Previously, the specialize/queue systems were added per-material and the
plugin prepass/shadow enable flags controlled whether we added those
systems. Now, we make this a property of the material instance and check
for it when specializing. Fixes
https://github.com/bevyengine/bevy/issues/19850.
# Objective
- This plugin currently does nothing. That's because we add the plugin
to the `RenderApp`. Inside the plugin it then looks for the `RenderApp`
itself, but since it was added **to** the `RenderApp`, it will never
find the `RenderApp`.
## Solution
- Move the plugin into build, and more importantly, add it to the app
not the render_app.
# Objective
- The MaterialPlugin has some ugly code to initialize some data in the
render world
- #19887
## Solution
- Use the new RenderStartup schedule to use a system instead of using
the plugin `finish()`
## Testing
- Tested that the 3d_scene and shader_material example still work as
expected
# Objective
add support for light textures (also known as light cookies, light
functions, and light projectors)

## Solution
- add components:
```rs
/// Add to a [`PointLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
pub struct PointLightTexture {
/// The texture image. Only the R channel is read.
pub image: Handle<Image>,
/// The cubemap layout. The image should be a packed cubemap in one of the formats described by the [`CubemapLayout`] enum.
pub cubemap_layout: CubemapLayout,
}
/// Add to a [`SpotLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
pub struct SpotLightTexture {
/// The texture image. Only the R channel is read.
/// Note the border of the image should be entirely black to avoid leaking light.
pub image: Handle<Image>,
}
/// Add to a [`DirectionalLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
pub struct DirectionalLightTexture {
/// The texture image. Only the R channel is read.
pub image: Handle<Image>,
/// Whether to tile the image infinitely, or use only a single tile centered at the light's translation
pub tiled: bool,
}
```
- store images to the `RenderClusteredDecals` buffer
- read the image and modulate the lights
- add `light_textures` example to showcase the new features
## Testing
see light_textures example
# Objective
- MaterialProperties uses HashMap for some data that is generally going
to be really small. This is likely using more memory than necessary
## Solution
- Use a SmallVec instead
- I used the size a StandardMaterial would need for all the backing
arrays
## Testing
- Tested the 3d_scene to confirm it still works
## Notes
I'm not sure if it made a measurable difference since I'm not sure how
to measure this. It's a bit hard to create an artificial workflow where
this would be the main bottleneck. This is very in the realm of
microoptimization.
# Objective
Closes#18075
In order to enable a number of patterns for dynamic materials in the
engine, it's necessary to decouple the renderer from the `Material`
trait.
This opens the possibility for:
- Materials that aren't coupled to `AsBindGroup`.
- 2d using the underlying 3d bindless infrastructure.
- Dynamic materials that can change their layout at runtime.
- Materials that aren't even backed by a Rust struct at all.
## Solution
In short, remove all trait bounds from render world material systems and
resources. This means moving a bunch of stuff onto `MaterialProperties`
and engaging in some hacks to make specialization work. Rather than
storing the bind group data in `MaterialBindGroupAllocator`, right now
we're storing it in a closure on `MaterialProperties`. TBD if this has
bad performance characteristics.
## Benchmarks
- `many_cubes`:
`cargo run --example many_cubes --release --features=bevy/trace_tracy --
--vary-material-data-per-instance`:

- @DGriffin91's Caldera
`cargo run --release --features=bevy/trace_tracy -- --random-materials`

- @DGriffin91's Caldera with 20 unique material types (i.e.
`MaterialPlugin<M>`) and random materials per mesh
`cargo run --release --features=bevy/trace_tracy -- --random-materials`

### TODO
- We almost certainly lost some parallelization from removing the type
params that could be gained back from smarter iteration.
- Test all the things that could have broken.
- ~Fix meshlets~
## Showcase
See [the
example](https://github.com/bevyengine/bevy/pull/19667/files#diff-9d768cfe1c3aa81eff365d250d3cbe5a63e8df63e81dd85f64c3c3cd993f6d94)
for a custom material implemented without the use of the `Material`
trait and thus `AsBindGroup`.

---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: IceSentry <c.giguere42@gmail.com>
# Objective
- i think const exprs werent supported in naga when these were written,
and we've just stuck with that since then. they're supported now so lets
use them
## Solution
- do that thang
## Testing
- transparency_3d, transmission, ssr, 3d_scene, couple others. they all
look fine
# Objective
Upgrade to `wgpu` version `25.0`.
Depends on https://github.com/bevyengine/naga_oil/pull/121
## Solution
### Problem
The biggest issue we face upgrading is the following requirement:
> To facilitate this change, there was an additional validation rule put
in place: if there is a binding array in a bind group, you may not use
dynamic offset buffers or uniform buffers in that bind group. This
requirement comes from vulkan rules on UpdateAfterBind descriptors.
This is a major difficulty for us, as there are a number of binding
arrays that are used in the view bind group. Note, this requirement does
not affect merely uniform buffors that use dynamic offset but the use of
*any* uniform in a bind group that also has a binding array.
### Attempted fixes
The easiest fix would be to change uniforms to be storage buffers
whenever binding arrays are in use:
```wgsl
#ifdef BINDING_ARRAYS_ARE_USED
@group(0) @binding(0) var<uniform> view: View;
@group(0) @binding(1) var<uniform> lights: types::Lights;
#else
@group(0) @binding(0) var<storage> view: array<View>;
@group(0) @binding(1) var<storage> lights: array<types::Lights>;
#endif
```
This requires passing the view index to the shader so that we know where
to index into the buffer:
```wgsl
struct PushConstants {
view_index: u32,
}
var<push_constant> push_constants: PushConstants;
```
Using push constants is no problem because binding arrays are only
usable on native anyway.
However, this greatly complicates the ability to access `view` in
shaders. For example:
```wgsl
#ifdef BINDING_ARRAYS_ARE_USED
mesh_view_bindings::view.view_from_world[0].z
#else
mesh_view_bindings::view[mesh_view_bindings::view_index].view_from_world[0].z
#endif
```
Using this approach would work but would have the effect of polluting
our shaders with ifdef spam basically *everywhere*.
Why not use a function? Unfortunately, the following is not valid wgsl
as it returns a binding directly from a function in the uniform path.
```wgsl
fn get_view() -> View {
#if BINDING_ARRAYS_ARE_USED
let view_index = push_constants.view_index;
let view = views[view_index];
#endif
return view;
}
```
This also poses problems for things like lights where we want to return
a ptr to the light data. Returning ptrs from wgsl functions isn't
allowed even if both bindings were buffers.
The next attempt was to simply use indexed buffers everywhere, in both
the binding array and non binding array path. This would be viable if
push constants were available everywhere to pass the view index, but
unfortunately they are not available on webgpu. This means either
passing the view index in a storage buffer (not ideal for such a small
amount of state) or using push constants sometimes and uniform buffers
only on webgpu. However, this kind of conditional layout infects
absolutely everything.
Even if we were to accept just using storage buffer for the view index,
there's also the additional problem that some dynamic offsets aren't
actually per-view but per-use of a setting on a camera, which would
require passing that uniform data on *every* camera regardless of
whether that rendering feature is being used, which is also gross.
As such, although it's gross, the simplest solution just to bump binding
arrays into `@group(1)` and all other bindings up one bind group. This
should still bring us under the device limit of 4 for most users.
### Next steps / looking towards the future
I'd like to avoid needing split our view bind group into multiple parts.
In the future, if `wgpu` were to add `@builtin(draw_index)`, we could
build a list of draw state in gpu processing and avoid the need for any
kind of state change at all (see
https://github.com/gfx-rs/wgpu/issues/6823). This would also provide
significantly more flexibility to handle things like offsets into other
arrays that may not be per-view.
### Testing
Tested a number of examples, there are probably more that are still
broken.
---------
Co-authored-by: François Mockers <mockersf@gmail.com>
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Updates the requirements on
[derive_more](https://github.com/JelteF/derive_more) to permit the
latest version.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/JelteF/derive_more/releases">derive_more's
releases</a>.</em></p>
<blockquote>
<h2>2.0.1</h2>
<p><a href="https://docs.rs/derive_more/2.0.1">API docs</a>
<a
href="https://github.com/JelteF/derive_more/blob/v2.0.1/CHANGELOG.md#201---2025-02-03">Changelog</a></p>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/JelteF/derive_more/blob/master/CHANGELOG.md">derive_more's
changelog</a>.</em></p>
<blockquote>
<h2>2.0.1 - 2025-02-03</h2>
<h3>Added</h3>
<ul>
<li>Add crate metadata for the Rust Playground. This makes sure that the
Rust
Playground will have all <code>derive_more</code> features available
once
<a
href="https://docs.rs/selectors/latest/selectors"><code>selectors</code></a>
crate updates its
<code>derive_more</code> version.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/445">#445</a>)</li>
</ul>
<h2>2.0.0 - 2025-02-03</h2>
<h3>Breaking changes</h3>
<ul>
<li><code>use derive_more::SomeTrait</code> now imports macro only.
Importing macro with
its trait along is possible now via <code>use
derive_more::with_trait::SomeTrait</code>.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/406">#406</a>)</li>
<li>Top-level <code>#[display("...")]</code> attribute on an
enum now has defaulting behavior
instead of replacing when no wrapping is possible (no
<code>_variant</code> placeholder).
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/395">#395</a>)</li>
</ul>
<h3>Fixed</h3>
<ul>
<li>Associated types of type parameters not being treated as generics in
<code>Debug</code>
and <code>Display</code> expansions.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/399">#399</a>)</li>
<li><code>unreachable_code</code> warnings on generated code when
<code>!</code> (never type) is used.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/404">#404</a>)</li>
<li>Ambiguous associated item error when deriving <code>TryFrom</code>,
<code>TryInto</code> or <code>FromStr</code>
with an associated item called <code>Error</code> or <code>Err</code>
respectively.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/410">#410</a>)</li>
<li>Top-level <code>#[display("...")]</code> attribute on an
enum being incorrectly treated
as transparent or wrapping.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/395">#395</a>)</li>
<li>Omitted raw identifiers in <code>Debug</code> and
<code>Display</code> expansions.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/431">#431</a>)</li>
<li>Incorrect rendering of raw identifiers as field names in
<code>Debug</code> expansions.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/431">#431</a>)</li>
<li>Top-level <code>#[display("...")]</code> attribute on an
enum not working transparently
for directly specified fields.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/438">#438</a>)</li>
<li>Incorrect dereferencing of unsized fields in <code>Debug</code> and
<code>Display</code> expansions.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/440">#440</a>)</li>
</ul>
<h2>0.99.19 - 2025-02-03</h2>
<ul>
<li>Add crate metadata for the Rust Playground.</li>
</ul>
<h2>1.0.0 - 2024-08-07</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="a78d8ee41d"><code>a78d8ee</code></a>
chore: Release</li>
<li><a
href="2aeee4d1c0"><code>2aeee4d</code></a>
Update changelog (<a
href="https://redirect.github.com/JelteF/derive_more/issues/446">#446</a>)</li>
<li><a
href="5afbaa1d8e"><code>5afbaa1</code></a>
Add Rust Playground metadata (<a
href="https://redirect.github.com/JelteF/derive_more/issues/445">#445</a>)</li>
<li><a
href="d6c3315f12"><code>d6c3315</code></a>
Prepare 2.0.0 release (<a
href="https://redirect.github.com/JelteF/derive_more/issues/444">#444</a>)</li>
<li><a
href="c5e5e82c0a"><code>c5e5e82</code></a>
Fix unsized fields usage in <code>Display</code>/<code>Debug</code>
derives (<a
href="https://redirect.github.com/JelteF/derive_more/issues/440">#440</a>,
<a
href="https://redirect.github.com/JelteF/derive_more/issues/432">#432</a>)</li>
<li><a
href="d391493a3c"><code>d391493</code></a>
Fix field transparency for top-level shared attribute in
<code>Display</code> (<a
href="https://redirect.github.com/JelteF/derive_more/issues/438">#438</a>)</li>
<li><a
href="f14c7a759a"><code>f14c7a7</code></a>
Fix raw identifiers usage in <code>Display</code>/<code>Debug</code>
derives (<a
href="https://redirect.github.com/JelteF/derive_more/issues/434">#434</a>,
<a
href="https://redirect.github.com/JelteF/derive_more/issues/431">#431</a>)</li>
<li><a
href="7b23de3d53"><code>7b23de3</code></a>
Update <code>convert_case</code> crate from 0.6 to 0.7 version (<a
href="https://redirect.github.com/JelteF/derive_more/issues/436">#436</a>)</li>
<li><a
href="cc9957e9cd"><code>cc9957e</code></a>
Fix <code>compile_fail</code> tests and make Clippy happy for 1.84 Rust
(<a
href="https://redirect.github.com/JelteF/derive_more/issues/435">#435</a>)</li>
<li><a
href="17d61c3118"><code>17d61c3</code></a>
Fix transparency and behavior of shared formatting on enums (<a
href="https://redirect.github.com/JelteF/derive_more/issues/395">#395</a>,
<a
href="https://redirect.github.com/JelteF/derive_more/issues/377">#377</a>,
<a
href="https://redirect.github.com/JelteF/derive_more/issues/411">#411</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/JelteF/derive_more/compare/v1.0.0...v2.0.1">compare
view</a></li>
</ul>
</details>
<br />
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
# Objective
#19410 added support for resizing images "in place" meaning that their
data was copied into the new texture allocation on the CPU. However,
there are some scenarios where an image may be created and populated
entirely on the GPU. Using this method would cause data to disappear, as
it wouldn't be copied into the new texture.
## Solution
When an image is resized in place, if it has no data in it's asset,
we'll opt into a new flag `copy_on_resize` which will issue a
`copy_texture_to_texture` command on the old allocation.
To support this, we require passing the old asset to all `RenderAsset`
implementations. This will be generally useful in the future for
reducing things like buffer re-allocations.
## Testing
Tested using the example in the issue.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Remove a component impl footgun
- Make projection code slightly nicer, and remove the need to import the
projection trait when using the methods on `Projection`.
## Solution
- Do the things.
# Objective
- Related to #19024.
## Solution
- Remove the `FULLSCREEN_SHADER_HANDLE` `weak_handle` with a resource
holding the shader handle.
- This also changes us from using `load_internal_asset` to
`embedded_asset`/`load_embedded_asset`.
- All uses have been migrated to clone the `FullscreenShader` resource
and use its `to_vertex_state` method.
## Testing
- `anti_aliasing` example still works.
- `bloom_3d` example still works.
---------
Co-authored-by: charlotte 🌸 <charlotte.c.mcelwain@gmail.com>
# Objective
- Notice a word duplication typo
- Small quest to fix similar or nearby typos with my faithful companion
`\b(\w+)\s+\1\b`
## Solution
Fix em
# Objective
Fix https://github.com/bevyengine/bevy/issues/19617
# Solution
Add newlines before all impl blocks.
I suspect that at least some of these will be objectionable! If there's
a desired Bevy style for this then I'll update the PR. If not then we
can just close it - it's the work of a single find and replace.
Bump version after release
This PR has been auto-generated
Fixes#19766
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
- compute_matrix doesn't compute anything, it just puts an Affine3A into
a Mat4. the name is inaccurate
## Solution
- rename it to conform with to_isometry (which, ironically, does compute
a decomposition which is rather expensive)
## Testing
- Its a rename. If it compiles, its good to go
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Improve the performance of `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.
`FilteredEntityRef` needs an `Access<ComponentId>` to determine what
components it can access. There is one stored in the query state, but
query items cannot borrow from the state, so it has to `clone()` the
access for each row. Cloning the access involves memory allocations and
can be expensive.
## Solution
Let query items borrow from their query state.
Add an `'s` lifetime to `WorldQuery::Item` and `WorldQuery::Fetch`,
similar to the one in `SystemParam`, and provide `&'s Self::State` to
the fetch so that it can borrow from the state.
Unfortunately, there are a few cases where we currently return query
items from temporary query states: the sorted iteration methods create a
temporary state to query the sort keys, and the
`EntityRef::components<Q>()` methods create a temporary state for their
query.
To allow these to continue to work with most `QueryData`
implementations, introduce a new subtrait `ReleaseStateQueryData` that
converts a `QueryItem<'w, 's>` to `QueryItem<'w, 'static>`, and is
implemented for everything except `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.
`#[derive(QueryData)]` will generate `ReleaseStateQueryData`
implementations that apply when all of the subqueries implement
`ReleaseStateQueryData`.
This PR does not actually change the implementation of
`FilteredEntity(Ref|Mut)` or `Entity(Ref|Mut)Except`! That will be done
as a follow-up PR so that the changes are easier to review. I have
pushed the changes as chescock/bevy#5.
## Testing
I ran performance traces of many_foxes, both against main and against
chescock/bevy#5, both including #15282. These changes do appear to make
generalized animation a bit faster:
(Red is main, yellow is chescock/bevy#5)

## Migration Guide
The `WorldQuery::Item` and `WorldQuery::Fetch` associated types and the
`QueryItem` and `ROQueryItem` type aliases now have an additional
lifetime parameter corresponding to the `'s` lifetime in `Query`. Manual
implementations of `WorldQuery` will need to update the method
signatures to include the new lifetimes. Other uses of the types will
need to be updated to include a lifetime parameter, although it can
usually be passed as `'_`. In particular, `ROQueryItem` is used when
implementing `RenderCommand`.
Before:
```rust
fn render<'w>(
item: &P,
view: ROQueryItem<'w, Self::ViewQuery>,
entity: Option<ROQueryItem<'w, Self::ItemQuery>>,
param: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```
After:
```rust
fn render<'w>(
item: &P,
view: ROQueryItem<'w, '_, Self::ViewQuery>,
entity: Option<ROQueryItem<'w, '_, Self::ItemQuery>>,
param: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```
---
Methods on `QueryState` that take `&mut self` may now result in
conflicting borrows if the query items capture the lifetime of the
mutable reference. This affects `get()`, `iter()`, and others. To fix
the errors, first call `QueryState::update_archetypes()`, and then
replace a call `state.foo(world, param)` with
`state.query_manual(world).foo_inner(param)`. Alternately, you may be
able to restructure the code to call `state.query(world)` once and then
make multiple calls using the `Query`.
Before:
```rust
let mut state: QueryState<_, _> = ...;
let d1 = state.get(world, e1);
let d2 = state.get(world, e2); // Error: cannot borrow `state` as mutable more than once at a time
println!("{d1:?}");
println!("{d2:?}");
```
After:
```rust
let mut state: QueryState<_, _> = ...;
state.update_archetypes(world);
let d1 = state.get_manual(world, e1);
let d2 = state.get_manual(world, e2);
// OR
state.update_archetypes(world);
let d1 = state.query(world).get_inner(e1);
let d2 = state.query(world).get_inner(e2);
// OR
let query = state.query(world);
let d1 = query.get_inner(e1);
let d1 = query.get_inner(e2);
println!("{d1:?}");
println!("{d2:?}");
```
# Objective
Closes#19564.
The current `Event` trait looks like this:
```rust
pub trait Event: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
The `Event` trait is used by both buffered events
(`EventReader`/`EventWriter`) and observer events. If they are observer
events, they can optionally be targeted at specific `Entity`s or
`ComponentId`s, and can even be propagated to other entities.
However, there has long been a desire to split the trait semantically
for a variety of reasons, see #14843, #14272, and #16031 for discussion.
Some reasons include:
- It's very uncommon to use a single event type as both a buffered event
and targeted observer event. They are used differently and tend to have
distinct semantics.
- A common footgun is using buffered events with observers or event
readers with observer events, as there is no type-level error that
prevents this kind of misuse.
- #19440 made `Trigger::target` return an `Option<Entity>`. This
*seriously* hurts ergonomics for the general case of entity observers,
as you need to `.unwrap()` each time. If we could statically determine
whether the event is expected to have an entity target, this would be
unnecessary.
There's really two main ways that we can categorize events: push vs.
pull (i.e. "observer event" vs. "buffered event") and global vs.
targeted:
| | Push | Pull |
| ------------ | --------------- | --------------------------- |
| **Global** | Global observer | `EventReader`/`EventWriter` |
| **Targeted** | Entity observer | - |
There are many ways to approach this, each with their tradeoffs.
Ultimately, we kind of want to split events both ways:
- A type-level distinction between observer events and buffered events,
to prevent people from using the wrong kind of event in APIs
- A statically designated entity target for observer events to avoid
accidentally using untargeted events for targeted APIs
This PR achieves these goals by splitting event traits into `Event`,
`EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait
implemented by all events.
## `Event`, `EntityEvent`, and `BufferedEvent`
`Event` is now a very simple trait shared by all events.
```rust
pub trait Event: Send + Sync + 'static {
// Required for observer APIs
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
You can call `trigger` for *any* event, and use a global observer for
listening to the event.
```rust
#[derive(Event)]
struct Speak {
message: String,
}
// ...
app.add_observer(|trigger: On<Speak>| {
println!("{}", trigger.message);
});
// ...
commands.trigger(Speak {
message: "Y'all like these reworked events?".to_string(),
});
```
To allow an event to be targeted at entities and even propagated
further, you can additionally implement the `EntityEvent` trait:
```rust
pub trait EntityEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This lets you call `trigger_targets`, and to use targeted observer APIs
like `EntityCommands::observe`:
```rust
#[derive(Event, EntityEvent)]
#[entity_event(traversal = &'static ChildOf, auto_propagate)]
struct Damage {
amount: f32,
}
// ...
let enemy = commands.spawn((Enemy, Health(100.0))).id();
// Spawn some armor as a child of the enemy entity.
// When the armor takes damage, it will bubble the event up to the enemy.
let armor_piece = commands
.spawn((ArmorPiece, Health(25.0), ChildOf(enemy)))
.observe(|trigger: On<Damage>, mut query: Query<&mut Health>| {
// Note: `On::target` only exists because this is an `EntityEvent`.
let mut health = query.get(trigger.target()).unwrap();
health.0 -= trigger.amount();
});
commands.trigger_targets(Damage { amount: 10.0 }, armor_piece);
```
> [!NOTE]
> You *can* still also trigger an `EntityEvent` without targets using
`trigger`. We probably *could* make this an either-or thing, but I'm not
sure that's actually desirable.
To allow an event to be used with the buffered API, you can implement
`BufferedEvent`:
```rust
pub trait BufferedEvent: Event {}
```
The event can then be used with `EventReader`/`EventWriter`:
```rust
#[derive(Event, BufferedEvent)]
struct Message(String);
fn write_hello(mut writer: EventWriter<Message>) {
writer.write(Message("I hope these examples are alright".to_string()));
}
fn read_messages(mut reader: EventReader<Message>) {
// Process all buffered events of type `Message`.
for Message(message) in reader.read() {
println!("{message}");
}
}
```
In summary:
- Need a basic event you can trigger and observe? Derive `Event`!
- Need the event to be targeted at an entity? Derive `EntityEvent`!
- Need the event to be buffered and support the
`EventReader`/`EventWriter` API? Derive `BufferedEvent`!
## Alternatives
I'll now cover some of the alternative approaches I have considered and
briefly explored. I made this section collapsible since it ended up
being quite long :P
<details>
<summary>Expand this to see alternatives</summary>
### 1. Unified `Event` Trait
One option is not to have *three* separate traits (`Event`,
`EntityEvent`, `BufferedEvent`), and to instead just use associated
constants on `Event` to determine whether an event supports targeting
and buffering or not:
```rust
pub trait Event: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
const TARGETED: bool = false;
const BUFFERED: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
Methods can then use bounds like `where E: Event<TARGETED = true>` or
`where E: Event<BUFFERED = true>` to limit APIs to specific kinds of
events.
This would keep everything under one `Event` trait, but I don't think
it's necessarily a good idea. It makes APIs harder to read, and docs
can't easily refer to specific types of events. You can also create
weird invariants: what if you specify `TARGETED = false`, but have
`Traversal` and/or `AUTO_PROPAGATE` enabled?
### 2. `Event` and `Trigger`
Another option is to only split the traits between buffered events and
observer events, since that is the main thing people have been asking
for, and they have the largest API difference.
If we did this, I think we would need to make the terms *clearly*
separate. We can't really use `Event` and `BufferedEvent` as the names,
since it would be strange that `BufferedEvent` doesn't implement
`Event`. Something like `ObserverEvent` and `BufferedEvent` could work,
but it'd be more verbose.
For this approach, I would instead keep `Event` for the current
`EventReader`/`EventWriter` API, and call the observer event a
`Trigger`, since the "trigger" terminology is already used in the
observer context within Bevy (both as a noun and a verb). This is also
what a long [bikeshed on
Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791)
seemed to land on at the end of last year.
```rust
// For `EventReader`/`EventWriter`
pub trait Event: Send + Sync + 'static {}
// For observers
pub trait Trigger: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
const TARGETED: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
The problem is that "event" is just a really good term for something
that "happens". Observers are rapidly becoming the more prominent API,
so it'd be weird to give them the `Trigger` name and leave the good
`Event` name for the less common API.
So, even though a split like this seems neat on the surface, I think it
ultimately wouldn't really work. We want to keep the `Event` name for
observer events, and there is no good alternative for the buffered
variant. (`Message` was suggested, but saying stuff like "sends a
collision message" is weird.)
### 3. `GlobalEvent` + `TargetedEvent`
What if instead of focusing on the buffered vs. observed split, we
*only* make a distinction between global and targeted events?
```rust
// A shared event trait to allow global observers to work
pub trait Event: Send + Sync + 'static {
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
// For buffered events and non-targeted observer events
pub trait GlobalEvent: Event {}
// For targeted observer events
pub trait TargetedEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This is actually the first approach I implemented, and it has the neat
characteristic that you can only use non-targeted APIs like `trigger`
with a `GlobalEvent` and targeted APIs like `trigger_targets` with a
`TargetedEvent`. You have full control over whether the entity should or
should not have a target, as they are fully distinct at the type-level.
However, there's a few problems:
- There is no type-level indication of whether a `GlobalEvent` supports
buffered events or just non-targeted observer events
- An `Event` on its own does literally nothing, it's just a shared trait
required to make global observers accept both non-targeted and targeted
events
- If an event is both a `GlobalEvent` and `TargetedEvent`, global
observers again have ambiguity on whether an event has a target or not,
undermining some of the benefits
- The names are not ideal
### 4. `Event` and `EntityEvent`
We can fix some of the problems of Alternative 3 by accepting that
targeted events can also be used in non-targeted contexts, and simply
having the `Event` and `EntityEvent` traits:
```rust
// For buffered events and non-targeted observer events
pub trait Event: Send + Sync + 'static {
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
// For targeted observer events
pub trait EntityEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This is essentially identical to this PR, just without a dedicated
`BufferedEvent`. The remaining major "problem" is that there is still
zero type-level indication of whether an `Event` event *actually*
supports the buffered API. This leads us to the solution proposed in
this PR, using `Event`, `EntityEvent`, and `BufferedEvent`.
</details>
## Conclusion
The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR
aims to solve all the common problems with Bevy's current event model
while keeping the "weirdness" factor minimal. It splits in terms of both
the push vs. pull *and* global vs. targeted aspects, while maintaining a
shared concept for an "event".
### Why I Like This
- The term "event" remains as a single concept for all the different
kinds of events in Bevy.
- Despite all event types being "events", they use fundamentally
different APIs. Instead of assuming that you can use an event type with
any pattern (when only one is typically supported), you explicitly opt
in to each one with dedicated traits.
- Using separate traits for each type of event helps with documentation
and clearer function signatures.
- I can safely make assumptions on expected usage.
- If I see that an event is an `EntityEvent`, I can assume that I can
use `observe` on it and get targeted events.
- If I see that an event is a `BufferedEvent`, I can assume that I can
use `EventReader` to read events.
- If I see both `EntityEvent` and `BufferedEvent`, I can assume that
both APIs are supported.
In summary: This allows for a unified concept for events, while limiting
the different ways to use them with opt-in traits. No more guess-work
involved when using APIs.
### Problems?
- Because `BufferedEvent` implements `Event` (for more consistent
semantics etc.), you can still use all buffered events for non-targeted
observers. I think this is fine/good. The important part is that if you
see that an event implements `BufferedEvent`, you know that the
`EventReader`/`EventWriter` API should be supported. Whether it *also*
supports other APIs is secondary.
- I currently only support `trigger_targets` for an `EntityEvent`.
However, you can technically target components too, without targeting
any entities. I consider that such a niche and advanced use case that
it's not a huge problem to only support it for `EntityEvent`s, but we
could also split `trigger_targets` into `trigger_entities` and
`trigger_components` if we wanted to (or implement components as
entities :P).
- You can still trigger an `EntityEvent` *without* targets. I consider
this correct, since `Event` implements the non-targeted behavior, and
it'd be weird if implementing another trait *removed* behavior. However,
it does mean that global observers for entity events can technically
return `Entity::PLACEHOLDER` again (since I got rid of the
`Option<Entity>` added in #19440 for ergonomics). I think that's enough
of an edge case that it's not a huge problem, but it is worth keeping in
mind.
- ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type
currently duplicates the `Event` implementation, so you instead need to
manually implement one of them.~~ Changed to always requiring `Event` to
be derived.
## Related Work
There are plans to implement multi-event support for observers,
especially for UI contexts. [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)
API looked like this:
```rust
// Truncated for brevity
trigger: Trigger<(
OnAdd<Pressed>,
OnRemove<Pressed>,
OnAdd<InteractionDisabled>,
OnRemove<InteractionDisabled>,
OnInsert<Hovered>,
)>,
```
I believe this shouldn't be in conflict with this PR. If anything, this
PR might *help* achieve the multi-event pattern for entity observers
with fewer footguns: by statically enforcing that all of these events
are `EntityEvent`s in the context of `EntityCommands::observe`, we can
avoid misuse or weird cases where *some* events inside the trigger are
targeted while others are not.
Adds a new component for when you want to run the deferred gbuffer
prepass, but not the lighting pass.
This will be used by bevy_solari in the future, as it'll do it's own
shading pass, but still wants the gbuffer.
The documentation states that ClusteredDecal projects in the +Z
direction, but in practice, it projects in the -Z direction, which can
be confusing.
# Objective
Fixes#19612
## Objective
Make it easier to use `IrradianceVolume` with fewer ways to silently
fail. Fix#19614.
## Solution
* Add `#[require(LightProbe)]` to `struct IrradianceVolume`.
* Document this fact.
* Also document the volume being centered on the origin by default (this
was the other thing that was unclear when getting started).
I also looked at the other implementor of `LightProbeComponent`,
`EnvironmentMapLight`, but it has a use which is *not* as a light probe,
so it should not require `LightProbe`.
## Testing
* Confirmed that `examples/3d/irradiance_volumes.rs` still works after
removing `LightProbe`.
* Reviewed generated documentation.
# Objective
Currently, the observer API looks like this:
```rust
app.add_observer(|trigger: Trigger<Explode>| {
info!("Entity {} exploded!", trigger.target());
});
```
Future plans for observers also include "multi-event observers" with a
trigger that looks like this (see [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)):
```rust
trigger: Trigger<(
OnAdd<Pressed>,
OnRemove<Pressed>,
OnAdd<InteractionDisabled>,
OnRemove<InteractionDisabled>,
OnInsert<Hovered>,
)>,
```
In scenarios like this, there is a lot of repetition of `On`. These are
expected to be very high-traffic APIs especially in UI contexts, so
ergonomics and readability are critical.
By renaming `Trigger` to `On`, we can make these APIs read more cleanly
and get rid of the repetition:
```rust
app.add_observer(|trigger: On<Explode>| {
info!("Entity {} exploded!", trigger.target());
});
```
```rust
trigger: On<(
Add<Pressed>,
Remove<Pressed>,
Add<InteractionDisabled>,
Remove<InteractionDisabled>,
Insert<Hovered>,
)>,
```
Names like `On<Add<Pressed>>` emphasize the actual event listener nature
more than `Trigger<OnAdd<Pressed>>`, and look cleaner. This *also* frees
up the `Trigger` name if we want to use it for the observer event type,
splitting them out from buffered events (bikeshedding this is out of
scope for this PR though).
For prior art:
[`bevy_eventlistener`](https://github.com/aevyrie/bevy_eventlistener)
used
[`On`](https://docs.rs/bevy_eventlistener/latest/bevy_eventlistener/event_listener/struct.On.html)
for its event listener type. Though in our case, the observer is the
event listener, and `On` is just a type containing information about the
triggered event.
## Solution
Steal from `bevy_event_listener` by @aevyrie and use `On`.
- Rename `Trigger` to `On`
- Rename `OnAdd` to `Add`
- Rename `OnInsert` to `Insert`
- Rename `OnReplace` to `Replace`
- Rename `OnRemove` to `Remove`
- Rename `OnDespawn` to `Despawn`
## Discussion
### Naming Conflicts??
Using a name like `Add` might initially feel like a very bad idea, since
it risks conflict with `core::ops::Add`. However, I don't expect this to
be a big problem in practice.
- You rarely need to actually implement the `Add` trait, especially in
modules that would use the Bevy ECS.
- In the rare cases where you *do* get a conflict, it is very easy to
fix by just disambiguating, for example using `ops::Add`.
- The `Add` event is a struct while the `Add` trait is a trait (duh), so
the compiler error should be very obvious.
For the record, renaming `OnAdd` to `Add`, I got exactly *zero* errors
or conflicts within Bevy itself. But this is of course not entirely
representative of actual projects *using* Bevy.
You might then wonder, why not use `Added`? This would conflict with the
`Added` query filter, so it wouldn't work. Additionally, the current
naming convention for observer events does not use past tense.
### Documentation
This does make documentation slightly more awkward when referring to
`On` or its methods. Previous docs often referred to `Trigger::target`
or "sends a `Trigger`" (which is... a bit strange anyway), which would
now be `On::target` and "sends an observer `Event`".
You can see the diff in this PR to see some of the effects. I think it
should be fine though, we may just need to reword more documentation to
read better.
# Objective
I set out with one simple goal: clearly document the differences between
each of the component lifecycle events via module docs.
Unfortunately, no such module existed: the various lifecycle code was
scattered to the wind.
Without a unified module, it's very hard to discover the related types,
and there's nowhere good to put my shiny new documentation.
## Solution
1. Unify the assorted types into a single
`bevy_ecs::component_lifecycle` module.
2. Write docs.
3. Write a migration guide.
## Testing
Thanks CI!
## Follow-up
1. The lifecycle event names are pretty confusing, especially
`OnReplace`. We should consider renaming those. No bikeshedding in my PR
though!
2. Observers need real module docs too :(
3. Any additional functional changes should be done elsewhere; this is a
simple docs and re-org PR.
---------
Co-authored-by: theotherphil <phil.j.ellison@gmail.com>
# Objective
`Entity::PLACEHOLDER` acts as a magic number that will *probably* never
really exist, but it certainly could. And, `Entity` has a niche, so the
only reason to use `PLACEHOLDER` is as an alternative to `MaybeUninit`
that trades safety risks for logic risks.
As a result, bevy has generally advised against using `PLACEHOLDER`, but
we still use if for a lot internally. This pr starts removing internal
uses of it, starting from observers.
## Solution
Change all trigger target related types from `Entity` to
`Option<Entity>`
Small migration guide to come.
## Testing
CI
## Future Work
This turned a lot of code from
```rust
trigger.target()
```
to
```rust
trigger.target().unwrap()
```
The extra panic is no worse than before; it's just earlier than
panicking after passing the placeholder to something else.
But this is kinda annoying.
I would like to add a `TriggerMode` or something to `Event` that would
restrict what kinds of targets can be used for that event. Many events
like `Removed` etc, are always triggered with a target. We can make
those have a way to assume Some, etc. But I wanted to save that for a
future pr.
# Objective
Fixed#19035. Fixed#18882. It consisted of two different bugs:
- The allocations where being incremented even when a Data binding was
created.
- The ref counting on the binding was broken.
## Solution
- Stopped incrementing the allocations when a data binding was created.
- Rewrote the ref counting code to more reliably track the ref count.
## Testing
Tested my fix for 10 minutes with the `examples/3d/animated_material.rs`
example. I changed the example to spawn 51x51 meshes instead of 3x3
meshes to heighten the effects of the bug.
My branch: (After 10 minutes of running the modified example)
GPU: 172 MB
CPU: ~700 MB
Main branch: (After 2 minutes of running the modified example, my
computer started to stutter so I had to end it early)
GPU: 376 MB
CPU: ~1300 MB
# Objective
after #15156 it seems like using distinct directional lights on
different views is broken (and will probably break spotlights too). fix
them
## Solution
the reason is a bit hairy so with an example:
- camera 0 on layer 0
- camera 1 on layer 1
- dir light 0 on layer 0 (2 cascades)
- dir light 1 on layer 1 (2 cascades)
in render/lights.rs:
- outside of any view loop,
- we count the total number of shadow casting directional light cascades
(4) and assign an incrementing `depth_texture_base_index` for each (0-1
for one light, 2-3 for the other, depending on iteration order) (line
1034)
- allocate a texture array for the total number of cascades plus
spotlight maps (4) (line 1106)
- in the view loop, for directional lights we
- skip lights that don't intersect on renderlayers (line 1440)
- assign an incrementing texture layer to each light/cascade starting
from 0 (resets to 0 per view) (assigning 0 and 1 each time for the 2
cascades of the intersecting light) (line 1509, init at 1421)
then in the rendergraph:
- camera 0 renders the shadow map for light 0 to texture indices 0 and 1
- camera 0 renders using shadows from the `depth_texture_base_index`
(maybe 0-1, maybe 2-3 depending on the iteration order)
- camera 1 renders the shadow map for light 1 to texture indices 0 and 1
- camera 0 renders using shadows from the `depth_texture_base_index`
(maybe 0-1, maybe 2-3 depending on the iteration order)
issues:
- one of the views uses empty shadow maps (bug)
- we allocated a texture layer per cascade per light, even though not
all lights are used on all views (just inefficient)
- I think we're allocating texture layers even for lights with
`shadows_enabled: false` (just inefficient)
solution:
- calculate upfront the view with the largest number of directional
cascades
- allocate this many layers (plus layers for spotlights) in the texture
array
- keep using texture layers 0..n in the per-view loop, but build
GpuLights.gpu_directional_lights within the loop too so it refers to the
same layers we render to
nice side effects:
- we can now use `max_texture_array_layers / MAX_CASCADES_PER_LIGHT`
shadow-casting directional lights per view, rather than overall.
- we can remove the `GpuDirectionalLight::skip` field, since the gpu
lights struct is constructed per view
a simpler approach would be to keep everything the same, and just
increment the texture layer index in the view loop even for
non-intersecting lights. this pr reduces the total shadowmap vram used
as well and isn't *much* extra complexity. but if we want something less
risky/intrusive for 16.1 that would be the way.
## Testing
i edited the split screen example to put separate lights on layer 1 and
layer 2, and put the plane and fox on both layers (using lots of
unrelated code for render layer propagation from #17575).
without the fix the directional shadows will only render on one of the
top 2 views even though there are directional lights on both layers.
```rs
//! Renders two cameras to the same window to accomplish "split screen".
use std::f32::consts::PI;
use bevy::{
pbr::CascadeShadowConfigBuilder, prelude::*, render:📷:Viewport, window::WindowResized,
};
use bevy_render::view::RenderLayers;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugins(HierarchyPropagatePlugin::<RenderLayers>::default())
.add_systems(Startup, setup)
.add_systems(Update, (set_camera_viewports, button_system))
.run();
}
/// set up a simple 3D scene
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
let all_layers = RenderLayers::layer(1).with(2).with(3).with(4);
// plane
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(100.0, 100.0))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
all_layers.clone()
));
commands.spawn((
SceneRoot(
asset_server.load(GltfAssetLabel::Scene(0).from_asset("models/animated/Fox.glb")),
),
Propagate(all_layers.clone()),
));
// Light
commands.spawn((
Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
DirectionalLight {
shadows_enabled: true,
..default()
},
CascadeShadowConfigBuilder {
num_cascades: if cfg!(all(
feature = "webgl2",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
// Limited to 1 cascade in WebGL
1
} else {
2
},
first_cascade_far_bound: 200.0,
maximum_distance: 280.0,
..default()
}
.build(),
RenderLayers::layer(1),
));
commands.spawn((
Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
DirectionalLight {
shadows_enabled: true,
..default()
},
CascadeShadowConfigBuilder {
num_cascades: if cfg!(all(
feature = "webgl2",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
// Limited to 1 cascade in WebGL
1
} else {
2
},
first_cascade_far_bound: 200.0,
maximum_distance: 280.0,
..default()
}
.build(),
RenderLayers::layer(2),
));
// Cameras and their dedicated UI
for (index, (camera_name, camera_pos)) in [
("Player 1", Vec3::new(0.0, 200.0, -150.0)),
("Player 2", Vec3::new(150.0, 150., 50.0)),
("Player 3", Vec3::new(100.0, 150., -150.0)),
("Player 4", Vec3::new(-100.0, 80., 150.0)),
]
.iter()
.enumerate()
{
let camera = commands
.spawn((
Camera3d::default(),
Transform::from_translation(*camera_pos).looking_at(Vec3::ZERO, Vec3::Y),
Camera {
// Renders cameras with different priorities to prevent ambiguities
order: index as isize,
..default()
},
CameraPosition {
pos: UVec2::new((index % 2) as u32, (index / 2) as u32),
},
RenderLayers::layer(index+1)
))
.id();
// Set up UI
commands
.spawn((
UiTargetCamera(camera),
Node {
width: Val::Percent(100.),
height: Val::Percent(100.),
..default()
},
))
.with_children(|parent| {
parent.spawn((
Text::new(*camera_name),
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.),
left: Val::Px(12.),
..default()
},
));
buttons_panel(parent);
});
}
fn buttons_panel(parent: &mut ChildSpawnerCommands) {
parent
.spawn(Node {
position_type: PositionType::Absolute,
width: Val::Percent(100.),
height: Val::Percent(100.),
display: Display::Flex,
flex_direction: FlexDirection::Row,
justify_content: JustifyContent::SpaceBetween,
align_items: AlignItems::Center,
padding: UiRect::all(Val::Px(20.)),
..default()
})
.with_children(|parent| {
rotate_button(parent, "<", Direction::Left);
rotate_button(parent, ">", Direction::Right);
});
}
fn rotate_button(parent: &mut ChildSpawnerCommands, caption: &str, direction: Direction) {
parent
.spawn((
RotateCamera(direction),
Button,
Node {
width: Val::Px(40.),
height: Val::Px(40.),
border: UiRect::all(Val::Px(2.)),
justify_content: JustifyContent::Center,
align_items: AlignItems::Center,
..default()
},
BorderColor(Color::WHITE),
BackgroundColor(Color::srgb(0.25, 0.25, 0.25)),
))
.with_children(|parent| {
parent.spawn(Text::new(caption));
});
}
}
#[derive(Component)]
struct CameraPosition {
pos: UVec2,
}
#[derive(Component)]
struct RotateCamera(Direction);
enum Direction {
Left,
Right,
}
fn set_camera_viewports(
windows: Query<&Window>,
mut resize_events: EventReader<WindowResized>,
mut query: Query<(&CameraPosition, &mut Camera)>,
) {
// We need to dynamically resize the camera's viewports whenever the window size changes
// so then each camera always takes up half the screen.
// A resize_event is sent when the window is first created, allowing us to reuse this system for initial setup.
for resize_event in resize_events.read() {
let window = windows.get(resize_event.window).unwrap();
let size = window.physical_size() / 2;
for (camera_position, mut camera) in &mut query {
camera.viewport = Some(Viewport {
physical_position: camera_position.pos * size,
physical_size: size,
..default()
});
}
}
}
fn button_system(
interaction_query: Query<
(&Interaction, &ComputedNodeTarget, &RotateCamera),
(Changed<Interaction>, With<Button>),
>,
mut camera_query: Query<&mut Transform, With<Camera>>,
) {
for (interaction, computed_target, RotateCamera(direction)) in &interaction_query {
if let Interaction::Pressed = *interaction {
// Since TargetCamera propagates to the children, we can use it to find
// which side of the screen the button is on.
if let Some(mut camera_transform) = computed_target
.camera()
.and_then(|camera| camera_query.get_mut(camera).ok())
{
let angle = match direction {
Direction::Left => -0.1,
Direction::Right => 0.1,
};
camera_transform.rotate_around(Vec3::ZERO, Quat::from_axis_angle(Vec3::Y, angle));
}
}
}
}
use std::marker::PhantomData;
use bevy::{
app::{App, Plugin, Update},
ecs::query::QueryFilter,
prelude::{
Changed, Children, Commands, Component, Entity, Local, Query,
RemovedComponents, SystemSet, With, Without,
},
};
/// Causes the inner component to be added to this entity and all children.
/// A child with a Propagate<C> component of it's own will override propagation from
/// that point in the tree
#[derive(Component, Clone, PartialEq)]
pub struct Propagate<C: Component + Clone + PartialEq>(pub C);
/// Internal struct for managing propagation
#[derive(Component, Clone, PartialEq)]
pub struct Inherited<C: Component + Clone + PartialEq>(pub C);
/// Stops the output component being added to this entity.
/// Children will still inherit the component from this entity or its parents
#[derive(Component, Default)]
pub struct PropagateOver<C: Component + Clone + PartialEq>(PhantomData<fn() -> C>);
/// Stops the propagation at this entity. Children will not inherit the component.
#[derive(Component, Default)]
pub struct PropagateStop<C: Component + Clone + PartialEq>(PhantomData<fn() -> C>);
pub struct HierarchyPropagatePlugin<C: Component + Clone + PartialEq, F: QueryFilter = ()> {
_p: PhantomData<fn() -> (C, F)>,
}
impl<C: Component + Clone + PartialEq, F: QueryFilter> Default for HierarchyPropagatePlugin<C, F> {
fn default() -> Self {
Self {
_p: Default::default(),
}
}
}
#[derive(SystemSet, Clone, PartialEq, PartialOrd, Ord)]
pub struct PropagateSet<C: Component + Clone + PartialEq> {
_p: PhantomData<fn() -> C>,
}
impl<C: Component + Clone + PartialEq> std::fmt::Debug for PropagateSet<C> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("PropagateSet")
.field("_p", &self._p)
.finish()
}
}
impl<C: Component + Clone + PartialEq> Eq for PropagateSet<C> {}
impl<C: Component + Clone + PartialEq> std:#️⃣:Hash for PropagateSet<C> {
fn hash<H: std:#️⃣:Hasher>(&self, state: &mut H) {
self._p.hash(state);
}
}
impl<C: Component + Clone + PartialEq> Default for PropagateSet<C> {
fn default() -> Self {
Self {
_p: Default::default(),
}
}
}
impl<C: Component + Clone + PartialEq, F: QueryFilter + 'static> Plugin
for HierarchyPropagatePlugin<C, F>
{
fn build(&self, app: &mut App) {
app.add_systems(
Update,
(
update_source::<C, F>,
update_stopped::<C, F>,
update_reparented::<C, F>,
propagate_inherited::<C, F>,
propagate_output::<C, F>,
)
.chain()
.in_set(PropagateSet::<C>::default()),
);
}
}
pub fn update_source<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
changed: Query<(Entity, &Propagate<C>), (Changed<Propagate<C>>, Without<PropagateStop<C>>)>,
mut removed: RemovedComponents<Propagate<C>>,
) {
for (entity, source) in &changed {
commands
.entity(entity)
.try_insert(Inherited(source.0.clone()));
}
for removed in removed.read() {
if let Ok(mut commands) = commands.get_entity(removed) {
commands.remove::<(Inherited<C>, C)>();
}
}
}
pub fn update_stopped<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
q: Query<Entity, (With<Inherited<C>>, F, With<PropagateStop<C>>)>,
) {
for entity in q.iter() {
let mut cmds = commands.entity(entity);
cmds.remove::<Inherited<C>>();
}
}
pub fn update_reparented<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
moved: Query<
(Entity, &ChildOf, Option<&Inherited<C>>),
(
Changed<ChildOf>,
Without<Propagate<C>>,
Without<PropagateStop<C>>,
F,
),
>,
parents: Query<&Inherited<C>>,
) {
for (entity, parent, maybe_inherited) in &moved {
if let Ok(inherited) = parents.get(parent.parent()) {
commands.entity(entity).try_insert(inherited.clone());
} else if maybe_inherited.is_some() {
commands.entity(entity).remove::<(Inherited<C>, C)>();
}
}
}
pub fn propagate_inherited<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
changed: Query<
(&Inherited<C>, &Children),
(Changed<Inherited<C>>, Without<PropagateStop<C>>, F),
>,
recurse: Query<
(Option<&Children>, Option<&Inherited<C>>),
(Without<Propagate<C>>, Without<PropagateStop<C>>, F),
>,
mut to_process: Local<Vec<(Entity, Option<Inherited<C>>)>>,
mut removed: RemovedComponents<Inherited<C>>,
) {
// gather changed
for (inherited, children) in &changed {
to_process.extend(
children
.iter()
.map(|child| (child, Some(inherited.clone()))),
);
}
// and removed
for entity in removed.read() {
if let Ok((Some(children), _)) = recurse.get(entity) {
to_process.extend(children.iter().map(|child| (child, None)))
}
}
// propagate
while let Some((entity, maybe_inherited)) = (*to_process).pop() {
let Ok((maybe_children, maybe_current)) = recurse.get(entity) else {
continue;
};
if maybe_current == maybe_inherited.as_ref() {
continue;
}
if let Some(children) = maybe_children {
to_process.extend(
children
.iter()
.map(|child| (child, maybe_inherited.clone())),
);
}
if let Some(inherited) = maybe_inherited {
commands.entity(entity).try_insert(inherited.clone());
} else {
commands.entity(entity).remove::<(Inherited<C>, C)>();
}
}
}
pub fn propagate_output<C: Component + Clone + PartialEq, F: QueryFilter>(
mut commands: Commands,
changed: Query<
(Entity, &Inherited<C>, Option<&C>),
(Changed<Inherited<C>>, Without<PropagateOver<C>>, F),
>,
) {
for (entity, inherited, maybe_current) in &changed {
if maybe_current.is_some_and(|c| &inherited.0 == c) {
continue;
}
commands.entity(entity).try_insert(inherited.0.clone());
}
}
```
# Objective
- Related to #19024
## Solution
- Use the new `load_shader_library` macro for the shader libraries and
`embedded_asset`/`load_embedded_asset` for the "shader binaries" in
`bevy_pbr` (excluding meshlets).
## Testing
- `atmosphere` example still works
- `fog` example still works
- `decal` example still works
P.S. I don't think this needs a migration guide. Technically users could
be using the `pub` weak handles, but there's no actual good use for
them, so omitting it seems fine. Alternatively, we could mix this in
with the migration guide notes for #19137.
# Objective
- Simplify `Camera` initialization
- allow effects to require HDR
## Solution
- Split out `Camera.hdr` into a marker `Hdr` component
## Testing
- ran `bloom_3d` example
---
## Showcase
```rs
// before
commands.spawn((
Camera3d
Camera {
hdr: true
..Default::default()
}
))
// after
commands.spawn((Camera3d, Hdr));
// other rendering components can require that the camera enables hdr!
// currently implemented for Bloom, AutoExposure, and Atmosphere.
#[require(Hdr)]
pub struct Bloom;
```
# Objective
Spot light shadows are still broken after fixing point lights in #19265
## Solution
Fix spot lights in the same way, just using the spot light specific
visible entities component. I also changed the query to be directly in
the render world instead of being extracted to be more accurate.
## Testing
Tested with the same code but changing `PointLight` to `SpotLight`.
# Objective
Fixes#19150
## Solution
Normally the `validate_cached_entity` in
86cc02dca2/crates/bevy_pbr/src/prepass/mod.rs (L1109-L1126)
marks unchanged entites as clean, which makes them remain in the phase.
If a material is changed to an `alpha_mode` that isn't supposed to be
added to the prepass pipeline, the specialization system just
`continue`s and doesn't indicate to the cache that the entity is not
clean anymore.
I made these invalid entities get removed from the pipeline cache so
that they are correctly not marked clean and then removed from the
phase.
## Testing
Tested with the example code from the issue.
# Objective
Fixes#18945
## Solution
Entities that are not visible in any view (camera or light), get their
render meshes removed. When they become visible somewhere again, the
meshes get recreated and assigned possibly different ids.
Point/spot light visible entities weren't cleared when the lights
themseves went out of view, which caused them to try to queue these fake
visible entities for rendering every frame. The shadow phase cache
usually flushes non visible entites, but because of this bug it never
flushed them and continued to queue meshes with outdated ids.
The simple solution is to every frame clear all visible entities for all
point/spot lights that may or may not be visible. The visible entities
get repopulated directly afterwards. I also renamed the
`global_point_lights` to `global_visible_clusterable` to make it clear
that it includes only visible things.
## Testing
- Tested with the code from the issue.
# Objective
- Get in-engine shader hot reloading working
## Solution
- Adopt #12009
- Cut back on everything possible to land an MVP: we only hot-reload PBR
in deferred shading mode. This is to minimize the diff and avoid merge
hell. The rest shall come in followups.
## Testing
- `cargo run --example pbr --features="embedded_watcher"` and edit some
pbr shader code
# Objective
Fixes#19027
## Solution
Query for the material binding id if using fallback CPU processing
## Testing
I've honestly no clue how to test for this, and I imagine that this
isn't entirely failsafe :( but would highly appreciate a suggestion!
To verify this works, please run the the texture.rs example using WebGL
2.
Additionally, I'm extremely naive about the nuances of pbr. This PR is
essentially to kinda *get the ball rolling* of sorts. Thanks :)
---------
Co-authored-by: Gilles Henaux <ghx_github_priv@fastmail.com>
Co-authored-by: charlotte <charlotte.c.mcelwain@gmail.com>
# Objective
Fixes a part of #14274.
Bevy has an incredibly inconsistent naming convention for its system
sets, both internally and across the ecosystem.
<img alt="System sets in Bevy"
src="https://github.com/user-attachments/assets/d16e2027-793f-4ba4-9cc9-e780b14a5a1b"
width="450" />
*Names of public system set types in Bevy*
Most Bevy types use a naming of `FooSystem` or just `Foo`, but there are
also a few `FooSystems` and `FooSet` types. In ecosystem crates on the
other hand, `FooSet` is perhaps the most commonly used name in general.
Conventions being so wildly inconsistent can make it harder for users to
pick names for their own types, to search for system sets on docs.rs, or
to even discern which types *are* system sets.
To reign in the inconsistency a bit and help unify the ecosystem, it
would be good to establish a common recommended naming convention for
system sets in Bevy itself, similar to how plugins are commonly suffixed
with `Plugin` (ex: `TimePlugin`). By adopting a consistent naming
convention in first-party Bevy, we can softly nudge ecosystem crates to
follow suit (for types where it makes sense to do so).
Choosing a naming convention is also relevant now, as the [`bevy_cli`
recently adopted
lints](https://github.com/TheBevyFlock/bevy_cli/pull/345) to enforce
naming for plugins and system sets, and the recommended naming used for
system sets is still a bit open.
## Which Name To Use?
Now the contentious part: what naming convention should we actually
adopt?
This was discussed on the Bevy Discord at the end of last year, starting
[here](<https://discord.com/channels/691052431525675048/692572690833473578/1310659954683936789>).
`FooSet` and `FooSystems` were the clear favorites, with `FooSet` very
narrowly winning an unofficial poll. However, it seems to me like the
consensus was broadly moving towards `FooSystems` at the end and after
the poll, with Cart
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311140204974706708))
and later Alice
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311092530732859533))
and also me being in favor of it.
Let's do a quick pros and cons list! Of course these are just what I
thought of, so take it with a grain of salt.
`FooSet`:
- Pro: Nice and short!
- Pro: Used by many ecosystem crates.
- Pro: The `Set` suffix comes directly from the trait name `SystemSet`.
- Pro: Pairs nicely with existing APIs like `in_set` and
`configure_sets`.
- Con: `Set` by itself doesn't actually indicate that it's related to
systems *at all*, apart from the implemented trait. A set of what?
- Con: Is `FooSet` a set of `Foo`s or a system set related to `Foo`? Ex:
`ContactSet`, `MeshSet`, `EnemySet`...
`FooSystems`:
- Pro: Very clearly indicates that the type represents a collection of
systems. The actual core concept, system(s), is in the name.
- Pro: Parallels nicely with `FooPlugins` for plugin groups.
- Pro: Low risk of conflicts with other names or misunderstandings about
what the type is.
- Pro: In most cases, reads *very* nicely and clearly. Ex:
`PhysicsSystems` and `AnimationSystems` as opposed to `PhysicsSet` and
`AnimationSet`.
- Pro: Easy to search for on docs.rs.
- Con: Usually results in longer names.
- Con: Not yet as widely used.
Really the big problem with `FooSet` is that it doesn't actually
describe what it is. It describes what *kind of thing* it is (a set of
something), but not *what it is a set of*, unless you know the type or
check its docs or implemented traits. `FooSystems` on the other hand is
much more self-descriptive in this regard, at the cost of being a bit
longer to type.
Ultimately, in some ways it comes down to preference and how you think
of system sets. Personally, I was originally in favor of `FooSet`, but
have been increasingly on the side of `FooSystems`, especially after
seeing what the new names would actually look like in Avian and now
Bevy. I prefer it because it usually reads better, is much more clearly
related to groups of systems than `FooSet`, and overall *feels* more
correct and natural to me in the long term.
For these reasons, and because Alice and Cart also seemed to share a
preference for it when it was previously being discussed, I propose that
we adopt a `FooSystems` naming convention where applicable.
## Solution
Rename Bevy's system set types to use a consistent `FooSet` naming where
applicable.
- `AccessibilitySystem` → `AccessibilitySystems`
- `GizmoRenderSystem` → `GizmoRenderSystems`
- `PickSet` → `PickingSystems`
- `RunFixedMainLoopSystem` → `RunFixedMainLoopSystems`
- `TransformSystem` → `TransformSystems`
- `RemoteSet` → `RemoteSystems`
- `RenderSet` → `RenderSystems`
- `SpriteSystem` → `SpriteSystems`
- `StateTransitionSteps` → `StateTransitionSystems`
- `RenderUiSystem` → `RenderUiSystems`
- `UiSystem` → `UiSystems`
- `Animation` → `AnimationSystems`
- `AssetEvents` → `AssetEventSystems`
- `TrackAssets` → `AssetTrackingSystems`
- `UpdateGizmoMeshes` → `GizmoMeshSystems`
- `InputSystem` → `InputSystems`
- `InputFocusSet` → `InputFocusSystems`
- `ExtractMaterialsSet` → `MaterialExtractionSystems`
- `ExtractMeshesSet` → `MeshExtractionSystems`
- `RumbleSystem` → `RumbleSystems`
- `CameraUpdateSystem` → `CameraUpdateSystems`
- `ExtractAssetsSet` → `AssetExtractionSystems`
- `Update2dText` → `Text2dUpdateSystems`
- `TimeSystem` → `TimeSystems`
- `AudioPlaySet` → `AudioPlaybackSystems`
- `SendEvents` → `EventSenderSystems`
- `EventUpdates` → `EventUpdateSystems`
A lot of the names got slightly longer, but they are also a lot more
consistent, and in my opinion the majority of them read much better. For
a few of the names I took the liberty of rewording things a bit;
definitely open to any further naming improvements.
There are still also cases where the `FooSystems` naming doesn't really
make sense, and those I left alone. This primarily includes system sets
like `Interned<dyn SystemSet>`, `EnterSchedules<S>`, `ExitSchedules<S>`,
or `TransitionSchedules<S>`, where the type has some special purpose and
semantics.
## Todo
- [x] Should I keep all the old names as deprecated type aliases? I can
do this, but to avoid wasting work I'd prefer to first reach consensus
on whether these renames are even desired.
- [x] Migration guide
- [x] Release notes
# Objective
Fixes#18843
## Solution
We need to account for the material being added and removed in the
course of the same frame. We evict the caches first because the entity
will be re-added if it was marked as needing specialization, which
avoids another check on removed components to see if it was "really"
despawned.
There's still a race resulting in blank materials whenever a material of
type A is added on the same frame that a material of type B is removed.
PR #18734 improved the situation, but ultimately didn't fix the race
because of two issues:
1. The `late_sweep_material_instances` system was never scheduled. This
PR fixes the problem by scheduling that system.
2. `early_sweep_material_instances` needs to be called after *every*
material type has been extracted, not just when the material of *that*
type has been extracted. The `chain()` added during the review process
in PR #18734 broke this logic. This PR reverts that and fixes the
ordering by introducing a new `SystemSet` that contains all material
extraction systems.
I also took the opportunity to switch a manual reference to
`AssetId::<StandardMaterial>::invalid()` to the new
`DUMMY_MESH_MATERIAL` constant for clarity.
Because this is a bug that can affect any application that switches
material types in a single frame, I think this should be uplifted to
Bevy 0.16.
Fixes#18809Fixes#18823
Meshes despawned in `Last` can still be in visisible entities if they
were visible as of `PostUpdate`. Sanity check that the mesh actually
exists before we specialize. We still want to unconditionally assume
that the entity is in `EntitySpecializationTicks` as its absence from
that cache would likely suggest another bug.
# Objective
The goal of `bevy_platform_support` is to provide a set of platform
agnostic APIs, alongside platform-specific functionality. This is a high
traffic crate (providing things like HashMap and Instant). Especially in
light of https://github.com/bevyengine/bevy/discussions/18799, it
deserves a friendlier / shorter name.
Given that it hasn't had a full release yet, getting this change in
before Bevy 0.16 makes sense.
## Solution
- Rename `bevy_platform_support` to `bevy_platform`.
A clippy failure slipped into #18768, although I'm not sure why CI
didn't catch it.
```sh
> cargo clippy --version
clippy 0.1.85 (4eb161250e 2025-03-15)
> cargo run -p ci
...
error: empty line after doc comment
--> crates\bevy_pbr\src\light\mod.rs:105:5
|
105 | / /// The width and height of each of the 6 faces of the cubemap.
106 | |
| |_^
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#empty_line_after_doc_comments
= note: `-D clippy::empty-line-after-doc-comments` implied by `-D warnings`
= help: to override `-D warnings` add `#[allow(clippy::empty_line_after_doc_comments)]`
= help: if the empty line is unintentional remove it
help: if the documentation should include the empty line include it in the comment
|
106 | ///
|
```
# Objective
- Improve the docs for `PointLightShadowMap` and
`DirectionalLightShadowMap`
## Solution
- Add example for how to use `PointLightShadowMap` and move the
`DirectionalLightShadowMap` example from `DirectionalLight`.
- Match `PointLight` and `DirectionalLight` docs about shadows.
- Describe what `size` means.
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>