasing features, you now need to import them from `bevy::anti_aliasing` instead of `bevy::core_pipeline` |
||
![]() |
cb3e6a88dc
|
Fix shadow_biases example (#18303)
Fix moire artifacts in https://github.com/bevyengine/bevy/issues/16635. Default directional light biases are overkill but it's fine. |
||
![]() |
54701a844e
|
Revert "Replace Ambient Lights with Environment Map Lights (#17482)" (#18167)
This reverts commit
|
||
![]() |
0b5302d96a
|
Replace Ambient Lights with Environment Map Lights (#17482)
# Objective Transparently uses simple `EnvironmentMapLight`s to mimic `AmbientLight`s. Implements the first part of #17468, but I can implement hemispherical lights in this PR too if needed. ## Solution - A function `EnvironmentMapLight::solid_color(&mut Assets<Image>, Color)` is provided to make an environment light with a solid color. - A new system is added to `SimulationLightSystems` that maps `AmbientLight`s on views or the world to a corresponding `EnvironmentMapLight`. I have never worked with (or on) Bevy before, so nitpicky comments on how I did things are appreciated :). ## Testing Testing was done on a modified version of the `3d/lighting` example, where I removed all lights except the ambient light. I have not included the example, but can if required. ## Migration `bevy_pbr::AmbientLight` has been deprecated, so all usages of it should be replaced by a `bevy_pbr::EnvironmentMapLight` created with `EnvironmentMapLight::solid_color` placed on the camera. There is no alternative to ambient lights as resources. |
||
![]() |
bfdd018d21
|
Fix webgl2 feature gating affecting webgpu in transmission example (#18115)
# Objective Fixes #18095 ## Solution Update the feature gates so that `Taa`, etc are added if - Not on wasm - OR using webgpu ## Testing Check that `Taa` is disabled with appropriate messaging on webgl2 ``` cargo run -p build-wasm-example -- --api webgl2 transmission && basic-http-server examples/wasm/ ``` Check that `Taa` works on webgpu in chrome ``` cargo run -p build-wasm-example -- --api webgpu transmission && basic-http-server examples/wasm/ ``` Check that `Taa` still works in a native build ``` cargo run -example transmission ``` |
||
![]() |
2ad5908e58
|
Make Query::single (and friends) return a Result (#18082)
# Objective As discussed in #14275, Bevy is currently too prone to panic, and makes the easy / beginner-friendly way to do a large number of operations just to panic on failure. This is seriously frustrating in library code, but also slows down development, as many of the `Query::single` panics can actually safely be an early return (these panics are often due to a small ordering issue or a change in game state. More critically, in most "finished" products, panics are unacceptable: any unexpected failures should be handled elsewhere. That's where the new With the advent of good system error handling, we can now remove this. Note: I was instrumental in a) introducing this idea in the first place and b) pushing to make the panicking variant the default. The introduction of both `let else` statements in Rust and the fancy system error handling work in 0.16 have changed my mind on the right balance here. ## Solution 1. Make `Query::single` and `Query::single_mut` (and other random related methods) return a `Result`. 2. Handle all of Bevy's internal usage of these APIs. 3. Deprecate `Query::get_single` and friends, since we've moved their functionality to the nice names. 4. Add detailed advice on how to best handle these errors. Generally I like the diff here, although `get_single().unwrap()` in tests is a bit of a downgrade. ## Testing I've done a global search for `.single` to track down any missed deprecated usages. As to whether or not all the migrations were successful, that's what CI is for :) ## Future work ~~Rename `Query::get_single` and friends to `Query::single`!~~ ~~I've opted not to do this in this PR, and smear it across two releases in order to ease the migration. Successive deprecations are much easier to manage than the semantics and types shifting under your feet.~~ Cart has convinced me to change my mind on this; see https://github.com/bevyengine/bevy/pull/18082#discussion_r1974536085. ## Migration guide `Query::single`, `Query::single_mut` and their `QueryState` equivalents now return a `Result`. Generally, you'll want to: 1. Use Bevy 0.16's system error handling to return a `Result` using the `?` operator. 2. Use a `let else Ok(data)` block to early return if it's an expected failure. 3. Use `unwrap()` or `Ok` destructuring inside of tests. The old `Query::get_single` (etc) methods which did this have been deprecated. |
||
![]() |
ccb7069e7f
|
Change ChildOf to Childof { parent: Entity} and support deriving Relationship and RelationshipTarget with named structs (#17905)
# Objective fixes #17896 ## Solution Change ChildOf ( Entity ) to ChildOf { parent: Entity } by doing this we also allow users to use named structs for relationship derives, When you have more than 1 field in a struct with named fields the macro will look for a field with the attribute #[relationship] and all of the other fields should implement the Default trait. Unnamed fields are still supported. When u have a unnamed struct with more than one field the macro will fail. Do we want to support something like this ? ```rust #[derive(Component)] #[relationship_target(relationship = ChildOf)] pub struct Children (#[relationship] Entity, u8); ``` I could add this, it but doesn't seem nice. ## Testing crates/bevy_ecs - cargo test ## Showcase ```rust use bevy_ecs::component::Component; use bevy_ecs::entity::Entity; #[derive(Component)] #[relationship(relationship_target = Children)] pub struct ChildOf { #[relationship] pub parent: Entity, internal: u8, }; #[derive(Component)] #[relationship_target(relationship = ChildOf)] pub struct Children { children: Vec<Entity> }; ``` --------- Co-authored-by: Tim Overbeek <oorbecktim@Tims-MacBook-Pro.local> Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-042.client.nl.eduvpn.org> Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-059.client.nl.eduvpn.org> Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-054.client.nl.eduvpn.org> Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-027.client.nl.eduvpn.org> |
||
![]() |
5241e09671
|
Upgrade to Rust Edition 2024 (#17967)
# Objective - Fixes #17960 ## Solution - Followed the [edition upgrade guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html) ## Testing - CI --- ## Summary of Changes ### Documentation Indentation When using lists in documentation, proper indentation is now linted for. This means subsequent lines within the same list item must start at the same indentation level as the item. ```rust /* Valid */ /// - Item 1 /// Run-on sentence. /// - Item 2 struct Foo; /* Invalid */ /// - Item 1 /// Run-on sentence. /// - Item 2 struct Foo; ``` ### Implicit `!` to `()` Conversion `!` (the never return type, returned by `panic!`, etc.) no longer implicitly converts to `()`. This is particularly painful for systems with `todo!` or `panic!` statements, as they will no longer be functions returning `()` (or `Result<()>`), making them invalid systems for functions like `add_systems`. The ideal fix would be to accept functions returning `!` (or rather, _not_ returning), but this is blocked on the [stabilisation of the `!` type itself](https://doc.rust-lang.org/std/primitive.never.html), which is not done. The "simple" fix would be to add an explicit `-> ()` to system signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`). However, this is _also_ banned, as there is an existing lint which (IMO, incorrectly) marks this as an unnecessary annotation. So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ... }` closuers into variables and give the variable an explicit type (e.g., `fn()`). ```rust // Valid let system: fn() = || todo!("Not implemented yet!"); app.add_systems(..., system); // Invalid app.add_systems(..., || todo!("Not implemented yet!")); ``` ### Temporary Variable Lifetimes The order in which temporary variables are dropped has changed. The simple fix here is _usually_ to just assign temporaries to a named variable before use. ### `gen` is a keyword We can no longer use the name `gen` as it is reserved for a future generator syntax. This involved replacing uses of the name `gen` with `r#gen` (the raw-identifier syntax). ### Formatting has changed Use statements have had the order of imports changed, causing a substantial +/-3,000 diff when applied. For now, I have opted-out of this change by amending `rustfmt.toml` ```toml style_edition = "2021" ``` This preserves the original formatting for now, reducing the size of this PR. It would be a simple followup to update this to 2024 and run `cargo fmt`. ### New `use<>` Opt-Out Syntax Lifetimes are now implicitly included in RPIT types. There was a handful of instances where it needed to be added to satisfy the borrow checker, but there may be more cases where it _should_ be added to avoid breakages in user code. ### `MyUnitStruct { .. }` is an invalid pattern Previously, you could match against unit structs (and unit enum variants) with a `{ .. }` destructuring. This is no longer valid. ### Pretty much every use of `ref` and `mut` are gone Pattern binding has changed to the point where these terms are largely unused now. They still serve a purpose, but it is far more niche now. ### `iter::repeat(...).take(...)` is bad New lint recommends using the more explicit `iter::repeat_n(..., ...)` instead. ## Migration Guide The lifetimes of functions using return-position impl-trait (RPIT) are likely _more_ conservative than they had been previously. If you encounter lifetime issues with such a function, please create an issue to investigate the addition of `+ use<...>`. ## Notes - Check the individual commits for a clearer breakdown for what _actually_ changed. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
![]() |
5f86668bbb
|
Renamed EventWriter::send methods to write . (#17977)
Fixes #17856. ## Migration Guide - `EventWriter::send` has been renamed to `EventWriter::write`. - `EventWriter::send_batch` has been renamed to `EventWriter::write_batch`. - `EventWriter::send_default` has been renamed to `EventWriter::write_default`. --------- Co-authored-by: François Mockers <mockersf@gmail.com> |
||
![]() |
8f36106f9e
|
Split out the IndirectParametersMetadata into CPU-populated and GPU-populated buffers. (#17863)
The GPU can fill out many of the fields in `IndirectParametersMetadata` using information it already has: * `early_instance_count` and `late_instance_count` are always initialized to zero. * `mesh_index` is already present in the work item buffer as the `input_index` of the first work item in each batch. This patch moves these fields to a separate buffer, the *GPU indirect parameters metadata* buffer. That way, it avoids having to write them on CPU during `batch_and_prepare_binned_render_phase`. This effectively reduces the number of bits that that function must write per mesh from 160 to 64 (in addition to the 64 bits per mesh *instance*). Additionally, this PR refactors `UntypedPhaseIndirectParametersBuffers` to add another layer, `MeshClassIndirectParametersBuffers`, which allows abstracting over the buffers corresponding indexed and non-indexed meshes. This patch doesn't make much use of this abstraction, but forthcoming patches will, and it's overall a cleaner approach. This didn't seem to have much of an effect by itself on `batch_and_prepare_binned_render_phase` time, but subsequent PRs dependent on this PR yield roughly a 2× speedup. |
||
![]() |
0ede857103
|
Build batches across phases in parallel. (#17764)
Currently, invocations of `batch_and_prepare_binned_render_phase` and `batch_and_prepare_sorted_render_phase` can't run in parallel because they write to scene-global GPU buffers. After PR #17698, `batch_and_prepare_binned_render_phase` started accounting for the lion's share of the CPU time, causing us to be strongly CPU bound on scenes like Caldera when occlusion culling was on (because of the overhead of batching for the Z-prepass). Although I eventually plan to optimize `batch_and_prepare_binned_render_phase`, we can obtain significant wins now by parallelizing that system across phases. This commit splits all GPU buffers that `batch_and_prepare_binned_render_phase` and `batch_and_prepare_sorted_render_phase` touches into separate buffers for each phase so that the scheduler will run those phases in parallel. At the end of batch preparation, we gather the render phases up into a single resource with a new *collection* phase. Because we already run mesh preprocessing separately for each phase in order to make occlusion culling work, this is actually a cleaner separation. For example, mesh output indices (the unique ID that identifies each mesh instance on GPU) are now guaranteed to be sequential starting from 0, which will simplify the forthcoming work to remove them in favor of the compute dispatch ID. On Caldera, this brings the frame time down to approximately 9.1 ms with occlusion culling on.  |
||
![]() |
300fe4db4d
|
Store UI render target info locally per node (#17579)
# Objective It's difficult to understand or make changes to the UI systems because of how each system needs to individually track changes to scale factor, windows and camera targets in local hashmaps, particularly for new contributors. Any major change inevitably introduces new scale factor bugs. Instead of per-system resolution we can resolve the camera target info for all UI nodes in a system at the start of `PostUpdate` and then store it per-node in components that can be queried with change detection. Fixes #17578 Fixes #15143 ## Solution Store the UI render target's data locally per node in a component that is updated in `PostUpdate` before any other UI systems run. This component can be then be queried with change detection so that UI systems no longer need to have knowledge of cameras and windows and don't require fragile custom change detection solutions using local hashmaps. ## Showcase Compare `measure_text_system` from main (which has a bug the causes it to use the wrong scale factor when a node's camera target changes): ``` pub fn measure_text_system( mut scale_factors_buffer: Local<EntityHashMap<f32>>, mut last_scale_factors: Local<EntityHashMap<f32>>, fonts: Res<Assets<Font>>, camera_query: Query<(Entity, &Camera)>, default_ui_camera: DefaultUiCamera, ui_scale: Res<UiScale>, mut text_query: Query< ( Entity, Ref<TextLayout>, &mut ContentSize, &mut TextNodeFlags, &mut ComputedTextBlock, Option<&UiTargetCamera>, ), With<Node>, >, mut text_reader: TextUiReader, mut text_pipeline: ResMut<TextPipeline>, mut font_system: ResMut<CosmicFontSystem>, ) { scale_factors_buffer.clear(); let default_camera_entity = default_ui_camera.get(); for (entity, block, content_size, text_flags, computed, maybe_camera) in &mut text_query { let Some(camera_entity) = maybe_camera .map(UiTargetCamera::entity) .or(default_camera_entity) else { continue; }; let scale_factor = match scale_factors_buffer.entry(camera_entity) { Entry::Occupied(entry) => *entry.get(), Entry::Vacant(entry) => *entry.insert( camera_query .get(camera_entity) .ok() .and_then(|(_, c)| c.target_scaling_factor()) .unwrap_or(1.0) * ui_scale.0, ), }; if last_scale_factors.get(&camera_entity) != Some(&scale_factor) || computed.needs_rerender() || text_flags.needs_measure_fn || content_size.is_added() { create_text_measure( entity, &fonts, scale_factor.into(), text_reader.iter(entity), block, &mut text_pipeline, content_size, text_flags, computed, &mut font_system, ); } } core::mem::swap(&mut *last_scale_factors, &mut *scale_factors_buffer); } ``` with `measure_text_system` from this PR (which always uses the correct scale factor): ``` pub fn measure_text_system( fonts: Res<Assets<Font>>, mut text_query: Query< ( Entity, Ref<TextLayout>, &mut ContentSize, &mut TextNodeFlags, &mut ComputedTextBlock, Ref<ComputedNodeTarget>, ), With<Node>, >, mut text_reader: TextUiReader, mut text_pipeline: ResMut<TextPipeline>, mut font_system: ResMut<CosmicFontSystem>, ) { for (entity, block, content_size, text_flags, computed, computed_target) in &mut text_query { // Note: the ComputedTextBlock::needs_rerender bool is cleared in create_text_measure(). if computed_target.is_changed() || computed.needs_rerender() || text_flags.needs_measure_fn || content_size.is_added() { create_text_measure( entity, &fonts, computed_target.scale_factor.into(), text_reader.iter(entity), block, &mut text_pipeline, content_size, text_flags, computed, &mut font_system, ); } } } ``` ## Testing I removed an alarming number of tests from the `layout` module but they were mostly to do with the deleted camera synchronisation logic. The remaining tests should all pass now. The most relevant examples are `multiple_windows` and `split_screen`, the behaviour of both should be unchanged from main. --------- Co-authored-by: UkoeHB <37489173+UkoeHB@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
ea578415e1
|
Improved Spawn APIs and Bundle Effects (#17521)
## Objective A major critique of Bevy at the moment is how boilerplatey it is to compose (and read) entity hierarchies: ```rust commands .spawn(Foo) .with_children(|p| { p.spawn(Bar).with_children(|p| { p.spawn(Baz); }); p.spawn(Bar).with_children(|p| { p.spawn(Baz); }); }); ``` There is also currently no good way to statically define and return an entity hierarchy from a function. Instead, people often do this "internally" with a Commands function that returns nothing, making it impossible to spawn the hierarchy in other cases (direct World spawns, ChildSpawner, etc). Additionally, because this style of API results in creating the hierarchy bits _after_ the initial spawn of a bundle, it causes ECS archetype changes (and often expensive table moves). Because children are initialized after the fact, we also can't count them to pre-allocate space. This means each time a child inserts itself, it has a high chance of overflowing the currently allocated capacity in the `RelationshipTarget` collection, causing literal worst-case reallocations. We can do better! ## Solution The Bundle trait has been extended to support an optional `BundleEffect`. This is applied directly to World immediately _after_ the Bundle has fully inserted. Note that this is [intentionally](https://github.com/bevyengine/bevy/discussions/16920) _not done via a deferred Command_, which would require repeatedly copying each remaining subtree of the hierarchy to a new command as we walk down the tree (_not_ good performance). This allows us to implement the new `SpawnRelated` trait for all `RelationshipTarget` impls, which looks like this in practice: ```rust world.spawn(( Foo, Children::spawn(( Spawn(( Bar, Children::spawn(Spawn(Baz)), )), Spawn(( Bar, Children::spawn(Spawn(Baz)), )), )) )) ``` `Children::spawn` returns `SpawnRelatedBundle<Children, L: SpawnableList>`, which is a `Bundle` that inserts `Children` (preallocated to the size of the `SpawnableList::size_hint()`). `Spawn<B: Bundle>(pub B)` implements `SpawnableList` with a size of 1. `SpawnableList` is also implemented for tuples of `SpawnableList` (same general pattern as the Bundle impl). There are currently three built-in `SpawnableList` implementations: ```rust world.spawn(( Foo, Children::spawn(( Spawn(Name::new("Child1")), SpawnIter(["Child2", "Child3"].into_iter().map(Name::new), SpawnWith(|parent: &mut ChildSpawner| { parent.spawn(Name::new("Child4")); parent.spawn(Name::new("Child5")); }) )), )) ``` We get the benefits of "structured init", but we have nice flexibility where it is required! Some readers' first instinct might be to try to remove the need for the `Spawn` wrapper. This is impossible in the Rust type system, as a tuple of "child Bundles to be spawned" and a "tuple of Components to be added via a single Bundle" is ambiguous in the Rust type system. There are two ways to resolve that ambiguity: 1. By adding support for variadics to the Rust type system (removing the need for nested bundles). This is out of scope for this PR :) 2. Using wrapper types to resolve the ambiguity (this is what I did in this PR). For the single-entity spawn cases, `Children::spawn_one` does also exist, which removes the need for the wrapper: ```rust world.spawn(( Foo, Children::spawn_one(Bar), )) ``` ## This works for all Relationships This API isn't just for `Children` / `ChildOf` relationships. It works for any relationship type, and they can be mixed and matched! ```rust world.spawn(( Foo, Observers::spawn(( Spawn(Observer::new(|trigger: Trigger<FuseLit>| {})), Spawn(Observer::new(|trigger: Trigger<Exploded>| {})), )), OwnerOf::spawn(Spawn(Bar)) Children::spawn(Spawn(Baz)) )) ``` ## Macros While `Spawn` is necessary to satisfy the type system, we _can_ remove the need to express it via macros. The example above can be expressed more succinctly using the new `children![X]` macro, which internally produces `Children::spawn(Spawn(X))`: ```rust world.spawn(( Foo, children![ ( Bar, children![Baz], ), ( Bar, children![Baz], ), ] )) ``` There is also a `related!` macro, which is a generic version of the `children!` macro that supports any relationship type: ```rust world.spawn(( Foo, related!(Children[ ( Bar, related!(Children[Baz]), ), ( Bar, related!(Children[Baz]), ), ]) )) ``` ## Returning Hierarchies from Functions Thanks to these changes, the following pattern is now possible: ```rust fn button(text: &str, color: Color) -> impl Bundle { ( Node { width: Val::Px(300.), height: Val::Px(100.), ..default() }, BackgroundColor(color), children![ Text::new(text), ] ) } fn ui() -> impl Bundle { ( Node { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default(), }, children![ button("hello", BLUE), button("world", RED), ] ) } // spawn from a system fn system(mut commands: Commands) { commands.spawn(ui()); } // spawn directly on World world.spawn(ui()); ``` ## Additional Changes and Notes * `Bundle::from_components` has been split out into `BundleFromComponents::from_components`, enabling us to implement `Bundle` for types that cannot be "taken" from the ECS (such as the new `SpawnRelatedBundle`). * The `NoBundleEffect` trait (which implements `BundleEffect`) is implemented for empty tuples (and tuples of empty tuples), which allows us to constrain APIs to only accept bundles that do not have effects. This is critical because the current batch spawn APIs cannot efficiently apply BundleEffects in their current form (as doing so in-place could invalidate the cached raw pointers). We could consider allocating a buffer of the effects to be applied later, but that does have performance implications that could offset the balance and value of the batched APIs (and would likely require some refactors to the underlying code). I've decided to be conservative here. We can consider relaxing that requirement on those APIs later, but that should be done in a followup imo. * I've ported a few examples to illustrate real-world usage. I think in a followup we should port all examples to the `children!` form whenever possible (and for cases that require things like SpawnIter, use the raw APIs). * Some may ask "why not use the `Relationship` to spawn (ex: `ChildOf::spawn(Foo)`) instead of the `RelationshipTarget` (ex: `Children::spawn(Spawn(Foo))`)?". That _would_ allow us to remove the `Spawn` wrapper. I've explicitly chosen to disallow this pattern. `Bundle::Effect` has the ability to create _significant_ weirdness. Things in `Bundle` position look like components. For example `world.spawn((Foo, ChildOf::spawn(Bar)))` _looks and reads_ like Foo is a child of Bar. `ChildOf` is in Foo's "component position" but it is not a component on Foo. This is a huge problem. Now that `Bundle::Effect` exists, we should be _very_ principled about keeping the "weird and unintuitive behavior" to a minimum. Things that read like components _should be the components they appear to be". ## Remaining Work * The macros are currently trivially implemented using macro_rules and are currently limited to the max tuple length. They will require a proc_macro implementation to work around the tuple length limit. ## Next Steps * Port the remaining examples to use `children!` where possible and raw `Spawn` / `SpawnIter` / `SpawnWith` where the flexibility of the raw API is required. ## Migration Guide Existing spawn patterns will continue to work as expected. Manual Bundle implementations now require a `BundleEffect` associated type. Exisiting bundles would have no bundle effect, so use `()`. Additionally `Bundle::from_components` has been moved to the new `BundleFromComponents` trait. ```rust // Before unsafe impl Bundle for X { unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self { } /* remaining bundle impl here */ } // After unsafe impl Bundle for X { type Effect = (); /* remaining bundle impl here */ } unsafe impl BundleFromComponents for X { unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self { } } ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: Emerson Coskey <emerson@coskey.dev> |
||
![]() |
9ea9c5df00
|
Add edit_material_on_gltf example (#17677)
# Objective Create a minimal example of how to modify the material from a `Gltf`. This is frequently asked about on the help channel of the discord. ## Solution Create the example. ## Showcase  |
||
![]() |
fdc7cb3031
|
Add a Sphere to anisotropy example (#17676)
# Objective Add a mesh with a more regular shape to visualize the anisotropy effect. ## Solution Add a `Sphere` to the scene. ## Testing Ran `anisotropy` example ## Showcase   Note: defects are already mentioned on #16179 |
||
![]() |
dfac3b9bfd
|
Fix window close in example cause panic (#17533)
# Objective Fixes #17532 ## Solution - check window valide |
||
![]() |
7aeb1c51a6
|
Disable clustered decals on Metal. (#17554)
Unfortunately, Apple platforms don't have enough texture bindings to properly support clustered decals. This should be fixed once `wgpu` has first-class bindless texture support. In the meantime, we disable them. Closes #17553. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
dda97880c4
|
Implement experimental GPU two-phase occlusion culling for the standard 3D mesh pipeline. (#17413)
*Occlusion culling* allows the GPU to skip the vertex and fragment shading overhead for objects that can be quickly proved to be invisible because they're behind other geometry. A depth prepass already eliminates most fragment shading overhead for occluded objects, but the vertex shading overhead, as well as the cost of testing and rejecting fragments against the Z-buffer, is presently unavoidable for standard meshes. We currently perform occlusion culling only for meshlets. But other meshes, such as skinned meshes, can benefit from occlusion culling too in order to avoid the transform and skinning overhead for unseen meshes. This commit adapts the same [*two-phase occlusion culling*] technique that meshlets use to Bevy's standard 3D mesh pipeline when the new `OcclusionCulling` component, as well as the `DepthPrepass` component, are present on the camera. It has these steps: 1. *Early depth prepass*: We use the hierarchical Z-buffer from the previous frame to cull meshes for the initial depth prepass, effectively rendering only the meshes that were visible in the last frame. 2. *Early depth downsample*: We downsample the depth buffer to create another hierarchical Z-buffer, this time with the current view transform. 3. *Late depth prepass*: We use the new hierarchical Z-buffer to test all meshes that weren't rendered in the early depth prepass. Any meshes that pass this check are rendered. 4. *Late depth downsample*: Again, we downsample the depth buffer to create a hierarchical Z-buffer in preparation for the early depth prepass of the next frame. This step is done after all the rendering, in order to account for custom phase items that might write to the depth buffer. Note that this patch has no effect on the per-mesh CPU overhead for occluded objects, which remains high for a GPU-driven renderer due to the lack of `cold-specialization` and retained bins. If `cold-specialization` and retained bins weren't on the horizon, then a more traditional approach like potentially visible sets (PVS) or low-res CPU rendering would probably be more efficient than the GPU-driven approach that this patch implements for most scenes. However, at this point the amount of effort required to implement a PVS baking tool or a low-res CPU renderer would probably be greater than landing `cold-specialization` and retained bins, and the GPU driven approach is the more modern one anyway. It does mean that the performance improvements from occlusion culling as implemented in this patch *today* are likely to be limited, because of the high CPU overhead for occluded meshes. Note also that this patch currently doesn't implement occlusion culling for 2D objects or shadow maps. Those can be addressed in a follow-up. Additionally, note that the techniques in this patch require compute shaders, which excludes support for WebGL 2. This PR is marked experimental because of known precision issues with the downsampling approach when applied to non-power-of-two framebuffer sizes (i.e. most of them). These precision issues can, in rare cases, cause objects to be judged occluded that in fact are not. (I've never seen this in practice, but I know it's possible; it tends to be likelier to happen with small meshes.) As a follow-up to this patch, we desire to switch to the [SPD-based hi-Z buffer shader from the Granite engine], which doesn't suffer from these problems, at which point we should be able to graduate this feature from experimental status. I opted not to include that rewrite in this patch for two reasons: (1) @JMS55 is planning on doing the rewrite to coincide with the new availability of image atomic operations in Naga; (2) to reduce the scope of this patch. A new example, `occlusion_culling`, has been added. It demonstrates objects becoming quickly occluded and disoccluded by dynamic geometry and shows the number of objects that are actually being rendered. Also, a new `--occlusion-culling` switch has been added to `scene_viewer`, in order to make it easy to test this patch with large scenes like Bistro. [*two-phase occlusion culling*]: https://medium.com/@mil_kru/two-pass-occlusion-culling-4100edcad501 [Aaltonen SIGGRAPH 2015]: https://www.advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf [Some literature]: https://gist.github.com/reduz/c5769d0e705d8ab7ac187d63be0099b5?permalink_comment_id=5040452#gistcomment-5040452 [SPD-based hi-Z buffer shader from the Granite engine]: https://github.com/Themaister/Granite/blob/master/assets/shaders/post/hiz.comp ## Migration guide * When enqueuing a custom mesh pipeline, work item buffers are now created with `bevy::render::batching::gpu_preprocessing::get_or_create_work_item_buffer`, not `PreprocessWorkItemBuffers::new`. See the `specialized_mesh_pipeline` example. ## Showcase Occlusion culling example:  Bistro zoomed out, before occlusion culling:  Bistro zoomed out, after occlusion culling:  In this scene, occlusion culling reduces the number of meshes Bevy has to render from 1591 to 585. |
||
![]() |
1c765c9ae7
|
Add support for specular tints and maps per the KHR_materials_specular glTF extension. (#14069)
This commit allows specular highlights to be tinted with a color and for the reflectance and color tint values to vary across a model via a pair of maps. The implementation follows the [`KHR_materials_specular`] glTF extension. In order to reduce the number of samplers and textures in the default `StandardMaterial` configuration, the maps are gated behind the `pbr_specular_textures` Cargo feature. Specular tinting is currently unsupported in the deferred renderer, because I didn't want to bloat the deferred G-buffers. A possible fix for this in the future would be to make the G-buffer layout more configurable, so that specular tints could be supported on an opt-in basis. As an alternative, Bevy could force meshes with specular tints to render in forward mode. Both of these solutions require some more design, so I consider them out of scope for now. Note that the map is a *specular* map, not a *reflectance* map. In Bevy and Filament terms, the reflectance values in the specular map range from [0.0, 0.5], rather than [0.0, 1.0]. This is an unfortunate [`KHR_materials_specular`] specification requirement that stems from the fact that glTF is specified in terms of a specular strength model, not the reflectance model that Filament and Bevy use. A workaround, which is noted in the `StandardMaterial` documentation, is to set the `reflectance` value to 2.0, which spreads the specular map range from [0.0, 1.0] as normal. The glTF loader has been updated to parse the [`KHR_materials_specular`] extension. Note that, unless the non-default `pbr_specular_textures` is supplied, the maps are ignored. The `specularFactor` value is applied as usual. Note that, as with the specular map, the glTF `specularFactor` is twice Bevy's `reflectance` value. This PR adds a new example, `specular_tint`, which demonstrates the specular tint and map features. Note that this example requires the [`KHR_materials_specular`] Cargo feature. [`KHR_materials_specular`]: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_specular ## Changelog ### Added * Specular highlights can now be tinted with the `specular_tint` field in `StandardMaterial`. * Specular maps are now available in `StandardMaterial`, gated behind the `pbr_specular_textures` Cargo feature. * The `KHR_materials_specular` glTF extension is now supported, allowing for customization of specular reflectance and specular maps. Note that the latter are gated behind the `pbr_specular_textures` Cargo feature. |
||
![]() |
fc831c390d
|
Implement basic clustered decal projectors. (#17315)
This commit adds support for *decal projectors* to Bevy, allowing for textures to be projected on top of geometry. Decal projectors are clusterable objects, just as punctual lights and light probes are. This means that decals are only evaluated for objects within the conservative bounds of the projector, and they don't require a second pass. These clustered decals require support for bindless textures and as such currently don't work on WebGL 2, WebGPU, macOS, or iOS. For an alternative that doesn't require bindless, see PR #16600. I believe that both contact projective decals in #16600 and clustered decals are desirable to have in Bevy. Contact projective decals offer broader hardware and driver support, while clustered decals don't require the creation of bounding geometry. A new example, `decal_projectors`, has been added, which demonstrates multiple decals on a rotating object. The decal projectors can be scaled and rotated with the mouse. There are several limitations of this initial patch that can be addressed in follow-ups: 1. There's no way to specify the Z-index of decals. That is, the order in which multiple decals are blended on top of one another is arbitrary. A follow-up could introduce some sort of Z-index field so that artists can specify that some decals should be blended on top of others. 2. Decals don't take the normal of the surface they're projected onto into account. Most decal implementations in other engines have a feature whereby the angle between the decal projector and the normal of the surface must be within some threshold for the decal to appear. Often, artists can specify a fade-off range for a smooth transition between oblique surfaces and aligned surfaces. 3. There's no distance-based fadeoff toward the end of the projector range. Many decal implementations have this. This addresses #2401. ## Showcase  |
||
![]() |
81a25bb0c7
|
Procedural atmospheric scattering (#16314)
Implement procedural atmospheric scattering from [Sebastien Hillaire's 2020 paper](https://sebh.github.io/publications/egsr2020.pdf). This approach should scale well even down to mobile hardware, and is physically accurate. ## Co-author: @mate-h He helped massively with getting this over the finish line, ensuring everything was physically correct, correcting several places where I had misunderstood or misapplied the paper, and improving the performance in several places as well. Thanks! ## Credits @aevyrie: helped find numerous bugs and improve the example to best show off this feature :) Built off of @mtsr's original branch, which handled the transmittance lut (arguably the most important part) ## Showcase:   ## For followup - Integrate with pcwalton's volumetrics code - refactor/reorganize for better integration with other effects - have atmosphere transmittance affect directional lights - add support for generating skybox/environment map --------- Co-authored-by: Emerson Coskey <56370779+EmersonCoskey@users.noreply.github.com> Co-authored-by: atlv <email@atlasdostal.com> Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com> Co-authored-by: Emerson Coskey <coskey@emerlabs.net> Co-authored-by: Máté Homolya <mate.homolya@gmail.com> |
||
![]() |
9bc0ae33c3
|
Move hashbrown and foldhash out of bevy_utils (#17460)
# Objective - Contributes to #16877 ## Solution - Moved `hashbrown`, `foldhash`, and related types out of `bevy_utils` and into `bevy_platform_support` - Refactored the above to match the layout of these types in `std`. - Updated crates as required. ## Testing - CI --- ## Migration Guide - The following items were moved out of `bevy_utils` and into `bevy_platform_support::hash`: - `FixedState` - `DefaultHasher` - `RandomState` - `FixedHasher` - `Hashed` - `PassHash` - `PassHasher` - `NoOpHash` - The following items were moved out of `bevy_utils` and into `bevy_platform_support::collections`: - `HashMap` - `HashSet` - `bevy_utils::hashbrown` has been removed. Instead, import from `bevy_platform_support::collections` _or_ take a dependency on `hashbrown` directly. - `bevy_utils::Entry` has been removed. Instead, import from `bevy_platform_support::collections::hash_map` or `bevy_platform_support::collections::hash_set` as appropriate. - All of the above equally apply to `bevy::utils` and `bevy::platform_support`. ## Notes - I left `PreHashMap`, `PreHashMapExt`, and `TypeIdMap` in `bevy_utils` as they might be candidates for micro-crating. They can always be moved into `bevy_platform_support` at a later date if desired. |
||
![]() |
ba5e71f53d
|
Parent -> ChildOf (#17427)
Fixes #17412 ## Objective `Parent` uses the "has a X" naming convention. There is increasing sentiment that we should use the "is a X" naming convention for relationships (following #17398). This leaves `Children` as-is because there is prevailing sentiment that `Children` is clearer than `ParentOf` in many cases (especially when treating it like a collection). This renames `Parent` to `ChildOf`. This is just the implementation PR. To discuss the path forward, do so in #17412. ## Migration Guide - The `Parent` component has been renamed to `ChildOf`. |
||
![]() |
adc33b5108
|
Rename TargetCamera to UiTargetCamera (#17403)
# Objective It's not immediately obvious that `TargetCamera` only works with UI node entities. It's natural to assume from looking at something like the `multiple_windows` example that it will work with everything. ## Solution Rename `TargetCamera` to `UiTargetCamera`. ## Migration Guide `TargetCamera` has been renamed to `UiTargetCamera`. |
||
![]() |
21f1e3045c
|
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with planned paths for fragmenting and non-fragmenting many-to-many relationships). "Non-fragmenting" means that entities with the same relationship type, but different relationship targets, are not forced into separate tables (which would cause "table fragmentation"). Functionally, this fills a similar niche as the current Parent/Children system. The biggest differences are: 1. Relationships have simpler internals and significantly improved performance and UX. Commands and specialized APIs are no longer necessary to keep everything in sync. Just spawn entities with the relationship components you want and everything "just works". 2. Relationships are generalized. Bevy can provide additional built in relationships, and users can define their own. **REQUEST TO REVIEWERS**: _please don't leave top level comments and instead comment on specific lines of code. That way we can take advantage of threaded discussions. Also dont leave comments simply pointing out CI failures as I can read those just fine._ ## Built on top of what we have Relationships are implemented on top of the Bevy ECS features we already have: components, immutability, and hooks. This makes them immediately compatible with all of our existing (and future) APIs for querying, spawning, removing, scenes, reflection, etc. The fewer specialized APIs we need to build, maintain, and teach, the better. ## Why focus on one-to-many non-fragmenting first? 1. This allows us to improve Parent/Children relationships immediately, in a way that is reasonably uncontroversial. Switching our hierarchy to fragmenting relationships would have significant performance implications. ~~Flecs is heavily considering a switch to non-fragmenting relations after careful considerations of the performance tradeoffs.~~ _(Correction from @SanderMertens: Flecs is implementing non-fragmenting storage specialized for asset hierarchies, where asset hierarchies are many instances of small trees that have a well defined structure)_ 2. Adding generalized one-to-many relationships is currently a priority for the [Next Generation Scene / UI effort](https://github.com/bevyengine/bevy/discussions/14437). Specifically, we're interested in building reactions and observers on top. ## The changes This PR does the following: 1. Adds a generic one-to-many Relationship system 3. Ports the existing Parent/Children system to Relationships, which now lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been removed. 4. Adds on_despawn component hooks 5. Relationships can opt-in to "despawn descendants" behavior, meaning that the entire relationship hierarchy is despawned when `entity.despawn()` is called. The built in Parent/Children hierarchies enable this behavior, and `entity.despawn_recursive()` has been removed. 6. `world.spawn` now applies commands after spawning. This ensures that relationship bookkeeping happens immediately and removes the need to manually flush. This is in line with the equivalent behaviors recently added to the other APIs (ex: insert). 7. Removes the ValidParentCheckPlugin (system-driven / poll based) in favor of a `validate_parent_has_component` hook. ## Using Relationships The `Relationship` trait looks like this: ```rust pub trait Relationship: Component + Sized { type RelationshipSources: RelationshipSources<Relationship = Self>; fn get(&self) -> Entity; fn from(entity: Entity) -> Self; } ``` A relationship is a component that: 1. Is a simple wrapper over a "target" Entity. 2. Has a corresponding `RelationshipSources` component, which is a simple wrapper over a collection of entities. Every "target entity" targeted by a "source entity" with a `Relationship` has a `RelationshipSources` component, which contains every "source entity" that targets it. For example, the `Parent` component (as it currently exists in Bevy) is the `Relationship` component and the entity containing the Parent is the "source entity". The entity _inside_ the `Parent(Entity)` component is the "target entity". And that target entity has a `Children` component (which implements `RelationshipSources`). In practice, the Parent/Children relationship looks like this: ```rust #[derive(Relationship)] #[relationship(relationship_sources = Children)] pub struct Parent(pub Entity); #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent)] pub struct Children(Vec<Entity>); ``` The Relationship and RelationshipSources derives automatically implement Component with the relevant configuration (namely, the hooks necessary to keep everything in sync). The most direct way to add relationships is to spawn entities with relationship components: ```rust let a = world.spawn_empty().id(); let b = world.spawn(Parent(a)).id(); assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]); ``` There are also convenience APIs for spawning more than one entity with the same relationship: ```rust world.spawn_empty().with_related::<Children>(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` The existing `with_children` API is now a simpler wrapper over `with_related`. This makes this change largely non-breaking for existing spawn patterns. ```rust world.spawn_empty().with_children(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` There are also other relationship APIs, such as `add_related` and `despawn_related`. ## Automatic recursive despawn via the new on_despawn hook `RelationshipSources` can opt-in to "despawn descendants" behavior, which will despawn all related entities in the relationship hierarchy: ```rust #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent, despawn_descendants)] pub struct Children(Vec<Entity>); ``` This means that `entity.despawn_recursive()` is no longer required. Instead, just use `entity.despawn()` and the relevant related entities will also be despawned. To despawn an entity _without_ despawning its parent/child descendants, you should remove the `Children` component first, which will also remove the related `Parent` components: ```rust entity .remove::<Children>() .despawn() ``` This builds on the on_despawn hook introduced in this PR, which is fired when an entity is despawned (before other hooks). ## Relationships are the source of truth `Relationship` is the _single_ source of truth component. `RelationshipSources` is merely a reflection of what all the `Relationship` components say. By embracing this, we are able to significantly improve the performance of the system as a whole. We can rely on component lifecycles to protect us against duplicates, rather than needing to scan at runtime to ensure entities don't already exist (which results in quadratic runtime). A single source of truth gives us constant-time inserts. This does mean that we cannot directly spawn populated `Children` components (or directly add or remove entities from those components). I personally think this is a worthwhile tradeoff, both because it makes the performance much better _and_ because it means theres exactly one way to do things (which is a philosophy we try to employ for Bevy APIs). As an aside: treating both sides of the relationship as "equivalent source of truth relations" does enable building simple and flexible many-to-many relationships. But this introduces an _inherent_ need to scan (or hash) to protect against duplicates. [`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations) has a very nice implementation of the "symmetrical many-to-many" approach. Unfortunately I think the performance issues inherent to that approach make it a poor choice for Bevy's default relationship system. ## Followup Work * Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in this PR to keep the diff reasonable, but I'm personally biased toward this change (and using that naming pattern generally for relationships). * [Improved spawning ergonomics](https://github.com/bevyengine/bevy/discussions/16920) * Consider adding relationship observers/triggers for "relationship targets" whenever a source is added or removed. This would replace the current "hierarchy events" system, which is unused upstream but may have existing users downstream. I think triggers are the better fit for this than a buffered event queue, and would prefer not to add that back. * Fragmenting relations: My current idea hinges on the introduction of "value components" (aka: components whose type _and_ value determines their ComponentId, via something like Hashing / PartialEq). By labeling a Relationship component such as `ChildOf(Entity)` as a "value component", `ChildOf(e1)` and `ChildOf(e2)` would be considered "different components". This makes the transition between fragmenting and non-fragmenting a single flag, and everything else continues to work as expected. * Many-to-many support * Non-fragmenting: We can expand Relationship to be a list of entities instead of a single entity. I have largely already written the code for this. * Fragmenting: With the "value component" impl mentioned above, we get many-to-many support "for free", as it would allow inserting multiple copies of a Relationship component with different target entities. Fixes #3742 (If this PR is merged, I think we should open more targeted followup issues for the work above, with a fresh tracking issue free of the large amount of less-directed historical context) Fixes #17301 Fixes #12235 Fixes #15299 Fixes #15308 ## Migration Guide * Replace `ChildBuilder` with `ChildSpawnerCommands`. * Replace calls to `.set_parent(parent_id)` with `.insert(Parent(parent_id))`. * Replace calls to `.replace_children()` with `.remove::<Children>()` followed by `.add_children()`. Note that you'll need to manually despawn any children that are not carried over. * Replace calls to `.despawn_recursive()` with `.despawn()`. * Replace calls to `.despawn_descendants()` with `.despawn_related::<Children>()`. * If you have any calls to `.despawn()` which depend on the children being preserved, you'll need to remove the `Children` component first. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
b66c3ceb0e
|
Add external assets to .gitignore (#17388)
Added an external assets section to .gitignore. This prevents contributors from accidentally adding or committing them. I believe currently the only externel asset is the meshlet bunny. |
||
![]() |
e8e2426058
|
Forward decals (port of bevy_contact_projective_decals) (#16600)
# Objective - Implement ForwardDecal as outlined in https://github.com/bevyengine/bevy/issues/2401 ## Solution - Port https://github.com/naasblod/bevy_contact_projective_decals, and cleanup the API a little. ## Testing - Ran the new decal example. --- ## Showcase  ## Changelog * Added ForwardDecal and associated types * Added MaterialExtension::alpha_mode() --------- Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
![]() |
bb0a82b9a7
|
Higher quality bicubic lightmap sampling (#16740)
# Objective - Closes https://github.com/bevyengine/bevy/issues/14322. ## Solution - Implement fast 4-sample bicubic filtering based on this shader toy https://www.shadertoy.com/view/4df3Dn, with a small speedup from a ghost of tushima presentation. ## Testing - Did you test these changes? If so, how? - Ran on lightmapped example. Practically no difference in that scene. - Are there any parts that need more testing? - Lightmapping a better scene. ## Changelog - Lightmaps now have a higher quality bicubic sampling method (off by default). --------- Co-authored-by: Patrick Walton <pcwalton@mimiga.net> |
||
![]() |
02bb151889
|
Rename PickingBehavior to Pickable (#17266)
# Objective PR #17225 allowed for sprite picking to be opt-in. After some discussion, it was agreed that `PickingBehavior` should be used to opt-in to sprite picking behavior for entities. This leads to `PickingBehavior` having two purposes: mark an entity for use in a backend, and describe how it should be picked. Discussion led to the name `Pickable`making more sense (also: this is what the component was named before upstreaming). A follow-up pass will be made after this PR to unify backends. ## Solution Replace all instances of `PickingBehavior` and `picking_behavior` with `Pickable` and `pickable`, respectively. ## Testing CI ## Migration Guide Change all instances of `PickingBehavior` to `Pickable`. |
||
![]() |
3742e621ef
|
Allow clippy::too_many_arguments to lint without warnings (#17249)
# Objective Many instances of `clippy::too_many_arguments` linting happen to be on systems - functions which we don't call manually, and thus there's not much reason to worry about the argument count. ## Solution Allow `clippy::too_many_arguments` globally, and remove all lint attributes related to it. |