223a54629c
376 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
432a4f1d85
|
Fix dim emissive values in lighting example (#12343)
# Objective - Fixes #12330 ## Solution - Increasing the emissive of the objects representing the lights. |
||
![]() |
dfdf2b9ea4
|
Implement the AnimationGraph , allowing for multiple animations to be blended together. (#11989)
This is an implementation of RFC #51: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md Note that the implementation strategy is different from the one outlined in that RFC, because two-phase animation has now landed. # Objective Bevy needs animation blending. The RFC for this is [RFC 51]. ## Solution This is an implementation of the RFC. Note that the implementation strategy is different from the one outlined there, because two-phase animation has now landed. This is just a draft to get the conversation started. Currently we're missing a few things: - [x] A fully-fleshed-out mechanism for transitions - [x] A serialization format for `AnimationGraph`s - [x] Examples are broken, other than `animated_fox` - [x] Documentation --- ## Changelog ### Added * The `AnimationPlayer` has been reworked to support blending multiple animations together through an `AnimationGraph`, and as such will no longer function unless a `Handle<AnimationGraph>` has been added to the entity containing the player. See [RFC 51] for more details. * Transition functionality has moved from the `AnimationPlayer` to a new component, `AnimationTransitions`, which works in tandem with the `AnimationGraph`. ## Migration Guide * `AnimationPlayer`s can no longer play animations by themselves and need to be paired with a `Handle<AnimationGraph>`. Code that was using `AnimationPlayer` to play animations will need to create an `AnimationGraph` asset first, add a node for the clip (or clips) you want to play, and then supply the index of that node to the `AnimationPlayer`'s `play` method. * The `AnimationPlayer::play_with_transition()` method has been removed and replaced with the `AnimationTransitions` component. If you were previously using `AnimationPlayer::play_with_transition()`, add all animations that you were playing to the `AnimationGraph`, and create an `AnimationTransitions` component to manage the blending between them. [RFC 51]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md --------- Co-authored-by: Rob Parrett <robparrett@gmail.com> |
||
![]() |
713d91b721
|
Improve Bloom 3D lighting (#11981)
# Objective
- With the recent lighting changes, the default configuration in the
`bloom_3d` example is less clear what bloom actually does
- See [this
screenshot](
|
||
![]() |
d56e16754c
|
Fix "dark grey" colors becoming lighter in various examples (#12333)
# Objective Fixes #12226 Prior to the `bevy_color` port, `DARK GRAY` used to mean "dark grey." But it is now lighter than `GRAY`, matching the css4 spec. ## Solution Change usages of `css::DARK_GRAY` to `Color::srgb(0.25, 0.25, 0.25)` to restore the examples to their former colors. With one exception: `display_and_visibility`. I think the new color is an improvement. ## Note A lot of these examples could use nicer colors. I'm not trying to revamp everything here. The css4 palette is truly a horror. See #12176 and #12080 for some discussion about alternatives. |
||
![]() |
0746b8eb4c
|
Fix green colors becoming darker in various examples (#12328)
# Objective Fixes #12225 Prior to the `bevy_color` port, `GREEN` used to mean "full green." But it is now a much darker color matching the css1 spec. ## Solution Change usages of `basic::GREEN` or `css::GREEN` to `LIME` to restore the examples to their former colors. This also removes the duplicate definition of `GREEN` from `css`. (it was already re-exported from `basic`) ## Note A lot of these examples could use nicer colors. I'm not trying to do that here. "Dark Grey" will be tackled separately and has its own tracking issue. |
||
![]() |
faa2ce4d55
|
fix example lightmaps after color migration (#12265)
# Objective - Since #12163 example lightmaps is more dull <img width="1280" alt="Screenshot 2024-03-02 at 23 04 36" src="https://github.com/bevyengine/bevy/assets/8672791/7736f420-b9c5-4870-93f6-b5b992c4768a"> ## Solution - Use a srgba color, as it was before: |
||
![]() |
e8ae0d6c49
|
Decouple BackgroundColor from UiImage (#11165)
# Objective Fixes https://github.com/bevyengine/bevy/issues/11157. ## Solution Stop using `BackgroundColor` as a color tint for `UiImage`. Add a `UiImage::color` field for color tint instead. Allow a UI node to simultaneously include a solid-color background and an image, with the image rendered on top of the background (this is already how it works for e.g. text).  --- ## Changelog - The `BackgroundColor` component now renders a solid-color background behind `UiImage` instead of tinting its color. - Removed `BackgroundColor` from `ImageBundle`, `AtlasImageBundle`, and `ButtonBundle`. - Added `UiImage::color`. - Expanded `RenderUiSystem` variants. - Renamed `bevy_ui::extract_text_uinodes` to `extract_uinodes_text` for consistency. ## Migration Guide - `BackgroundColor` no longer tints the color of UI images. Use `UiImage::color` for that instead. - For solid color buttons, replace `ButtonBundle { background_color: my_color.into(), ... }` with `ButtonBundle { image: UiImage::default().with_color(my_color), ... }`, and update button interaction systems to use `UiImage::color` instead of `BackgroundColor` as well. - `bevy_ui::RenderUiSystem::ExtractNode` has been split into `ExtractBackgrounds`, `ExtractImages`, `ExtractBorders`, and `ExtractText`. - `bevy_ui::extract_uinodes` has been split into `bevy_ui::extract_uinode_background_colors` and `bevy_ui::extract_uinode_images`. - `bevy_ui::extract_text_uinodes` has been renamed to `extract_uinode_text`. |
||
![]() |
cc32610543
|
Add size and physical_size to window (#12238)
This is an implementation within `bevy_window::window` that fixes #12229. # Objective Fixes #12229, allow users to retrieve the window's size and physical size as Vectors without having to manually construct them using `height()` and `width()` or `physical_height()` and `physical_width()` ## Solution As suggested in #12229, created two public functions within `window`: `size() -> Vec` and `physical_size() -> UVec` that return the needed Vectors ready-to-go. ### Discussion My first FOSS PRQ ever, so bear with me a bit. I'm new to this. - I replaced instances of ```Vec2::new(window.width(), window.height());``` or `UVec2::new(window.physical_width(), window.physical_height());` within bevy examples be replaced with their `size()`/`physical_size()` counterparts? - Discussion within #12229 still holds: should these also be added to WindowResolution? |
||
![]() |
f9cc91d5a1
|
Intern mesh vertex buffer layouts so that we don't have to compare them over and over. (#12216)
Although we cached hashes of `MeshVertexBufferLayout`, we were paying the cost of `PartialEq` on `InnerMeshVertexBufferLayout` for every entity, every frame. This patch changes that logic to place `MeshVertexBufferLayout`s in `Arc`s so that they can be compared and hashed by pointer. This results in a 28% speedup in the `queue_material_meshes` phase of `many_cubes`, with frustum culling disabled. Additionally, this patch contains two minor changes: 1. This commit flattens the specialized mesh pipeline cache to one level of hash tables instead of two. This saves a hash lookup. 2. The example `many_cubes` has been given a `--no-frustum-culling` flag, to aid in benchmarking. See the Tracy profile: <img width="1064" alt="Screenshot 2024-02-29 144406" src="https://github.com/bevyengine/bevy/assets/157897/18632f1d-1fdd-4ac7-90ed-2d10306b2a1e"> ## Migration guide * Duplicate `MeshVertexBufferLayout`s are now combined into a single object, `MeshVertexBufferLayoutRef`, which contains an atomically-reference-counted pointer to the layout. Code that was using `MeshVertexBufferLayout` may need to be updated to use `MeshVertexBufferLayoutRef` instead. |
||
![]() |
599e5e4e76
|
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
![]() |
f418de8eb6
|
Rename Direction2d/3d to Dir2/3 (#12189)
# Objective Split up from #12017, rename Bevy's direction types. Currently, Bevy has the `Direction2d`, `Direction3d`, and `Direction3dA` types, which provide a type-level guarantee that their contained vectors remain normalized. They can be very useful for a lot of APIs for safety, explicitness, and in some cases performance, as they can sometimes avoid unnecessary normalizations. However, many consider them to be inconvenient to use, and opt for standard vector types like `Vec3` because of this. One reason is that the direction type names are a bit long and can be annoying to write (of course you can use autocomplete, but just typing `Vec3` is still nicer), and in some intances, the extra characters can make formatting worse. The naming is also inconsistent with Glam's shorter type names, and results in names like `Direction3dA`, which (in my opinion) are difficult to read and even a bit ugly. This PR proposes renaming the types to `Dir2`, `Dir3`, and `Dir3A`. These names are nice and easy to write, consistent with Glam, and work well for variants like the SIMD aligned `Dir3A`. As a bonus, it can also result in nicer formatting in a lot of cases, which can be seen from the diff of this PR. Some examples of what it looks like: (copied from #12017) ```rust // Before let ray_cast = RayCast2d::new(Vec2::ZERO, Direction2d::X, 5.0); // After let ray_cast = RayCast2d::new(Vec2::ZERO, Dir2::X, 5.0); ``` ```rust // Before (an example using Bevy XPBD) let hit = spatial_query.cast_ray( Vec3::ZERO, Direction3d::X, f32::MAX, true, SpatialQueryFilter::default(), ); // After let hit = spatial_query.cast_ray( Vec3::ZERO, Dir3::X, f32::MAX, true, SpatialQueryFilter::default(), ); ``` ```rust // Before self.circle( Vec3::new(0.0, -2.0, 0.0), Direction3d::Y, 5.0, Color::TURQUOISE, ); // After (formatting is collapsed in this case) self.circle(Vec3::new(0.0, -2.0, 0.0), Dir3::Y, 5.0, Color::TURQUOISE); ``` ## Solution Rename `Direction2d`, `Direction3d`, and `Direction3dA` to `Dir2`, `Dir3`, and `Dir3A`. --- ## Migration Guide The `Direction2d` and `Direction3d` types have been renamed to `Dir2` and `Dir3`. ## Additional Context This has been brought up on the Discord a few times, and we had a small [poll](https://discord.com/channels/691052431525675048/1203087353850364004/1212465038711984158) on this. `Dir2`/`Dir3`/`Dir3A` was quite unanimously chosen as the best option, but of course it was a very small poll and inconclusive, so other opinions are certainly welcome too. --------- Co-authored-by: IceSentry <c.giguere42@gmail.com> |
||
![]() |
f7f7e326e5
|
Add methods to directly load assets from World (#12023)
# Objective `FromWorld` is often used to group loading and creation of assets for resources. With this setup, users often end up repetitively calling `.resource::<AssetServer>` and `.resource_mut::<Assets<T>>`, and may have difficulties handling lifetimes of the returned references. ## Solution Add extension methods to `World` to add and load assets, through a new extension trait defined in `bevy_asset`. ### Other considerations * This might be a bit too "magic", as it makes implicit the resource access. * We could also implement `DirectAssetAccessExt` on `App`, but it didn't feel necessary, as `FromWorld` is the principal use-case here. --- ## Changelog * Add the `DirectAssetAccessExt` trait, which adds the `add_asset`, `load_asset` and `load_asset_with_settings` method to the `World` type. |
||
![]() |
b96193e6ca
|
Improve lighting in more examples (#12021)
# Objective - #11868 changed the lighting system, forcing lights to increase their intensity. The PR fixed most examples, but missed a few. These I later caught in https://github.com/bevyengine/bevy-website/pull/1023. - Related: #11982, #11981. - While there, I noticed that the spotlight example could use a few easy improvements. ## Solution - Increase lighting in `skybox`, `spotlight`, `animated_transform`, and `gltf_skinned_mesh`. - Improve spotlight example. - Make ground plane move with cubes, so they don't phase into each other. - Batch spawn cubes. - Add controls text. - Change controls to allow rotating around spotlights. ## Showcase ### Skybox Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/8ba00d74-6d68-4414-97a8-28afb8305570"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/ad15c471-6979-4dda-9889-9189136d8404"> ### Spotlight Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/53f966de-acf3-46b8-8299-0005c4cb8da0"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/05c73c1e-0739-4226-83d6-e4249a9105e0"> ### Animated Transform Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/6d7d4ea0-e22e-42a5-9905-ea1731d474cf"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/f1ee08d6-d17a-4391-91a6-d903b9fbdc3c"> ### gLTF Skinned Mesh Before: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/547569a6-d13b-4fe0-a8c1-e11f02c4f9a2"> After: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/34517aba-09e4-4e9b-982a-a4a8b893c48a"> --- ## Changelog - Increased lighting in `skybox`, `spotlight`, `animated_transform`, and `gltf_skinned_mesh` examples. - Improved usability of `spotlight` example. |
||
![]() |
9bd6cc0a5e
|
Add Direction3dA and move direction types out of primitives (#12018)
# Objective Split up from #12017, add an aligned version of `Direction3d` for SIMD, and move direction types out of `primitives`. ## Solution Add `Direction3dA` and move direction types into a new `direction` module. --- ## Migration Guide The `Direction2d`, `Direction3d`, and `InvalidDirectionError` types have been moved out of `bevy::math::primitives`. Before: ```rust use bevy::math::primitives::Direction3d; ``` After: ```rust use bevy::math::Direction3d; ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
ff29c43916
|
Increase 3D Lighting example's light intensity (#11982)
# Objective
- The 3D Lighting example is meant to show using multiple lights in the
same scene.
- It currently looks very dark. (See [this
image](
|
||
![]() |
de004da8d5
|
Rename bevy_render::Color to LegacyColor (#12069)
# Objective The migration process for `bevy_color` (#12013) will be fairly involved: there will be hundreds of affected files, and a large number of APIs. ## Solution To allow us to proceed granularly, we're going to keep both `bevy_color::Color` (new) and `bevy_render::Color` (old) around until the migration is complete. However, simply doing this directly is confusing! They're both called `Color`, making it very hard to tell when a portion of the code has been ported. As discussed in #12056, by renaming the old `Color` type, we can make it easier to gradually migrate over, one API at a time. ## Migration Guide THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK. This change should not be shipped to end users: delete this section in the final migration guide! --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
![]() |
dc696c0e11
|
make reflection probe example frame rate independent (#12065)
# Objective
- Example reflection_probe is not frame rate independent
## Solution
- Use time delta to rotate the camera, use the same rotation speed as
the load_gltf example
|
||
![]() |
d3e839a8e5
|
Move gizmos examples in the separate folder (#11916)
# Objective Move Gizmo examples into the separate directory Fixes #11899 --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Joona Aalto <jondolf.dev@gmail.com> |
||
![]() |
5a74ff6f5e
|
Update split_screen example with 4 cameras (#12010)
# Objective Improve `split_screen` example to use 4 cameras. This serves as a visual regression test for #12006. ## Solution With the fix of #11968:  Without (current `main`):  |
||
![]() |
8127d44daa
|
Irradiance volume example tweaks (#11911)
# Objective Fixes two small quality issues: 1. With the new default ev100 exposure value, the irradiance intensity was too low 2. The camera was rotating at a fixed speed (instead of a speed multiplied by delta time), resulting in frame-rate dependent rotation speed. |
||
![]() |
ebaa347afe
|
Add configuration for async pipeline creation on RenderPlugin (#11847)
# Objective Fixes #11846 ## Solution Add a `synchronous_pipeline_compilation ` field to `RenderPlugin`, defaulting to `false`. Most of the diff is whitespace. ## Changelog Added `synchronous_pipeline_compilation ` to `RenderPlugin` for disabling async pipeline creation. ## Migration Guide TODO: consider combining this with the guide for #11846 `RenderPlugin` has a new `synchronous_pipeline_compilation ` property. The default value is `false`. Set this to `true` if you want to retain the previous synchronous behavior. --------- Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com> Co-authored-by: François <mockersf@gmail.com> |
||
![]() |
dd619a1087
|
New Exposure and Lighting Defaults (and calibrate examples) (#11868)
# Objective After adding configurable exposure, we set the default ev100 value to `7` (indoor). This brought us out of sync with Blender's configuration and defaults. This PR changes the default to `9.7` (bright indoor or very overcast outdoors), as I calibrated in #11577. This feels like a very reasonable default. The other changes generally center around tweaking Bevy's lighting defaults and examples to play nicely with this number, alongside a few other tweaks and improvements. Note that for artistic reasons I have reverted some examples, which changed to directional lights in #11581, back to point lights. Fixes #11577 --- ## Changelog - Changed `Exposure::ev100` from `7` to `9.7` to better match Blender - Renamed `ExposureSettings` to `Exposure` - `Camera3dBundle` now includes `Exposure` for discoverability - Bumped `FULL_DAYLIGHT ` and `DIRECT_SUNLIGHT` to represent the middle-to-top of those ranges instead of near the bottom - Added new `AMBIENT_DAYLIGHT` constant and set that as the new `DirectionalLight` default illuminance. - `PointLight` and `SpotLight` now have a default `intensity` of 1,000,000 lumens. This makes them actually useful in the context of the new "semi-outdoor" exposure and puts them in the "cinema lighting" category instead of the "common household light" category. They are also reasonably close to the Blender default. - `AmbientLight` default has been bumped from `20` to `80`. ## Migration Guide - The increased `Exposure::ev100` means that all existing 3D lighting will need to be adjusted to match (DirectionalLights, PointLights, SpotLights, EnvironmentMapLights, etc). Or alternatively, you can adjust the `Exposure::ev100` on your cameras to work nicely with your current lighting values. If you are currently relying on default intensity values, you might need to change the intensity to achieve the same effect. Note that in Bevy 0.12, point/spot lights had a different hard coded ev100 value than directional lights. In Bevy 0.13, they use the same ev100, so if you have both in your scene, the _scale_ between these light types has changed and you will likely need to adjust one or both of them. |
||
![]() |
dc9b486650
|
Change light defaults & fix light examples (#11581)
# Objective Fix https://github.com/bevyengine/bevy/issues/11577. ## Solution Fix the examples, add a few constants to make setting light values easier, and change the default lighting settings to be more realistic. (Now designed for an overcast day instead of an indoor environment) --- I did not include any example-related changes in here. ## Changelogs (not including breaking changes) ### bevy_pbr - Added `light_consts` module (included in prelude), which contains common lux and lumen values for lights. - Added `AmbientLight::NONE` constant, which is an ambient light with a brightness of 0. - Added non-EV100 variants for `ExposureSettings`'s EV100 constants, which allow easier construction of an `ExposureSettings` from a EV100 constant. ## Breaking changes ### bevy_pbr The several default lighting values were changed: - `PointLight`'s default `intensity` is now `2000.0` - `SpotLight`'s default `intensity` is now `2000.0` - `DirectionalLight`'s default `illuminance` is now `light_consts::lux::OVERCAST_DAY` (`1000.`) - `AmbientLight`'s default `brightness` is now `20.0` |
||
![]() |
b446374392
|
Dedicated primitive example (#11697)
I just implemented this to record a video for the new blog post, but I figured it would also make a good dedicated example. This also allows us to remove a lot of code from the 2d/3d gizmo examples since it supersedes this portion of code. Depends on: https://github.com/bevyengine/bevy/pull/11699 |
||
![]() |
0166db33f7
|
Deprecate shapes in bevy_render::mesh::shape (#11773)
# Objective #11431 and #11688 implemented meshing support for Bevy's new geometric primitives. The next step is to deprecate the shapes in `bevy_render::mesh::shape` and to later remove them completely for 0.14. ## Solution Deprecate the shapes and reduce code duplication by utilizing the primitive meshing API for the old shapes where possible. Note that some shapes have behavior that can't be exactly reproduced with the new primitives yet: - `Box` is more of an AABB with min/max extents - `Plane` supports a subdivision count - `Quad` has a `flipped` property These types have not been changed to utilize the new primitives yet. --- ## Changelog - Deprecated all shapes in `bevy_render::mesh::shape` - Changed all examples to use new primitives for meshing ## Migration Guide Bevy has previously used rendering-specific types like `UVSphere` and `Quad` for primitive mesh shapes. These have now been deprecated to use the geometric primitives newly introduced in version 0.13. Some examples: ```rust let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0)); let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0)); let before = meshes.add(shape::Quad::default()); let after = meshes.add(Rectangle::default()); let before = meshes.add(shape::Plane::from_size(5.0)); // The surface normal can now also be specified when using `new` let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0)); let before = meshes.add( Mesh::try_from(shape::Icosphere { radius: 0.5, subdivisions: 5, }) .unwrap(), ); let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap()); ``` |
||
![]() |
4c86ad6aed
|
Mesh insert indices (#11745)
# Objective - Fixes #11740 ## Solution - Turned `Mesh::set_indices` into `Mesh::insert_indices` and added related methods for completeness. --- ## Changelog - Replaced `Mesh::set_indices(indices: Option<Indices>)` with `Mesh::insert_indices(indices: Indices)` - Replaced `Mesh::with_indices(indices: Option<Indices>)` with `Mesh::with_inserted_indices(indices: Indices)` and `Mesh::with_removed_indices()` mirroring the API for inserting / removing attributes. - Updated the examples and internal uses of the APIs described above. ## Migration Guide - Use `Mesh::insert_indices` or `Mesh::with_inserted_indices` instead of `Mesh::set_indices` / `Mesh::with_indices`. - If you have passed `None` to `Mesh::set_indices` or `Mesh::with_indices` you should use `Mesh::remove_indices` or `Mesh::with_removed_indices` instead. --------- Co-authored-by: François <mockersf@gmail.com> |
||
![]() |
4c15dd0fc5
|
Implement irradiance volumes. (#10268)
# Objective Bevy could benefit from *irradiance volumes*, also known as *voxel global illumination* or simply as light probes (though this term is not preferred, as multiple techniques can be called light probes). Irradiance volumes are a form of baked global illumination; they work by sampling the light at the centers of each voxel within a cuboid. At runtime, the voxels surrounding the fragment center are sampled and interpolated to produce indirect diffuse illumination. ## Solution This is divided into two sections. The first is copied and pasted from the irradiance volume module documentation and describes the technique. The second part consists of notes on the implementation. ### Overview An *irradiance volume* is a cuboid voxel region consisting of regularly-spaced precomputed samples of diffuse indirect light. They're ideal if you have a dynamic object such as a character that can move about static non-moving geometry such as a level in a game, and you want that dynamic object to be affected by the light bouncing off that static geometry. To use irradiance volumes, you need to precompute, or *bake*, the indirect light in your scene. Bevy doesn't currently come with a way to do this. Fortunately, [Blender] provides a [baking tool] as part of the Eevee renderer, and its irradiance volumes are compatible with those used by Bevy. The [`bevy-baked-gi`] project provides a tool, `export-blender-gi`, that can extract the baked irradiance volumes from the Blender `.blend` file and package them up into a `.ktx2` texture for use by the engine. See the documentation in the `bevy-baked-gi` project for more details as to this workflow. Like all light probes in Bevy, irradiance volumes are 1×1×1 cubes that can be arbitrarily scaled, rotated, and positioned in a scene with the [`bevy_transform::components::Transform`] component. The 3D voxel grid will be stretched to fill the interior of the cube, and the illumination from the irradiance volume will apply to all fragments within that bounding region. Bevy's irradiance volumes are based on Valve's [*ambient cubes*] as used in *Half-Life 2* ([Mitchell 2006], slide 27). These encode a single color of light from the six 3D cardinal directions and blend the sides together according to the surface normal. The primary reason for choosing ambient cubes is to match Blender, so that its Eevee renderer can be used for baking. However, they also have some advantages over the common second-order spherical harmonics approach: ambient cubes don't suffer from ringing artifacts, they are smaller (6 colors for ambient cubes as opposed to 9 for spherical harmonics), and evaluation is faster. A smaller basis allows for a denser grid of voxels with the same storage requirements. If you wish to use a tool other than `export-blender-gi` to produce the irradiance volumes, you'll need to pack the irradiance volumes in the following format. The irradiance volume of resolution *(Rx, Ry, Rz)* is expected to be a 3D texture of dimensions *(Rx, 2Ry, 3Rz)*. The unnormalized texture coordinate *(s, t, p)* of the voxel at coordinate *(x, y, z)* with side *S* ∈ *{-X, +X, -Y, +Y, -Z, +Z}* is as follows: ```text s = x t = y + ⎰ 0 if S ∈ {-X, -Y, -Z} ⎱ Ry if S ∈ {+X, +Y, +Z} ⎧ 0 if S ∈ {-X, +X} p = z + ⎨ Rz if S ∈ {-Y, +Y} ⎩ 2Rz if S ∈ {-Z, +Z} ``` Visually, in a left-handed coordinate system with Y up, viewed from the right, the 3D texture looks like a stacked series of voxel grids, one for each cube side, in this order: | **+X** | **+Y** | **+Z** | | ------ | ------ | ------ | | **-X** | **-Y** | **-Z** | A terminology note: Other engines may refer to irradiance volumes as *voxel global illumination*, *VXGI*, or simply as *light probes*. Sometimes *light probe* refers to what Bevy calls a reflection probe. In Bevy, *light probe* is a generic term that encompasses all cuboid bounding regions that capture indirect illumination, whether based on voxels or not. Note that, if binding arrays aren't supported (e.g. on WebGPU or WebGL 2), then only the closest irradiance volume to the view will be taken into account during rendering. [*ambient cubes*]: https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf [Mitchell 2006]: https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf [Blender]: http://blender.org/ [baking tool]: https://docs.blender.org/manual/en/latest/render/eevee/render_settings/indirect_lighting.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi ### Implementation notes This patch generalizes light probes so as to reuse as much code as possible between irradiance volumes and the existing reflection probes. This approach was chosen because both techniques share numerous similarities: 1. Both irradiance volumes and reflection probes are cuboid bounding regions. 2. Both are responsible for providing baked indirect light. 3. Both techniques involve presenting a variable number of textures to the shader from which indirect light is sampled. (In the current implementation, this uses binding arrays.) 4. Both irradiance volumes and reflection probes require gathering and sorting probes by distance on CPU. 5. Both techniques require the GPU to search through a list of bounding regions. 6. Both will eventually want to have falloff so that we can smoothly blend as objects enter and exit the probes' influence ranges. (This is not implemented yet to keep this patch relatively small and reviewable.) To do this, we generalize most of the methods in the reflection probes patch #11366 to be generic over a trait, `LightProbeComponent`. This trait is implemented by both `EnvironmentMapLight` (for reflection probes) and `IrradianceVolume` (for irradiance volumes). Using a trait will allow us to add more types of light probes in the future. In particular, I highly suspect we will want real-time reflection planes for mirrors in the future, which can be easily slotted into this framework. ## Changelog > This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section. ### Added * A new `IrradianceVolume` asset type is available for baked voxelized light probes. You can bake the global illumination using Blender or another tool of your choice and use it in Bevy to apply indirect illumination to dynamic objects. |
||
![]() |
cf15e6bba3
|
Implement Meshable for some 3D primitives (#11688)
# Objective Split up from #11007, fixing most of the remaining work for #10569. Implement `Meshable` for `Cuboid`, `Sphere`, `Cylinder`, `Capsule`, `Torus`, and `Plane3d`. This covers all shapes that Bevy has mesh structs for in `bevy_render::mesh::shapes`. `Cone` and `ConicalFrustum` are new shapes, so I can add them in a follow-up, or I could just add them here directly if that's preferrable. ## Solution Implement `Meshable` for `Cuboid`, `Sphere`, `Cylinder`, `Capsule`, `Torus`, and `Plane3d`. The logic is mostly just a copy of the the existing `bevy_render` shapes, but `Plane3d` has a configurable surface normal that affects the orientation. Some property names have also been changed to be more consistent. The default values differ from the old shapes to make them a bit more logical: - Spheres now have a radius of 0.5 instead of 1.0. The default capsule is equivalent to the default cylinder with the sphere's halves glued on. - The inner and outer radius of the torus are now 0.5 and 1.0 instead of 0.5 and 1.5 (i.e. the new minor and major radii are 0.25 and 0.75). It's double the width of the default cuboid, half of its height, and the default sphere matches the size of the hole. - `Cuboid` is 1x1x1 by default unlike the dreaded `Box` which is 2x1x1. Before, with "old" shapes:  Now, with primitive meshing:  I only changed the `3d_shapes` example to use primitives for now. I can change them all in this PR or a follow-up though, whichever way is preferrable. ### Sphere API Spheres have had separate `Icosphere` and `UVSphere` structs, but with primitives we only have one `Sphere`. We need to handle this with builders: ```rust // Existing structs let ico = Mesh::try_from(Icophere::default()).unwrap(); let uv = Mesh::from(UVSphere::default()); // Primitives let ico = Sphere::default().mesh().ico(5).unwrap(); let uv = Sphere::default().mesh().uv(32, 18); ``` We could add methods on `Sphere` directly to skip calling `.mesh()`. I also added a `SphereKind` enum that can be used with the `kind` method: ```rust let ico = Sphere::default() .mesh() .kind(SphereKind::Ico { subdivisions: 8 }) .build(); ``` The default mesh for a `Sphere` is an icosphere with 5 subdivisions (like the default `Icosphere`). --- ## Changelog - Implement `Meshable` and `Default` for `Cuboid`, `Sphere`, `Cylinder`, `Capsule`, `Torus`, and `Plane3d` - Use primitives in `3d_shapes` example --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
694c06f3d0
|
Inverse missing_docs logic (#11676)
# Objective Currently the `missing_docs` lint is allowed-by-default and enabled at crate level when their documentations is complete (see #3492). This PR proposes to inverse this logic by making `missing_docs` warn-by-default and mark crates with imcomplete docs allowed. ## Solution Makes `missing_docs` warn at workspace level and allowed at crate level when the docs is imcomplete. |
||
![]() |
041731b7e0
|
Drawing Primitives with Gizmos (#11072)
The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com> |
||
![]() |
d6f1649646
|
return Direction3d from Transform::up and friends (#11604)
# Objective Drawing a `Gizmos::circle` whose normal is derived from a Transform's local axes now requires converting a Vec3 to a Direction3d and unwrapping the result, and I think we shold move the conversion into Bevy. ## Solution We can make `Transform::{left,right,up,down,forward,back,local_x,local_y,local_z}` return a Direction3d, because they know that their results will be of finite non-zero length (roughly 1.0). --- ## Changelog `Transform::up()` and similar functions now return `Direction3d` instead of `Vec3`. ## Migration Guide Callers of `Transform::up()` and similar functions may have to dereference the returned `Direction3d` to get to the inner `Vec3`. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Joona Aalto <jondolf.dev@gmail.com> |
||
![]() |
6b40b6749e
|
RenderAssetPersistencePolicy → RenderAssetUsages (#11399)
# Objective Right now, all assets in the main world get extracted and prepared in the render world (if the asset's using the RenderAssetPlugin). This is unfortunate for two cases: 1. **TextureAtlas** / **FontAtlas**: This one's huge. The individual `Image` assets that make up the atlas are cloned and prepared individually when there's no reason for them to be. The atlas textures are built on the CPU in the main world. *There can be hundreds of images that get prepared for rendering only not to be used.* 2. If one loads an Image and needs to transform it in a system before rendering it, kind of like the [decompression example](https://github.com/bevyengine/bevy/blob/main/examples/asset/asset_decompression.rs#L120), there's a price paid for extracting & preparing the asset that's not intended to be rendered yet. ------ * References #10520 * References #1782 ## Solution This changes the `RenderAssetPersistencePolicy` enum to bitflags. I felt that the objective with the parameter is so similar in nature to wgpu's [`TextureUsages`](https://docs.rs/wgpu/latest/wgpu/struct.TextureUsages.html) and [`BufferUsages`](https://docs.rs/wgpu/latest/wgpu/struct.BufferUsages.html), that it may as well be just like that. ```rust // This asset only needs to be in the main world. Don't extract and prepare it. RenderAssetUsages::MAIN_WORLD // Keep this asset in the main world and RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD // This asset is only needed in the render world. Remove it from the asset server once extracted. RenderAssetUsages::RENDER_WORLD ``` ### Alternate Solution I considered introducing a third field to `RenderAssetPersistencePolicy` enum: ```rust enum RenderAssetPersistencePolicy { /// Keep the asset in the main world after extracting to the render world. Keep, /// Remove the asset from the main world after extracting to the render world. Unload, /// This doesn't need to be in the render world at all. NoExtract, // <----- } ``` Functional, but this seemed like shoehorning. Another option is renaming the enum to something like: ```rust enum RenderAssetExtractionPolicy { /// Extract the asset and keep it in the main world. Extract, /// Remove the asset from the main world after extracting to the render world. ExtractAndUnload, /// This doesn't need to be in the render world at all. NoExtract, } ``` I think this last one could be a good option if the bitflags are too clunky. ## Migration Guide * `RenderAssetPersistencePolicy::Keep` → `RenderAssetUsage::MAIN_WORLD | RenderAssetUsage::RENDER_WORLD` (or `RenderAssetUsage::default()`) * `RenderAssetPersistencePolicy::Unload` → `RenderAssetUsage::RENDER_WORLD` * For types implementing the `RenderAsset` trait, change `fn persistence_policy(&self) -> RenderAssetPersistencePolicy` to `fn asset_usage(&self) -> RenderAssetUsages`. * Change any references to `cpu_persistent_access` (`RenderAssetPersistencePolicy`) to `asset_usage` (`RenderAssetUsage`). This applies to `Image`, `Mesh`, and a few other types. |
||
![]() |
79a2e5eb63
|
simplify animated_material example (#11576)
# Objective - example `animated_material` is more complex that needed to show how to animate materials - it makes CI crash because it uses too much memory ## Solution - Simplify the example |
||
![]() |
bcae8e9a8b
|
Implement Arc3D for Gizmos (#11540)
# Objective - Implement an arc3d API for gizmos - Solves #11536 ## Solution ### `arc_3d` - The current `arc3d` method on gizmos only takes an angle - It draws an "standard arc" by default, this is an arc starting at `Vec3::X`, in the XZ plane, in counter clockwise direction with a normal that is facing up - The "standard arc" can be customized with the usual gizmo builder pattern. This way you'll be able to draw arbitrary arcs ### `short/long_arc_3d_between` - Given `center`, `from`, `to` draws an arc between `from` and `to` --- ## Changelog > This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section. - Added: `Gizmos::arc3d(&mut self, angle)` method - Added: `Gizmos::long_arc_3d_between(&mut self, center, from, to)` method - Added: `Gizmos::short_arc_3d_between(&mut self, center, from, to)` method --- This PR factors out an orthogonal part of another PR as mentioned in [this comment](https://github.com/bevyengine/bevy/pull/11072#issuecomment-1883859573) |
||
![]() |
7da144bc3d
|
Refactor tonemapping example's image viewer update into two systems (#11519)
# Objective Alternative to #11515. Fixes change detection being triggered on the "image viewer image material" every frame. ## Solution - Split the megasystem into two separate systems: one to handle drop events, and one to handle asset change events. - Move the event reader iteration "outside." so that we're only doing stuff when there are events. - Flatten some of the more extreme nesting - Other bits of cleanup, removing an unnecessary clone and unused variable. I think these systems can even run in parallel now, not that it particularly matters. |
||
![]() |
fb367dac72
|
Add Animated Material example (#11524)
# Objective - Fixes #11516 ## Solution - Add Animated Material example (colors are hue-cycling smoothly per-mesh)  Note: this example reproduces the perf issue found in #10610 pretty consistently, with and without the changes from that PR included. Frame time is sometimes around 4.3ms, other times around 12-14ms. Its pretty random per run. I think this clears #10610 for merge. |
||
![]() |
a796d53a05
|
Meshlet prep (#11442)
# Objective - Prep for https://github.com/bevyengine/bevy/pull/10164 - Make deferred_lighting_pass_id a ColorAttachment - Correctly extract shadow view frusta so that the view uniforms get populated - Make some needed things public - Misc formatting |
||
![]() |
ffb6faafc2
|
Use Direction3d for gizmos.circle normal (#11422)
# Objective Fix weird visuals when drawing a gizmo with a non-normed normal. Fixes #11401 ## Solution Just normalize right before we draw. Could do it when constructing the builder but that seems less consistent. ## Changelog - gizmos.circle normal is now a Direction3d instead of a Vec3. ## Migration Guide - Pass a Direction3d for gizmos.circle normal, eg. `Direction3d::new(vec).unwrap_or(default)` or potentially `Direction3d::new_unchecked(vec)` if you know your vec is definitely normalized. |
||
![]() |
c6f45831e9
|
Add geometric primitives to bevy_math::prelude (#11432)
# Objective Currently, the `primitives` module is inside of the prelude for `bevy_math`, but the actual primitives are not. This requires either importing the shapes everywhere that uses them, or adding the `primitives::` prefix: ```rust let rectangle = meshes.add(primitives::Rectangle::new(5.0, 2.5)); ``` (Note: meshing isn't actually implemented yet, but it's in #11431) The primitives are meant to be used for a variety of tasks across several crates, like for meshing, bounding volumes, gizmos, colliders, and so on, so I think having them in the prelude is justified. It would make several common tasks a lot more ergonomic. ```rust let rectangle = meshes.add(Rectangle::new(5.0, 2.5)); ``` ## Solution Add `primitives::*` to `bevy_math::prelude`. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
83d6600267
|
Implement minimal reflection probes (fixed macOS, iOS, and Android). (#11366)
This pull request re-submits #10057, which was backed out for breaking macOS, iOS, and Android. I've tested this version on macOS and Android and on the iOS simulator. # Objective This pull request implements *reflection probes*, which generalize environment maps to allow for multiple environment maps in the same scene, each of which has an axis-aligned bounding box. This is a standard feature of physically-based renderers and was inspired by [the corresponding feature in Blender's Eevee renderer]. ## Solution This is a minimal implementation of reflection probes that allows artists to define cuboid bounding regions associated with environment maps. For every view, on every frame, a system builds up a list of the nearest 4 reflection probes that are within the view's frustum and supplies that list to the shader. The PBR fragment shader searches through the list, finds the first containing reflection probe, and uses it for indirect lighting, falling back to the view's environment map if none is found. Both forward and deferred renderers are fully supported. A reflection probe is an entity with a pair of components, *LightProbe* and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to position it in the world). The *LightProbe* component (along with the *Transform*) defines the bounding region, while the *EnvironmentMapLight* component specifies the associated diffuse and specular cubemaps. A frequent question is "why two components instead of just one?" The advantages of this setup are: 1. It's readily extensible to other types of light probes, in particular *irradiance volumes* (also known as ambient cubes or voxel global illumination), which use the same approach of bounding cuboids. With a single component that applies to both reflection probes and irradiance volumes, we can share the logic that implements falloff and blending between multiple light probes between both of those features. 2. It reduces duplication between the existing *EnvironmentMapLight* and these new reflection probes. Systems can treat environment maps attached to cameras the same way they treat environment maps applied to reflection probes if they wish. Internally, we gather up all environment maps in the scene and place them in a cubemap array. At present, this means that all environment maps must have the same size, mipmap count, and texture format. A warning is emitted if this restriction is violated. We could potentially relax this in the future as part of the automatic mipmap generation work, which could easily do texture format conversion as part of its preprocessing. An easy way to generate reflection probe cubemaps is to bake them in Blender and use the `export-blender-gi` tool that's part of the [`bevy-baked-gi`] project. This tool takes a `.blend` file containing baked cubemaps as input and exports cubemap images, pre-filtered with an embedded fork of the [glTF IBL Sampler], alongside a corresponding `.scn.ron` file that the scene spawner can use to recreate the reflection probes. Note that this is intentionally a minimal implementation, to aid reviewability. Known issues are: * Reflection probes are basically unsupported on WebGL 2, because WebGL 2 has no cubemap arrays. (Strictly speaking, you can have precisely one reflection probe in the scene if you have no other cubemaps anywhere, but this isn't very useful.) * Reflection probes have no falloff, so reflections will abruptly change when objects move from one bounding region to another. * As mentioned before, all cubemaps in the world of a given type (diffuse or specular) must have the same size, format, and mipmap count. Future work includes: * Blending between multiple reflection probes. * A falloff/fade-out region so that reflected objects disappear gradually instead of vanishing all at once. * Irradiance volumes for voxel-based global illumination. This should reuse much of the reflection probe logic, as they're both GI techniques based on cuboid bounding regions. * Support for WebGL 2, by breaking batches when reflection probes are used. These issues notwithstanding, I think it's best to land this with roughly the current set of functionality, because this patch is useful as is and adding everything above would make the pull request significantly larger and harder to review. --- ## Changelog ### Added * A new *LightProbe* component is available that specifies a bounding region that an *EnvironmentMapLight* applies to. The combination of a *LightProbe* and an *EnvironmentMapLight* offers *reflection probe* functionality similar to that available in other engines. [the corresponding feature in Blender's Eevee renderer]: https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi [glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler |
||
![]() |
a00c71ee5b
|
Cleanup deterministic example (#11416)
# Objective - Example `deterministic` crashes on CI on Windows because it uses too much memory ## Solution - Reduce the number of planes displayed while still having the issue - While there, add a small margin to the text so that it's prettier |
||
![]() |
f6b40a6e43
|
Multiple Configurations for Gizmos (#10342)
# Objective This PR aims to implement multiple configs for gizmos as discussed in #9187. ## Solution Configs for the new `GizmoConfigGroup`s are stored in a `GizmoConfigStore` resource and can be accesses using a type based key or iterated over. This type based key doubles as a standardized location where plugin authors can put their own configuration not covered by the standard `GizmoConfig` struct. For example the `AabbGizmoGroup` has a default color and toggle to show all AABBs. New configs can be registered using `app.init_gizmo_group::<T>()` during startup. When requesting the `Gizmos<T>` system parameter the generic type determines which config is used. The config structs are available through the `Gizmos` system parameter allowing for easy access while drawing your gizmos. Internally, resources and systems used for rendering (up to an including the extract system) are generic over the type based key and inserted on registering a new config. ## Alternatives The configs could be stored as components on entities with markers which would make better use of the ECS. I also implemented this approach ([here](https://github.com/jeliag/bevy/tree/gizmo-multiconf-comp)) and believe that the ergonomic benefits of a central config store outweigh the decreased use of the ECS. ## Unsafe Code Implementing system parameter by hand is unsafe but seems to be required to access the config store once and not on every gizmo draw function call. This is critical for performance. ~Is there a better way to do this?~ ## Future Work New gizmos (such as #10038, and ideas from #9400) will require custom configuration structs. Should there be a new custom config for every gizmo type, or should we group them together in a common configuration? (for example `EditorGizmoConfig`, or something more fine-grained) ## Changelog - Added `GizmoConfigStore` resource and `GizmoConfigGroup` trait - Added `init_gizmo_group` to `App` - Added early returns to gizmo drawing increasing performance when gizmos are disabled - Changed `GizmoConfig` and aabb gizmos to use new `GizmoConfigStore` - Changed `Gizmos` system parameter to use type based key to retrieve config - Changed resources and systems used for gizmo rendering to be generic over type based key - Changed examples (3d_gizmos, 2d_gizmos) to showcase new API ## Migration Guide - `GizmoConfig` is no longer a resource and has to be accessed through `GizmoConfigStore` resource. The default config group is `DefaultGizmoGroup`, but consider using your own custom config group if applicable. --------- Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
![]() |
fcd7c0fc3d
|
Exposure settings (adopted) (#11347)
Rebased and finished version of https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie for adjusting all the examples, and the many other people who helped write this PR (@superdump , @coreh , among others) :) Fixes https://github.com/bevyengine/bevy/issues/8369 --- ## Changelog - Added a `brightness` control to `Skybox`. - Added an `intensity` control to `EnvironmentMapLight`. - Added `ExposureSettings` and `PhysicalCameraParameters` for controlling exposure of 3D cameras. - Removed the baked-in `DirectionalLight` exposure Bevy previously hardcoded internally. ## Migration Guide - If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness` and `intensity` controls to adjust their strength. - All 3D scene will now have different apparent brightnesses due to Bevy implementing proper exposure controls. You will have to adjust the intensity of your lights and/or your camera exposure via the new `ExposureSettings` component to compensate. --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com> Co-authored-by: Marco Buono <thecoreh@gmail.com> Co-authored-by: vero <email@atlasdostal.com> Co-authored-by: atlas dostal <rodol@rivalrebels.com> |
||
![]() |
eb9db21113
|
Camera-driven UI (#10559)
# Objective Add support for presenting each UI tree on a specific window and viewport, while making as few breaking changes as possible. This PR is meant to resolve the following issues at once, since they're all related. - Fixes #5622 - Fixes #5570 - Fixes #5621 Adopted #5892 , but started over since the current codebase diverged significantly from the original PR branch. Also, I made a decision to propagate component to children instead of recursively iterating over nodes in search for the root. ## Solution Add a new optional component that can be inserted to UI root nodes and propagate to children to specify which camera it should render onto. This is then used to get the render target and the viewport for that UI tree. Since this component is optional, the default behavior should be to render onto the single camera (if only one exist) and warn of ambiguity if multiple cameras exist. This reduces the complexity for users with just one camera, while giving control in contexts where it matters. ## Changelog - Adds `TargetCamera(Entity)` component to specify which camera should a node tree be rendered into. If only one camera exists, this component is optional. - Adds an example of rendering UI to a texture and using it as a material in a 3D world. - Fixes recalculation of physical viewport size when target scale factor changes. This can happen when the window is moved between displays with different DPI. - Changes examples to demonstrate assigning UI to different viewports and windows and make interactions in an offset viewport testable. - Removes `UiCameraConfig`. UI visibility now can be controlled via combination of explicit `TargetCamera` and `Visibility` on the root nodes. --------- Co-authored-by: davier <bricedavier@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
![]() |
ec5b9eeba7
|
Extract examples CameraController into a module (#11338)
# Objective Unify flycam-style camera controller from the examples. `parallax_mapping` controller was kept as is. ## Solution Fixed some mouse movement & cursor grabbing related issues too. |
||
![]() |
3d996639a0
|
Revert "Implement minimal reflection probes. (#10057)" (#11307)
# Objective - Fix working on macOS, iOS, Android on main - Fixes #11281 - Fixes #11282 - Fixes #11283 - Fixes #11299 ## Solution - Revert #10057 |
||
![]() |
ce5bae55f6
|
Fixed typo in generate_custom_mesh.rs example (#11293)
# Objective - Fix a typo in the "Generate Custom Mesh" example ## Solution - Fixed small typo |
||
![]() |
06bf928927
|
Option to enable deterministic rendering (#11248)
# Objective Issue #10243: rendering multiple triangles in the same place results in flickering. ## Solution Considered these alternatives: - `depth_bias` may not work, because of high number of entities, so creating a material per entity is practically not possible - rendering at slightly different positions does not work, because when camera is far, float rounding causes the same issues (edit: assuming we have to use the same `depth_bias`) - considered implementing deterministic operation like `query.par_iter().flat_map(...).collect()` to be used in `check_visibility` system (which would solve the issue since query is deterministic), and could not figure out how to make it as cheap as current approach with thread-local collectors (#11249) So adding an option to sort entities after `check_visibility` system run. Should not be too bad, because after visibility check, only a handful entities remain. This is probably not the only source of non-determinism in Bevy, but this is one I could find so far. At least it fixes the repro example. ## Changelog - `DeterministicRenderingConfig` option to enable deterministic rendering ## Test <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/28969/c735bce1-3a71-44cd-8677-c19f6c0ee6bd"> --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
9c972f037e
|
Fix missed explicit conversions in examples (#11261)
# Objective A few of these were missed in #10878 ## Solution Fix em |
||
![]() |
ec14e946b8
|
Update glam , encase and hexasphere (#11082)
Update to `glam` 0.25, `encase` 0.7 and `hexasphere` to 10.0 ## Changelog Added the `FloatExt` trait to the `bevy_math` prelude which adds `lerp`, `inverse_lerp` and `remap` methods to the `f32` and `f64` types. |
||
![]() |
a795de30b4
|
Use impl Into<A> for Assets::add (#10878)
# Motivation When spawning entities into a scene, it is very common to create assets like meshes and materials and to add them via asset handles. A common setup might look like this: ```rust fn setup( mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>, mut materials: ResMut<Assets<StandardMaterial>>, ) { commands.spawn(PbrBundle { mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ..default() }); } ``` Let's take a closer look at the part that adds the assets using `add`. ```rust mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ``` Here, "mesh" and "material" are both repeated three times. It's very explicit, but I find it to be a bit verbose. In addition to being more code to read and write, the extra characters can sometimes also lead to the code being formatted to span multiple lines even though the core task, adding e.g. a primitive mesh, is extremely simple. A way to address this is by using `.into()`: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }.into()), material: materials.add(Color::RED.into()), ``` This is fine, but from the names and the type of `meshes`, we already know what the type should be. It's very clear that `Cube` should be turned into a `Mesh` because of the context it's used in. `.into()` is just seven characters, but it's so common that it quickly adds up and gets annoying. It would be nice if you could skip all of the conversion and let Bevy handle it for you: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ``` # Objective Make adding assets more ergonomic by making `Assets::add` take an `impl Into<A>` instead of `A`. ## Solution `Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this works: ```rust commands.spawn(PbrBundle { mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ..default() }); ``` I also changed all examples to use this API, which increases consistency as well because `Mesh::from` and `into` were being used arbitrarily even in the same file. This also gets rid of some lines of code because formatting is nicer. --- ## Changelog - `Assets::add` now takes an `impl Into<A>` instead of `A` - Examples don't use `T::from(K)` or `K.into()` when adding assets ## Migration Guide Some `into` calls that worked previously might now be broken because of the new trait bounds. You need to either remove `into` or perform the conversion explicitly with `from`: ```rust // Doesn't compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()), // These compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }), let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })), ``` ## Concerns I believe the primary concerns might be: 1. Is this too implicit? 2. Does this increase codegen bloat? Previously, the two APIs were using `into` or `from`, and now it's "nothing" or `from`. You could argue that `into` is slightly more explicit than "nothing" in cases like the earlier examples where a `Color` gets converted to e.g. a `StandardMaterial`, but I personally don't think `into` adds much value even in this case, and you could still see the actual type from the asset type. As for codegen bloat, I doubt it adds that much, but I'm not very familiar with the details of codegen. I personally value the user-facing code reduction and ergonomics improvements that these changes would provide, but it might be worth checking the other effects in more detail. Another slight concern is migration pain; apps might have a ton of `into` calls that would need to be removed, and it did take me a while to do so for Bevy itself (maybe around 20-40 minutes). However, I think the fact that there *are* so many `into` calls just highlights that the API could be made nicer, and I'd gladly migrate my own projects for it. |
||
![]() |
54a943d232
|
Implement minimal reflection probes. (#10057)
# Objective This pull request implements *reflection probes*, which generalize environment maps to allow for multiple environment maps in the same scene, each of which has an axis-aligned bounding box. This is a standard feature of physically-based renderers and was inspired by [the corresponding feature in Blender's Eevee renderer]. ## Solution This is a minimal implementation of reflection probes that allows artists to define cuboid bounding regions associated with environment maps. For every view, on every frame, a system builds up a list of the nearest 4 reflection probes that are within the view's frustum and supplies that list to the shader. The PBR fragment shader searches through the list, finds the first containing reflection probe, and uses it for indirect lighting, falling back to the view's environment map if none is found. Both forward and deferred renderers are fully supported. A reflection probe is an entity with a pair of components, *LightProbe* and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to position it in the world). The *LightProbe* component (along with the *Transform*) defines the bounding region, while the *EnvironmentMapLight* component specifies the associated diffuse and specular cubemaps. A frequent question is "why two components instead of just one?" The advantages of this setup are: 1. It's readily extensible to other types of light probes, in particular *irradiance volumes* (also known as ambient cubes or voxel global illumination), which use the same approach of bounding cuboids. With a single component that applies to both reflection probes and irradiance volumes, we can share the logic that implements falloff and blending between multiple light probes between both of those features. 2. It reduces duplication between the existing *EnvironmentMapLight* and these new reflection probes. Systems can treat environment maps attached to cameras the same way they treat environment maps applied to reflection probes if they wish. Internally, we gather up all environment maps in the scene and place them in a cubemap array. At present, this means that all environment maps must have the same size, mipmap count, and texture format. A warning is emitted if this restriction is violated. We could potentially relax this in the future as part of the automatic mipmap generation work, which could easily do texture format conversion as part of its preprocessing. An easy way to generate reflection probe cubemaps is to bake them in Blender and use the `export-blender-gi` tool that's part of the [`bevy-baked-gi`] project. This tool takes a `.blend` file containing baked cubemaps as input and exports cubemap images, pre-filtered with an embedded fork of the [glTF IBL Sampler], alongside a corresponding `.scn.ron` file that the scene spawner can use to recreate the reflection probes. Note that this is intentionally a minimal implementation, to aid reviewability. Known issues are: * Reflection probes are basically unsupported on WebGL 2, because WebGL 2 has no cubemap arrays. (Strictly speaking, you can have precisely one reflection probe in the scene if you have no other cubemaps anywhere, but this isn't very useful.) * Reflection probes have no falloff, so reflections will abruptly change when objects move from one bounding region to another. * As mentioned before, all cubemaps in the world of a given type (diffuse or specular) must have the same size, format, and mipmap count. Future work includes: * Blending between multiple reflection probes. * A falloff/fade-out region so that reflected objects disappear gradually instead of vanishing all at once. * Irradiance volumes for voxel-based global illumination. This should reuse much of the reflection probe logic, as they're both GI techniques based on cuboid bounding regions. * Support for WebGL 2, by breaking batches when reflection probes are used. These issues notwithstanding, I think it's best to land this with roughly the current set of functionality, because this patch is useful as is and adding everything above would make the pull request significantly larger and harder to review. --- ## Changelog ### Added * A new *LightProbe* component is available that specifies a bounding region that an *EnvironmentMapLight* applies to. The combination of a *LightProbe* and an *EnvironmentMapLight* offers *reflection probe* functionality similar to that available in other engines. [the corresponding feature in Blender's Eevee renderer]: https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi [glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler |
||
![]() |
99c43fabdf
|
Usability methods for RenderTargets and image handles (#10736)
# Objective In my code I use a lot of images as render targets. I'd like some convenience methods for working with this type. ## Solution - Allow `.into()` to construct a `RenderTarget` - Add `.as_image()` --- ## Changelog ### Added - `RenderTarget` can be constructed via `.into()` on a `Handle<Image>` - `RenderTarget` new method: `as_image` --------- Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com> Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com> |
||
![]() |
44424391fe
|
Unload render assets from RAM (#10520)
# Objective - No point in keeping Meshes/Images in RAM once they're going to be sent to the GPU, and kept in VRAM. This saves a _significant_ amount of memory (several GBs) on scenes like bistro. - References - https://github.com/bevyengine/bevy/pull/1782 - https://github.com/bevyengine/bevy/pull/8624 ## Solution - Augment RenderAsset with the capability to unload the underlying asset after extracting to the render world. - Mesh/Image now have a cpu_persistent_access field. If this field is RenderAssetPersistencePolicy::Unload, the asset will be unloaded from Assets<T>. - A new AssetEvent is sent upon dropping the last strong handle for the asset, which signals to the RenderAsset to remove the GPU version of the asset. --- ## Changelog - Added `AssetEvent::NoLongerUsed` and `AssetEvent::is_no_longer_used()`. This event is sent when the last strong handle of an asset is dropped. - Rewrote the API for `RenderAsset` to allow for unloading the asset data from the CPU. - Added `RenderAssetPersistencePolicy`. - Added `Mesh::cpu_persistent_access` for memory savings when the asset is not needed except for on the GPU. - Added `Image::cpu_persistent_access` for memory savings when the asset is not needed except for on the GPU. - Added `ImageLoaderSettings::cpu_persistent_access`. - Added `ExrTextureLoaderSettings`. - Added `HdrTextureLoaderSettings`. ## Migration Guide - Asset loaders (GLTF, etc) now load meshes and textures without `cpu_persistent_access`. These assets will be removed from `Assets<Mesh>` and `Assets<Image>` once `RenderAssets<Mesh>` and `RenderAssets<Image>` contain the GPU versions of these assets, in order to reduce memory usage. If you require access to the asset data from the CPU in future frames after the GLTF asset has been loaded, modify all dependent `Mesh` and `Image` assets and set `cpu_persistent_access` to `RenderAssetPersistencePolicy::Keep`. - `Mesh` now requires a new `cpu_persistent_access` field. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the previous behavior. - `Image` now requires a new `cpu_persistent_access` field. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the previous behavior. - `MorphTargetImage::new()` now requires a new `cpu_persistent_access` parameter. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the previous behavior. - `DynamicTextureAtlasBuilder::add_texture()` now requires that the `TextureAtlas` you pass has an `Image` with `cpu_persistent_access: RenderAssetPersistencePolicy::Keep`. Ensure you construct the image properly for the texture atlas. - The `RenderAsset` trait has significantly changed, and requires adapting your existing implementations. - The trait now requires `Clone`. - The `ExtractedAsset` associated type has been removed (the type itself is now extracted). - The signature of `prepare_asset()` is slightly different - A new `persistence_policy()` method is now required (return RenderAssetPersistencePolicy::Unload to match the previous behavior). - Match on the new `NoLongerUsed` variant for exhaustive matches of `AssetEvent`. |
||
![]() |
dd14f3a477
|
Implement lightmaps. (#10231)
 # Objective Lightmaps, textures that store baked global illumination, have been a mainstay of real-time graphics for decades. Bevy currently has no support for them, so this pull request implements them. ## Solution The new `Lightmap` component can be attached to any entity that contains a `Handle<Mesh>` and a `StandardMaterial`. When present, it will be applied in the PBR shader. Because multiple lightmaps are frequently packed into atlases, each lightmap may have its own UV boundaries within its texture. An `exposure` field is also provided, to control the brightness of the lightmap. Note that this PR doesn't provide any way to bake the lightmaps. That can be done with [The Lightmapper] or another solution, such as Unity's Bakery. --- ## Changelog ### Added * A new component, `Lightmap`, is available, for baked global illumination. If your mesh has a second UV channel (UV1), and you attach this component to the entity with that mesh, Bevy will apply the texture referenced in the lightmap. [The Lightmapper]: https://github.com/Naxela/The_Lightmapper --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
0f71dcbf1a
|
Simplify examples/3d/orthographic (#11045)
Current example may mislead into thinking both parameters are mandatory to make orthographic projection work. |
||
![]() |
70b0eacc3b
|
Keep track of when a texture is first cleared (#10325)
# Objective - Custom render passes, or future passes in the engine (such as https://github.com/bevyengine/bevy/pull/10164) need a better way to know and indicate to the core passes whether the view color/depth/prepass attachments have been cleared or not yet this frame, to know if they should clear it themselves or load it. ## Solution - For all render targets (depth textures, shadow textures, prepass textures, main textures) use an atomic bool to track whether or not each texture has been cleared this frame. Abstracted away in the new ColorAttachment and DepthAttachment wrappers. --- ## Changelog - Changed `ViewTarget::get_color_attachment()`, removed arguments. - Changed `ViewTarget::get_unsampled_color_attachment()`, removed arguments. - Removed `Camera3d::clear_color`. - Removed `Camera2d::clear_color`. - Added `Camera::clear_color`. - Added `ExtractedCamera::clear_color`. - Added `ColorAttachment` and `DepthAttachment` wrappers. - Moved `ClearColor` and `ClearColorConfig` from `bevy::core_pipeline::clear_color` to `bevy::render::camera`. - Core render passes now track when a texture is first bound as an attachment in order to decide whether to clear or load it. ## Migration Guide - Remove arguments to `ViewTarget::get_color_attachment()` and `ViewTarget::get_unsampled_color_attachment()`. - Configure clear color on `Camera` instead of on `Camera3d` and `Camera2d`. - Moved `ClearColor` and `ClearColorConfig` from `bevy::core_pipeline::clear_color` to `bevy::render::camera`. - `ViewDepthTexture` must now be created via the `new()` method --------- Co-authored-by: vero <email@atlasdostal.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
786abbf3f5
|
Fix ci xvfb (#11143)
# Objective Fix ci hang, so we can merge pr's again. ## Solution - switch ppa action to use mesa stable versions https://launchpad.net/~kisak/+archive/ubuntu/turtle - use commit from #11123 --------- Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com> |
||
![]() |
ced216f59a
|
Update winit dependency to 0.29 (#10702)
# Objective - Update winit dependency to 0.29 ## Changelog ### KeyCode changes - Removed `ScanCode`, as it was [replaced by KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292). - `ReceivedCharacter.char` is now a `SmolStr`, [relevant doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text). - Changed most `KeyCode` values, and added more. KeyCode has changed meaning. With this PR, it refers to physical position on keyboard rather than the printed letter on keyboard keys. In practice this means: - On QWERTY keyboard layouts, nothing changes - On any other keyboard layout, `KeyCode` no longer reflects the label on key. - This is "good". In bevy 0.12, when you used WASD for movement, users with non-QWERTY keyboards couldn't play your game! This was especially bad for non-latin keyboards. Now, WASD represents the physical keys. A French player will press the ZQSD keys, which are near each other, Kyrgyz players will use "Цфыв". - This is "bad" as well. You can't know in advance what the label of the key for input is. Your UI says "press WASD to move", even if in reality, they should be pressing "ZQSD" or "Цфыв". You also no longer can use `KeyCode` for text inputs. In any case, it was a pretty bad API for text input. You should use `ReceivedCharacter` now instead. ### Other changes - Use `web-time` rather than `instant` crate. (https://github.com/rust-windowing/winit/pull/2836) - winit did split `run_return` in `run_onDemand` and `pump_events`, I did the same change in bevy_winit and used `pump_events`. - Removed `return_from_run` from `WinitSettings` as `winit::run` now returns on supported platforms. - I left the example "return_after_run" as I think it's still useful. - This winit change is done partly to allow to create a new window after quitting all windows: https://github.com/emilk/egui/issues/1918 ; this PR doesn't address. - added `width` and `height` properties in the `canvas` from wasm example (https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168) ## Known regressions (important follow ups?) - Provide an API for reacting when a specific key from current layout was released. - possible solutions: use winit::Key from winit::KeyEvent ; mapping between KeyCode and Key ; or . - We don't receive characters through alt+numpad (e.g. alt + 151 = "ù") anymore ; reproduced on winit example "ime". maybe related to https://github.com/rust-windowing/winit/issues/2945 - (windows) Window content doesn't refresh at all when resizing. By reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect we should just fire a `window.request_redraw();` from `AboutToWait`, and handle actual redrawing within `RedrawRequested`. I'm not sure how to move all that code so I'd appreciate it to be a follow up. - (windows) unreleased winit fix for using set_control_flow in AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm not sure what the implications are, but that feels bad 🤔 ## Follow up I'd like to avoid bloating this PR, here are a few follow up tasks worthy of a separate PR, or new issue to track them once this PR is closed, as they would either complicate reviews, or at risk of being controversial: - remove CanvasParentResizePlugin (https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856) - avoid mentionning explicitly winit in docs from bevy_window ? - NamedKey integration on bevy_input: https://github.com/rust-windowing/winit/pull/3143 introduced a new NamedKey variant. I implemented it only on the converters but we'd benefit making the same changes to bevy_input. - Add more info in KeyboardInput https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313 - https://github.com/bevyengine/bevy/pull/9905 added a workaround on a bug allegedly fixed by winit 0.29. We should check if it's still necessary. - update to raw_window_handle 0.6 - blocked by wgpu - Rename `KeyCode` to `PhysicalKeyCode` https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015 - remove `instant` dependency, [replaced by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd need to update to : - fastrand >= 2.0 - [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7 - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0 - Verify license, see [discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800) - we might be missing a short notice or description of changes made - Consider using https://github.com/rust-windowing/cursor-icon directly rather than vendoring it in bevy. - investigate [this unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986) (`winit_window.canvas().unwrap();`) - Use more good things about winit's update - https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428 ## Migration Guide This PR should have one. |
||
![]() |
67d92e9b85
|
light renderlayers (#10742)
# Objective add `RenderLayers` awareness to lights. lights default to `RenderLayers::layer(0)`, and must intersect the camera entity's `RenderLayers` in order to affect the camera's output. note that lights already use renderlayers to filter meshes for shadow casting. this adds filtering lights per view based on intersection of camera layers and light layers. fixes #3462 ## Solution PointLights and SpotLights are assigned to individual views in `assign_lights_to_clusters`, so we simply cull the lights which don't match the view layers in that function. DirectionalLights are global, so we - add the light layers to the `DirectionalLight` struct - add the view layers to the `ViewUniform` struct - check for intersection before processing the light in `apply_pbr_lighting` potential issue: when mesh/light layers are smaller than the view layers weird results can occur. e.g: camera = layers 1+2 light = layers 1 mesh = layers 2 the mesh does not cast shadows wrt the light as (1 & 2) == 0. the light affects the view as (1+2 & 1) != 0. the view renders the mesh as (1+2 & 2) != 0. so the mesh is rendered and lit, but does not cast a shadow. this could be fixed (so that the light would not affect the mesh in that view) by adding the light layers to the point and spot light structs, but i think the setup is pretty unusual, and space is at a premium in those structs (adding 4 bytes more would reduce the webgl point+spot light max count to 240 from 256). I think typical usage is for cameras to have a single layer, and meshes/lights to maybe have multiple layers to render to e.g. minimaps as well as primary views. if there is a good use case for the above setup and we should support it, please let me know. --- ## Migration Guide Lights no longer affect all `RenderLayers` by default, now like cameras and meshes they default to `RenderLayers::layer(0)`. To recover the previous behaviour and have all lights affect all views, add a `RenderLayers::all()` component to the light entity. |
||
![]() |
1f97717a3d
|
Rename Input to ButtonInput (#10859)
# Objective - Resolves #10853 ## Solution - ~~Changed the name of `Input` struct to `PressableInput`.~~ - Changed the name of `Input` struct to `ButtonInput`. ## Migration Guide - Breaking Change: Users need to rename `Input` to `ButtonInput` in their projects. |
||
![]() |
d9aac887b5
|
Split Ray into Ray2d and Ray3d and simplify plane construction (#10856)
# Objective A better alternative version of #10843. Currently, Bevy has a single `Ray` struct for 3D. To allow better interoperability with Bevy's primitive shapes (#10572) and some third party crates (that handle e.g. spatial queries), it would be very useful to have separate versions for 2D and 3D respectively. ## Solution Separate `Ray` into `Ray2d` and `Ray3d`. These new structs also take advantage of the new primitives by using `Direction2d`/`Direction3d` for the direction: ```rust pub struct Ray2d { pub origin: Vec2, pub direction: Direction2d, } pub struct Ray3d { pub origin: Vec3, pub direction: Direction3d, } ``` and by using `Plane2d`/`Plane3d` in `intersect_plane`: ```rust impl Ray2d { // ... pub fn intersect_plane(&self, plane_origin: Vec2, plane: Plane2d) -> Option<f32> { // ... } } ``` --- ## Changelog ### Added - `Ray2d` and `Ray3d` - `Ray2d::new` and `Ray3d::new` constructors - `Plane2d::new` and `Plane3d::new` constructors ### Removed - Removed `Ray` in favor of `Ray3d` ### Changed - `direction` is now a `Direction2d`/`Direction3d` instead of a vector, which provides guaranteed normalization - `intersect_plane` now takes a `Plane2d`/`Plane3d` instead of just a vector for the plane normal - `Direction2d` and `Direction3d` now derive `Serialize` and `Deserialize` to preserve ray (de)serialization ## Migration Guide `Ray` has been renamed to `Ray3d`. ### Ray creation Before: ```rust Ray { origin: Vec3::ZERO, direction: Vec3::new(0.5, 0.6, 0.2).normalize(), } ``` After: ```rust // Option 1: Ray3d { origin: Vec3::ZERO, direction: Direction3d::new(Vec3::new(0.5, 0.6, 0.2)).unwrap(), } // Option 2: Ray3d::new(Vec3::ZERO, Vec3::new(0.5, 0.6, 0.2)) ``` ### Plane intersections Before: ```rust let result = ray.intersect_plane(Vec2::X, Vec2::Y); ``` After: ```rust let result = ray.intersect_plane(Vec2::X, Plane2d::new(Vec2::Y)); ``` |
||
![]() |
f90248b052
|
Remove unnecessary ResMut in examples (#10879)
# Objective - Examples containing `ResMut`s that are never mutated can be confusing for readers. ## Solution - Changes them to `Res`. |
||
![]() |
166686e0f2
|
Rename TextAlignment to JustifyText . (#10854)
# Objective The name `TextAlignment` is really deceptive and almost every new user gets confused about the differences between aligning text with `TextAlignment`, aligning text with `Style` and aligning text with anchor (when using `Text2d`). ## Solution * Rename `TextAlignment` to `JustifyText`. The associated helper methods are also renamed. * Improve the doc comments for text explaining explicitly how the `JustifyText` component affects the arrangement of text. * Add some extra cases to the `text_debug` example that demonstate the differences between alignment using `JustifyText` and alignment using `Style`. <img width="757" alt="text_debug_2" src="https://github.com/bevyengine/bevy/assets/27962798/9d53e647-93f9-4bc7-8a20-0d9f783304d2"> --- ## Changelog * `TextAlignment` has been renamed to `JustifyText` * `TextBundle::with_text_alignment` has been renamed to `TextBundle::with_text_justify` * `Text::with_alignment` has been renamed to `Text::with_justify` * The `text_alignment` field of `TextMeasureInfo` has been renamed to `justification` ## Migration Guide * `TextAlignment` has been renamed to `JustifyText` * `TextBundle::with_text_alignment` has been renamed to `TextBundle::with_text_justify` * `Text::with_alignment` has been renamed to `Text::with_justify` * The `text_alignment` field of `TextMeasureInfo` has been renamed to `justification` |
||
![]() |
73bb310304
|
impl From<Color> for ClearColorConfig (#10734)
# Objective I tried setting `ClearColorConfig` in my app via `Color::FOO.into()` expecting it to work, but the impl was missing. ## Solution - Add `impl From<Color> for ClearColorConfig` - Change examples to use this impl ## Changelog ### Added - `ClearColorConfig` can be constructed via `.into()` on a `Color` --------- Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com> Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com> |
||
![]() |
951c9bb1a2
|
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere (#10011)
# Objective - Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796 ## Solution - Use the new [lints] table that will land in 1.74 (https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints) - inherit lint to the workspace, crates and examples. ``` [lints] workspace = true ``` ## Changelog - Bump rust version to 1.74 - Enable lints table for the workspace ```toml [workspace.lints.clippy] type_complexity = "allow" ``` - Allow type complexity for all crates and examples ```toml [lints] workspace = true ``` --------- Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com> |
||
![]() |
ab300d0ed9
|
Gizmo Arrows (#10550)
## Objective - Add an arrow gizmo as suggested by #9400 ## Solution (excuse my Protomen music) https://github.com/bevyengine/bevy/assets/14184826/192adf24-079f-4a4b-a17b-091e892974ec Wasn't horribly hard when i remembered i can change coordinate systems whenever I want. Gave them four tips (as suggested by @alice-i-cecile in discord) instead of trying to decide what direction the tips should point. Made the tip length default to 1/10 of the arrow's length, which looked good enough to me. Hard-coded the angle from the body to the tips to 45 degrees. ## Still TODO - [x] actual doc comments - [x] doctests - [x] `ArrowBuilder.with_tip_length()` --- ## Changelog - Added `gizmos.arrow()` and `gizmos.arrow_2d()` - Added arrows to `2d_gizmos` and `3d_gizmos` examples ## Migration Guide N/A --------- Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
![]() |
1d8d78ef0e
|
Update color and naming for consistency (#10367)
The `ClearColor` PR was merged before I was quite finished. This fixes a few errors, and addresses Cart's feedback about the pixel perfect example by updating the sprite colors to match the existing bevy bird branding colors.  |
||
![]() |
1918608b02
|
Update default ClearColor to better match Bevy's branding (#10339)
# Objective - Changes the default clear color to match the code block color on Bevy's website. ## Solution - Changed the clear color, updated text in examples to ensure adequate contrast. Inconsistent usage of white text color set to use the default color instead, which is already white. - Additionally, updated the `3d_scene` example to make it look a bit better, and use bevy's branding colors.  |
||
![]() |
44928e0df4
|
StandardMaterial Light Transmission (#8015)
# Objective
<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">
This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:
- Glass; (Including frosted glass)
- Transparent and translucent plastics;
- Various liquids and gels;
- Gemstones;
- Marble;
- Wax;
- Paper;
- Leaves;
- Porcelain.
Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.
## Solution
- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.
## To Do
- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
|
||
![]() |
5d44d2a648
|
make deferred_rendering simpler to render for CI (#10150)
# Objective - Example `deferred_rendering` sometimes fail to render in CI - Make it easier to render ## Solution - Reduce the complexity of the sphere used |
||
![]() |
134750d18e
|
Image Sampler Improvements (#10254)
# Objective - Build on the changes in https://github.com/bevyengine/bevy/pull/9982 - Use `ImageSamplerDescriptor` as the "public image sampler descriptor" interface in all places (for consistency) - Make it possible to configure textures to use the "default" sampler (as configured in the `DefaultImageSampler` resource) - Fix a bug introduced in #9982 that prevents configured samplers from being used in Basis, KTX2, and DDS textures --- ## Migration Guide - When using the `Image` API, use `ImageSamplerDescriptor` instead of `wgpu::SamplerDescriptor` - If writing custom wgpu renderer features that work with `Image`, call `&image_sampler.as_wgpu()` to convert to a wgpu descriptor. |
||
![]() |
6c74c8a311
|
fix deferred example fog values (#10249)
# Objective - Fixes https://github.com/bevyengine/bevy/issues/10248 ## Solution - Update fog color values matching the update to the values for [atmospheric_fog.rs](https://github.com/bevyengine/bevy/pull/10226/files#diff-d43c34c9cf52e7ee72b56f8c4fc99ed86e9a1ec2f83642b839c4e75e1dd24f87) in https://github.com/bevyengine/bevy/pull/10226 After this update:  |
||
![]() |
afe8b5f20d
|
Replace all usages of texture_descritor.size.* with the helper methods (#10227)
# Objective A follow-up PR for https://github.com/bevyengine/bevy/pull/10221 ## Changelog Replaced usages of texture_descriptor.size with the helper methods of `Image` through the entire engine codebase |
||
![]() |
51c70bc98c
|
Fix fog color being inaccurate (#10226)
# Objective Fog color was passed to shaders without conversion from sRGB to linear color space. Because shaders expect colors in linear space this resulted in wrong color being used. This is most noticeable in open scenes with dark fog color and clear color set to the same color. In such case background/clear color (which is properly processed) is going to be darker than very far objects. Example:  [bevy-fog-color-bug.zip](https://github.com/bevyengine/bevy/files/13063718/bevy-fog-color-bug.zip) ## Solution Add missing conversion of fog color to linear color space. --- ## Changelog * Fixed conversion of fog color ## Migration Guide - Colors in `FogSettings` struct (`color` and `directional_light_color`) are now sent to the GPU in linear space. If you were using `Color::rgb()`/`Color::rgba()` and would like to retain the previous colors, you can quickly fix it by switching to `Color::rgb_linear()`/`Color::rgba_linear()`. |
||
![]() |
8efcbf3e4f
|
Add convenient methods for Image (#10221)
# Objective To get the width or height of an image you do: ```rust self.texture_descriptor.size.{width, height} ``` that is quite verbose. This PR adds some convenient methods for Image to reduce verbosity. ## Changelog * Add a `width()` method for getting the width of an image. * Add a `height()` method for getting the height of an image. * Rename the `size()` method to `size_f32()`. * Add a `size()` method for getting the size of an image as u32. * Renamed the `aspect_2d()` method to `aspect_ratio()`. ## Migration Guide Replace calls to the `Image::size()` method with `size_f32()`. Replace calls to the `Image::aspect_2d()` method with `aspect_ratio()`. |
||
![]() |
15c54b5542
|
shadow_biases: Support moving the light position and resetting biases (#10185)
# Objective - Make it possible to move the light position around in the `shadow_biases` example - Also support resetting the depth/normal biases to the engine defaults, or zero. ## Solution - The light position is displayed in the text overlay. - The light position can be adjusted with left/right/up/down/pgup/pgdown. - The depth/normal biases can be reset to defaults by pressing R, or to zero by pressing Z. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> |
||
![]() |
219e2ac6e1
|
shadow_biases: Support different PCF methods (#10184)
# Objective - Demonstrate the different shadow PCF methods in the `shadow_biases` example ## Solution - Cycle through the available methods when pressing the `F` key - Display which filter method is being used |
||
![]() |
068e42a01f
|
Configurable colors for wireframe (#5303)
# Objective - Make the wireframe colors configurable at the global level and the single mesh level - Based on https://github.com/bevyengine/bevy/pull/5314 This video shows what happens when playing with various settings from the example https://github.com/bevyengine/bevy/assets/8348954/1ee9aee0-fab7-4da8-bc5d-8d0562bb34e6 ## Solution - Add a `color` field to the `WireframeMaterial` - Use a `WireframeColor` component to configure the color per entity - Add a `default_color` field to `WireframeConfig` for global wireframes or wireframes with no specified color. ## Notes - Most of the docs and the general idea for `WireframeColor` came from [UberLambda](https://github.com/UberLambda) in #3677 but the code ended up completely different so I created a separate branch. ~~I'm not sure how to correctly credit them on this PR.~~ (I re-created the commit but I added them as co-author in the commit message) ~~Closes https://github.com/bevyengine/bevy/pull/3677~~ ~~Closes https://github.com/bevyengine/bevy/pull/5301~~ ~~https://github.com/bevyengine/bevy/pull/5314 should be merged before this PR.~~ |
||
![]() |
a15d152635
|
Deferred Renderer (#9258)
# Objective - Add a [Deferred Renderer](https://en.wikipedia.org/wiki/Deferred_shading) to Bevy. - This allows subsequent passes to access per pixel material information before/during shading. - Accessing this per pixel material information is needed for some features, like GI. It also makes other features (ex. Decals) simpler to implement and/or improves their capability. There are multiple approaches to accomplishing this. The deferred shading approach works well given the limitations of WebGPU and WebGL2. Motivation: [I'm working on a GI solution for Bevy](https://youtu.be/eH1AkL-mwhI) # Solution - The deferred renderer is implemented with a prepass and a deferred lighting pass. - The prepass renders opaque objects into the Gbuffer attachment (`Rgba32Uint`). The PBR shader generates a `PbrInput` in mostly the same way as the forward implementation and then [packs it into the Gbuffer]( |
||
![]() |
e05a9f9315
|
use Material for wireframes (#5314)
# Objective - Use the `Material` abstraction for the Wireframes - Right now this doesn't have many benefits other than simplifying some of the rendering code - We can reuse the default vertex shader and avoid rendering inconsistencies - The goal is to have a material with a color on each mesh so this approach will make it easier to implement - Originally done in https://github.com/bevyengine/bevy/pull/5303 but I decided to split the Material part to it's own PR and then adding per-entity colors and globally configurable colors will be a much simpler diff. ## Solution - Use the new `Material` abstraction for the Wireframes ## Notes It's possible this isn't ideal since this adds a `Handle<WireframeMaterial>` to all the meshes compared to the original approach that didn't need anything. I didn't notice any performance impact on my machine. This might be a surprising usage of `Material` at first, because intuitively you only have one material per mesh, but the way it's implemented you can have as many different types of materials as you want on a mesh. ## Migration Guide `WireframePipeline` was removed. If you were using it directly, please create an issue explaining your use case. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
12a2f83edd
|
Add consuming builder methods for more ergonomic Mesh creation (#10056)
# Objective - This PR aims to make creating meshes a little bit more ergonomic, specifically by removing the need for intermediate mutable variables. ## Solution - We add methods that consume the `Mesh` and return a mesh with the specified changes, so that meshes can be entirely constructed via builder-style calls, without intermediate variables; - Methods are flagged with `#[must_use]` to ensure proper use; - Examples are updated to use the new methods where applicable. Some examples are kept with the mutating methods so that users can still easily discover them, and also where the new methods wouldn't really be an improvement. ## Examples Before: ```rust let mut mesh = Mesh::new(PrimitiveTopology::TriangleList); mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, vs); mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, vns); mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, vts); mesh.set_indices(Some(Indices::U32(tris))); mesh ``` After: ```rust Mesh::new(PrimitiveTopology::TriangleList) .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vs) .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vns) .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, vts) .with_indices(Some(Indices::U32(tris))) ``` Before: ```rust let mut cube = Mesh::from(shape::Cube { size: 1.0 }); cube.generate_tangents().unwrap(); PbrBundle { mesh: meshes.add(cube), ..default() } ``` After: ```rust PbrBundle { mesh: meshes.add( Mesh::from(shape::Cube { size: 1.0 }) .with_generated_tangents() .unwrap(), ), ..default() } ``` --- ## Changelog - Added consuming builder methods for more ergonomic `Mesh` creation: `with_inserted_attribute()`, `with_removed_attribute()`, `with_indices()`, `with_duplicated_vertices()`, `with_computed_flat_normals()`, `with_generated_tangents()`, `with_morph_targets()`, `with_morph_target_names()`. |
||
![]() |
a962240866
|
Alternate wireframe override api (#10023)
# Objective https://github.com/bevyengine/bevy/pull/7328 introduced an API to override the global wireframe config. I believe it is flawed for a few reasons. This PR uses a non-breaking API. Instead of making the `Wireframe` an enum I introduced the `NeverRenderWireframe` component. Here's the reason why I think this is better: - Easier to migrate since it doesn't change the old behaviour. Essentially nothing to migrate. Right now this PR is a breaking change but I don't think it has to be. - It's similar to other "per mesh" rendering features like NotShadowCaster/NotShadowReceiver - It doesn't force new users to also think about global vs not global if all they want is to render a wireframe - This would also let you filter at the query definition level instead of filtering when running the query ## Solution - Introduce a `NeverRenderWireframe` component that ignores the global config --- ## Changelog - Added a `NeverRenderWireframe` component that ignores the global `WireframeConfig` |
||
![]() |
f9e50e767b
|
Allow overriding global wireframe setting. (#7328)
# Objective Allow the user to choose between "Add wireframes to these specific entities" or "Add wireframes to everything _except_ these specific entities". Fixes #7309 # Solution Make the `Wireframe` component act like an override to the global configuration. Having `global` set to `false`, and adding a `Wireframe` with `enable: true` acts exactly as before. But now the opposite is also possible: Set `global` to `true` and add a `Wireframe` with `enable: false` will draw wireframes for everything _except_ that entity. Updated the example to show how overriding the global config works. |
||
![]() |
9a798aa100
|
Allow clippy::type_complexity in more places. (#9796)
# Objective - See fewer warnings when running `cargo clippy` locally. ## Solution - allow `clippy::type_complexity` in more places, which also signals to users they should do the same. |
||
![]() |
7063c86ed4
|
Fix some typos (#9934)
# Objective To celebrate the turning of the seasons, I took a small walk through the codebase guided by the "[code spell checker](https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker)" VS Code extension and fixed a few typos. |
||
![]() |
bc88f33e48
|
Allow other plugins to create renderer resources (#9925)
This is a duplicate of #9632, it was created since I forgot to make a new branch when I first made this PR, so I was having trouble resolving merge conflicts, meaning I had to rebuild my PR. # Objective - Allow other plugins to create the renderer resources. An example of where this would be required is my [OpenXR plugin](https://github.com/awtterpip/bevy_openxr) ## Solution - Changed the bevy RenderPlugin to optionally take precreated render resources instead of a configuration. ## Migration Guide The `RenderPlugin` now takes a `RenderCreation` enum instead of `WgpuSettings`. `RenderSettings::default()` returns `RenderSettings::Automatic(WgpuSettings::default())`. `RenderSettings` also implements `From<WgpuSettings>`. ```rust // before RenderPlugin { wgpu_settings: WgpuSettings { ... }, } // now RenderPlugin { render_creation: RenderCreation::Automatic(WgpuSettings { ... }), } // or RenderPlugin { render_creation: WgpuSettings { ... }.into(), } ``` --------- Co-authored-by: Malek <pocmalek@gmail.com> Co-authored-by: Robert Swain <robert.swain@gmail.com> |
||
![]() |
f3ab38a802
|
Add example for Camera::viewport_to_world (#7179)
Fixes #7177 --------- Co-authored-by: Rob Parrett <robparrett@gmail.com> |
||
![]() |
8eb6ccdd87
|
Remove useless single tuples and trailing commas (#9720)
# Objective Title |
||
![]() |
5eb292dc10
|
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
![]() |
42e6dc8987
|
Refactor EventReader::iter to read (#9631)
# Objective - The current `EventReader::iter` has been determined to cause confusion among new Bevy users. It was suggested by @JoJoJet to rename the method to better clarify its usage. - Solves #9624 ## Solution - Rename `EventReader::iter` to `EventReader::read`. - Rename `EventReader::iter_with_id` to `EventReader::read_with_id`. - Rename `ManualEventReader::iter` to `ManualEventReader::read`. - Rename `ManualEventReader::iter_with_id` to `ManualEventReader::read_with_id`. --- ## Changelog - `EventReader::iter` has been renamed to `EventReader::read`. - `EventReader::iter_with_id` has been renamed to `EventReader::read_with_id`. - `ManualEventReader::iter` has been renamed to `ManualEventReader::read`. - `ManualEventReader::iter_with_id` has been renamed to `ManualEventReader::read_with_id`. - Deprecated `EventReader::iter` - Deprecated `EventReader::iter_with_id` - Deprecated `ManualEventReader::iter` - Deprecated `ManualEventReader::iter_with_id` ## Migration Guide - Existing usages of `EventReader::iter` and `EventReader::iter_with_id` will have to be changed to `EventReader::read` and `EventReader::read_with_id` respectively. - Existing usages of `ManualEventReader::iter` and `ManualEventReader::iter_with_id` will have to be changed to `ManualEventReader::read` and `ManualEventReader::read_with_id` respectively. |
||
![]() |
90b3ac7f3a
|
Added Val::ZERO Constant (#9566)
# Objective - Fixes #9533 ## Solution * Added `Val::ZERO` as a constant which is defined as `Val::Px(0.)`. * Added manual `PartialEq` implementation for `Val` which allows any zero value to equal any other zero value. E.g., `Val::Px(0.) == Val::Percent(0.)` etc. This is technically a breaking change, as `Val::Px(0.) == Val::Percent(0.)` now equals `true` instead of `false` (as an example) * Replaced instances of `Val::Px(0.)`, `Val::Percent(0.)`, etc. with `Val::ZERO` * Fixed `bevy_ui::layout::convert::tests::test_convert_from` test to account for Taffy not equating `Points(0.)` and `Percent(0.)`. These tests now use `assert_eq!(...)` instead of `assert!(matches!(...))` which gives easier to diagnose error messages. |
||
![]() |
a788e31ad5
|
Fix CI for Rust 1.72 (#9562)
# Objective [Rust 1.72.0](https://blog.rust-lang.org/2023/08/24/Rust-1.72.0.html) is now stable. # Notes - `let-else` formatting has arrived! - I chose to allow `explicit_iter_loop` due to https://github.com/rust-lang/rust-clippy/issues/11074. We didn't hit any of the false positives that prevent compilation, but fixing this did produce a lot of the "symbol soup" mentioned, e.g. `for image in &mut *image_events {`. Happy to undo this if there's consensus the other way. --------- Co-authored-by: François <mockersf@gmail.com> |
||
![]() |
b6a2fc5d80
|
Improve execution of examples in CI (#9331)
# Objective - Some examples crash in CI because of needing too many resources for the windows runner - Some examples have random results making it hard to compare screenshots ## Solution - `bloom_3d`: reduce the number of spheres - `pbr`: use simpler spheres and reuse the mesh - `tonemapping`: use simpler spheres and reuse the mesh - `shadow_biases`: reduce the number of spheres - `spotlight`: use a seeded rng, move more cubes in view while reducing the total number of cubes, and reuse meshes and materials - `external_source_external_thread`, `iter_combinations`, `parallel_query`: use a seeded rng Examples of errors encountered: ``` Caused by: In Device::create_bind_group note: label = `bloom_upsampling_bind_group` Not enough memory left ``` ``` Caused by: In Queue::write_buffer Parent device is lost ``` ``` ERROR wgpu_core::device::life: Mapping failed Device(Lost) ``` |
||
![]() |
8fa94a0a0d
|
blend_modes example: fix label position (#8454)
# Objective - Labels are not correctly placed <img width="1392" alt="Screenshot 2023-04-22 at 00 12 54" src="https://user-images.githubusercontent.com/8672791/233742996-0189b3c2-ea6b-4f3f-b2e8-68fdbf74f52f.png"> ## Solution - Set a width in the UI so that text doesn't try to wrap <img width="1392" alt="Screenshot 2023-04-22 at 00 13 04" src="https://user-images.githubusercontent.com/8672791/233743064-8d6045e5-3936-4c22-be07-ac618399c093.png"> |
||
![]() |
75c6641b41
|
Add example to demonstrate manual generation and UV mapping of 3D mesh (generate_custom_mesh) solve #4922 (#8909)
# Objective - Fixes #4922 ## Solution - Add an example that maps a custom texture on a 3D mesh. --- ## Changelog > Added the texture itself (confirmed with mod on discord before it should be ok) to the assets folder, added to the README and Cargo.toml. --------- Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Sélène Amanita <134181069+Selene-Amanita@users.noreply.github.com> |
||
![]() |
f18f28874a
|
Allow tuples and single plugins in add_plugins , deprecate add_plugin (#8097)
# Objective - Better consistency with `add_systems`. - Deprecating `add_plugin` in favor of a more powerful `add_plugins`. - Allow passing `Plugin` to `add_plugins`. - Allow passing tuples to `add_plugins`. ## Solution - `App::add_plugins` now takes an `impl Plugins` parameter. - `App::add_plugin` is deprecated. - `Plugins` is a new sealed trait that is only implemented for `Plugin`, `PluginGroup` and tuples over `Plugins`. - All examples, benchmarks and tests are changed to use `add_plugins`, using tuples where appropriate. --- ## Changelog ### Changed - `App::add_plugins` now accepts all types that implement `Plugins`, which is implemented for: - Types that implement `Plugin`. - Types that implement `PluginGroup`. - Tuples (up to 16 elements) over types that implement `Plugins`. - Deprecated `App::add_plugin` in favor of `App::add_plugins`. ## Migration Guide - Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
af9c945f40
|
Screen Space Ambient Occlusion (SSAO) MVP (#7402)

# Objective
- Add Screen space ambient occlusion (SSAO). SSAO approximates
small-scale, local occlusion of _indirect_ diffuse light between
objects. SSAO does not apply to direct lighting, such as point or
directional lights.
- This darkens creases, e.g. on staircases, and gives nice contact
shadows where objects meet, giving entities a more "grounded" feel.
- Closes https://github.com/bevyengine/bevy/issues/3632.
## Solution
- Implement the GTAO algorithm.
-
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
-
https://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf
- Source code heavily based on [Intel's
XeGTAO](
|
||
![]() |
13f50c7a53
|
Rename keys like LAlt to AltLeft (#8792)
# Objective The [`KeyCode`](https://github.com/bevyengine/bevy/blob/main/crates/bevy_input/src/keyboard.rs#L86) enum cases `LWin` and `RWin` are too opinionated because they are also assigned meaning by non-Windows operating systems. macOS calls the keys completely different. ## Solution Match [winits approach](https://github.com/rust-windowing/winit/blob/master/src/keyboard.rs#L1635) naming convention. --- ## Migration Guide Migrate by replacing: - `LAlt` → `AltLeft` - `RAlt` → `AltRight` - `LBracket` → `BracketLeft` - `RBracket` → `BracketRight` - `LControl` → `ControlLeft` - `RControl` → `ControlRight` - `LShift` → `ShiftLeft` - `RShift` → `ShiftRight` - `LWin` → `SuperLeft` - `RWin` → `SuperRight` |
||
![]() |
001b3eb97c
|
Instanced line rendering for gizmos based on bevy_polyline (#8427)
# Objective Adopt code from [bevy_polyline](https://github.com/ForesightMiningSoftwareCorporation/bevy_polyline) for gizmo line-rendering. This adds configurable width and perspective rendering for the lines. Many thanks to @mtsr for the initial work on bevy_polyline. Thanks to @aevyrie for maintaining it, @nicopap for adding the depth_bias feature and the other [contributors](https://github.com/ForesightMiningSoftwareCorporation/bevy_polyline/graphs/contributors) for squashing bugs and keeping bevy_polyline up-to-date. #### Before  #### After - with line perspective  Line perspective is not on by default because with perspective there is no default line width that works for every scene. <details><summary>After - without line perspective</summary> <p>  </p> </details> Somewhat unexpectedly, the performance is improved with this PR. At 200,000 lines in many_gizmos I get ~110 FPS on main and ~200 FPS with this PR. I'm guessing this is a CPU side difference as I would expect the rendering technique to be more expensive on the GPU to some extent, but I am not entirely sure. --------- Co-authored-by: Jonas Matser <github@jonasmatser.nl> Co-authored-by: Aevyrie <aevyrie@gmail.com> Co-authored-by: Nicola Papale <nico@nicopap.ch> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |