Commit Graph

1042 Commits

Author SHA1 Message Date
dependabot[bot]
0a95597c9d
Update meshopt requirement from 0.4.1 to 0.5.0
Updates the requirements on [meshopt](https://github.com/gwihlidal/meshopt-rs) to permit the latest version.
- [Release notes](https://github.com/gwihlidal/meshopt-rs/releases)
- [Changelog](https://github.com/gwihlidal/meshopt-rs/blob/master/CHANGES.md)
- [Commits](https://github.com/gwihlidal/meshopt-rs/compare/v0.4.1...v0.5.0)

---
updated-dependencies:
- dependency-name: meshopt
  dependency-version: 0.5.0
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-07-07 20:48:19 +00:00
atlv
e2810085a8
remove unused dependencies (#19998)
# Objective

- dont depend on things we dont need tp

## Solution

- just dont do it

## Testing

- 3d_scene runs
2025-07-07 20:10:33 +00:00
atlv
cb227b1e03
make optional crates for mesh, camera, and light (#19997)
# Objective

- nice bevy::camera bevy::mesh bevy::light imports
- skip bevy_light in 2d

## Solution

- add optional crates to internal
- make light only included when building pbr

## Testing

- 3d_scene
2025-07-07 07:35:32 +00:00
atlv
1fb5a62297
fix meshlets with charlotte (#19996)
# Objective

- fix meshlets not finding entrypoint and crashing

# Solution

- remove faulty ifdefs
2025-07-07 03:47:14 +00:00
atlv
537adcc3f7
bevy_light (#19991)
# Objective

- make lights usable without bevy_render

## Solution

- make a new crate for lights to live in

## Testing

- 3d_scene, lighting, volumetric_fog, ssr, transmission, pcss,
light_textures

Note: no breaking changes because of re-exports, except for light
textures, which were introduced this cycle so it doesn't matter anyways
2025-07-07 00:07:38 +00:00
atlv
5b38989ac4
dont hard code clustering limits on cpu side so they can be informed by Limits later (#19985)
# Objective

- prepare bevy_light for split
- make limits more dynamically configurable

## Solution

- use settings struct

## Testing

- 3d_scene, lighting
2025-07-06 19:36:58 +00:00
atlv
baa88b98a3
fix variable-termination loop gradients by sampling specific lod (#19988)
# Objective

- Calculating gradients in variable-termination loop is bad, and we dont
need to here

## Solution

- Sample mip 0 always

## Testing

- volumetric_fog example
2025-07-06 19:13:10 +00:00
atlv
1579256709
Rename light visibility class (#19986)
# Objective

- prepare bevy_light for split
- make struct named better
- put it where it belongs

## Solution

- do those things

## Testing

- 3d_scene, lighting

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-07-06 19:04:30 +00:00
atlv
b5cefe2b5d
extract cluster extract to a separate module (#19973)
# Objective

- prepare bevy_light for split

## Solution

- split render world extract related cluster code from main world ecs
stuff

re-exports make this not breaking
2025-07-06 17:19:36 +00:00
atlv
c5fe7f0975
consistently dont use smallvec default features (#19972)
# Objective

- for smallvec some crates specify default features false, other dont.
turns out we dont need them

## Solution

- remove

## Testing

- 3d_scene
2025-07-06 04:25:26 +00:00
atlv
dd57db44d9
prepare bevy_light for split (#19965)
# Objective

- prepare bevy_light for split

## Solution

- extract cascade module (this is not strictly necessary for bevy_light)
- clean up imports to be less globby and tangled
- move light specific stuff into light modules
- move light system and type init from pbr into new LightPlugin

## Testing

- 3d_scene, lighting

NOTE TO REVIEWERS: it may help to review commits independently.
2025-07-06 04:11:46 +00:00
atlv
0b771d9f59
move ClusteredDecal to cluster module (#19959)
# Objective

- Make bevy_light possible by making it possible to split out
clusterable into bevy_camera

## Solution

- move ClusteredDecal to cluster module
- Depends on #19957 (because of the imports shuffling around) (draft
until thats merged)

## Testing

- 3d_scene runs

Note: no breaking changes thanks to re-exports
2025-07-05 19:31:59 +00:00
atlv
6ab8e0d9c7
move ShadowsEnabled to material (#19963)
# Objective

- Make bevy_light possible

## Solution

- Move non-light stuff out of light module (its a marker for whether a
material should cast shadows: thats a material property not a light
property)

## Testing

- 3d_scene runs
2025-07-05 17:05:14 +00:00
atlv
ced36021d0
move light stuff out of decal cluster (#19962)
# Objective

- Make bevy_light possible

## Solution

- Move light stuff into light module

## Testing

- 3d_scene runs

Note: no breaking changes thanks to re-exports
2025-07-05 17:04:21 +00:00
atlv
47e99c8285
move Cubemap stuff alongside CubemapFrusta in bevy_camera::primitives (#19955)
# Objective

- Make bevy_light possible

## Solution

- Move some stuff it needs out of somewhere it cant depend on. Plus it
makes sense, cubemap stuff goes next to cubemap stuff.

## Testing

- 3d_scene runs

Note: no breaking changes thanks to re-exports
2025-07-05 14:40:59 +00:00
atlv
59e8702a65
move calculate_cluster_factors to cluster assign (#19958)
# Objective

- Make bevy_light possible by making it possible to split out
clusterable into bevy_camera

## Solution

- Move some stuff so i can split it out cleanly.

## Testing

- 3d_scene runs
2025-07-05 14:40:33 +00:00
atlv
f987920bbd
Move CubemapLayout out of decal code (#19960)
# Objective

- Make bevy_light possible by making it possible to split out
clusterable into bevy_camera

## Solution

- Move cubemap stuff next to cubemap stuff.

## Testing

- 3d_scene runs

Note: no breaking changes thanks to re-exports
2025-07-05 14:40:28 +00:00
atlv
bdb39cf723
move spot light function into spot light file (#19956)
# Objective

- Make bevy_light possible

## Solution

- Move some stuff it needs out of somewhere it cant depend on. Plus it
makes sense, spotlight stuff goes in spotlight file.

## Testing

- 3d_scene runs

Note: no breaking changes thanks to re-exports
2025-07-05 14:40:06 +00:00
atlv
d0896bf10a
make cluster assign not depend on RenderAdapter/RenderDevice (#19957)
# Objective

- Make bevy_light possible by making it possible to split out
clusterable into bevy_camera

## Solution

- Use a resource to store cluster settings instead of recalculating it
every time from the render adapter/device

## Testing

- 3d_scene runs
2025-07-05 14:39:41 +00:00
atlv
bfbc6c3d11
move some Visibility stuff to bevy_camera::visibility (#19954)
# Objective

- Make bevy_light possible

## Solution

- Move some stuff it needs out of somewhere it cant depend on. Plus it
makes sense, visibility stuff goes in visibility.

## Testing

- 3d_scene runs

Note: no breaking changes thanks to re-exports
2025-07-05 13:24:20 +00:00
robtfm
b79b8133c8
fix skin uniform buffer size (#19888)
# Objective

for `BufferUsages::STORAGE` on webgpu (and maybe other contexts), buffer
sizes must be a multiple of 4. the skin uniform buffer starts at 16384
then increases by 1.5x, which eventually hits a number which isn't

## Solution

`.next_multiple_of(4)`
2025-07-02 20:06:27 +00:00
charlotte 🌸
18712f31f9
Make render and compute pipeline descriptors defaultable. (#19903)
A few versions ago, wgpu made it possible to set shader entry point to
`None`, which will select the correct entry point in file where only a
single entrypoint is specified. This makes it possible to implement
`Default` for pipeline descriptors. This PR does so and attempts to
`..default()` everything possible.
2025-07-02 18:47:27 +00:00
andriyDev
f95f42b44a
Allow calling add_render_graph_node on World. (#19912)
# Objective

- This unblocks some work I am doing for #19887.

## Solution

- Rename `RenderGraphApp` to `RenderGraphExt`.
- Implement `RenderGraphExt` for `World`.
- Change `SubApp` and `App` to call the `World` impl.
2025-07-02 14:56:18 +00:00
andriyDev
d05c435848
Replace Handle::Weak with Handle::Uuid. (#19896)
# Objective

- Progress towards #19024.

## Solution

- Remove `Handle::Weak`!

If users were relying on `Handle::Weak` for some purpose, they can
almost certainly replace it with raw `AssetId` instead. If they cannot,
they can make their own enum that holds either a Handle or an AssetId.
In either case, we don't need weak handles!

Sadly we still need Uuid handles since we rely on them for "default"
assets and "invalid" assets, as well as anywhere where a component wants
to impl default with a non-defaulted asset handle. One step at a time
though!
2025-07-02 14:40:35 +00:00
andriyDev
1a410efd24
Flatten PrepassPipelineInternal into PrepassPipeline. (#19909)
# Objective

- PrepassPipelineInternal used to exist to optimize compile time and
binary size when PrepassPipeline was generic over the material.
- After #19667, PrepassPipeline is no longer generic!

## Solution

- Flatten all the fields of `PrepassPipelineInternal` into
`PrepassPipeline`.
2025-07-01 19:27:42 +00:00
charlotte 🌸
6ad93ede86
Correctly disable prepass/shadows when configured on MaterialPlugin<M> (#19890)
Previously, the specialize/queue systems were added per-material and the
plugin prepass/shadow enable flags controlled whether we added those
systems. Now, we make this a property of the material instance and check
for it when specializing. Fixes
https://github.com/bevyengine/bevy/issues/19850.
2025-07-01 03:24:58 +00:00
andriyDev
e072625264
Move ExtractInstancesPlugin<EnvironmentMapIds> init to app. (#19867)
# Objective

- This plugin currently does nothing. That's because we add the plugin
to the `RenderApp`. Inside the plugin it then looks for the `RenderApp`
itself, but since it was added **to** the `RenderApp`, it will never
find the `RenderApp`.

## Solution

- Move the plugin into build, and more importantly, add it to the app
not the render_app.
2025-07-01 03:24:41 +00:00
IceSentry
f98727c1b1
Use RenderStartup in MaterialPlugin (#19885)
# Objective

- The MaterialPlugin has some ugly code to initialize some data in the
render world
- #19887

## Solution

- Use the new RenderStartup schedule to use a system instead of using
the plugin `finish()`

## Testing

- Tested that the 3d_scene and shader_material example still work as
expected
2025-06-30 23:54:13 +00:00
robtfm
a2992fcffd
Light Textures (#18031)
# Objective

add support for light textures (also known as light cookies, light
functions, and light projectors)


![image](https://github.com/user-attachments/assets/afdb23e2-b35f-4bf0-bf92-f883cd7db771)

## Solution

- add components:

```rs
/// Add to a [`PointLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,  
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
pub struct PointLightTexture {
    /// The texture image. Only the R channel is read.
    pub image: Handle<Image>,
    /// The cubemap layout. The image should be a packed cubemap in one of the formats described by the [`CubemapLayout`] enum.
    pub cubemap_layout: CubemapLayout,
}

/// Add to a [`SpotLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,  
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
pub struct SpotLightTexture {
    /// The texture image. Only the R channel is read.
    /// Note the border of the image should be entirely black to avoid leaking light.
    pub image: Handle<Image>,
}

/// Add to a [`DirectionalLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,  
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
pub struct DirectionalLightTexture {
    /// The texture image. Only the R channel is read.
    pub image: Handle<Image>,
    /// Whether to tile the image infinitely, or use only a single tile centered at the light's translation
    pub tiled: bool,
}
```

- store images to the `RenderClusteredDecals` buffer
- read the image and modulate the lights
- add `light_textures` example to showcase the new features

## Testing

see light_textures example
2025-06-30 21:56:17 +00:00
atlv
57e58ef997
Meshlet BVH Culling (#19318)
# Objective

- Merge @SparkyPotato 's efforts to implement BVH-accelerated meshlet
culling.

## Solution

- Add hot reloading support
- Fix near-plane overculling
- Fix hzb sampling
- Fix orthographic error metric

## Testing

- Meshlet example, Nsight, hot-reloading and careful thinking

---------

Co-authored-by: SparkyPotato <noob.sparkypotato@gmail.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
Co-authored-by: charlotte <charlotte.c.mcelwain@gmail.com>
2025-06-29 00:04:21 +00:00
IceSentry
37bbbf753d
Use SmallVec instead of HashMap in MaterialProperties (#19846)
# Objective

- MaterialProperties uses HashMap for some data that is generally going
to be really small. This is likely using more memory than necessary

## Solution

- Use a SmallVec instead
- I used the size a StandardMaterial would need for all the backing
arrays

## Testing

- Tested the 3d_scene to confirm it still works

## Notes

I'm not sure if it made a measurable difference since I'm not sure how
to measure this. It's a bit hard to create an artificial workflow where
this would be the main bottleneck. This is very in the realm of
microoptimization.
2025-06-28 18:43:56 +00:00
charlotte 🌸
e6ba9a6d18
Type erased materials (#19667)
# Objective

Closes #18075

In order to enable a number of patterns for dynamic materials in the
engine, it's necessary to decouple the renderer from the `Material`
trait.

This opens the possibility for:
- Materials that aren't coupled to `AsBindGroup`.
- 2d using the underlying 3d bindless infrastructure.
- Dynamic materials that can change their layout at runtime.
- Materials that aren't even backed by a Rust struct at all.

## Solution

In short, remove all trait bounds from render world material systems and
resources. This means moving a bunch of stuff onto `MaterialProperties`
and engaging in some hacks to make specialization work. Rather than
storing the bind group data in `MaterialBindGroupAllocator`, right now
we're storing it in a closure on `MaterialProperties`. TBD if this has
bad performance characteristics.

## Benchmarks

- `many_cubes`:
`cargo run --example many_cubes --release --features=bevy/trace_tracy --
--vary-material-data-per-instance`:
![Screenshot 2025-06-26
235426](https://github.com/user-attachments/assets/10a0ee29-9932-4f91-ab43-33518b117ac5)

- @DGriffin91's Caldera
`cargo run --release --features=bevy/trace_tracy -- --random-materials`

![image](https://github.com/user-attachments/assets/ef91ba6a-8e88-4922-a73f-acb0af5b0dbc)


- @DGriffin91's Caldera with 20 unique material types (i.e.
`MaterialPlugin<M>`) and random materials per mesh
`cargo run --release --features=bevy/trace_tracy -- --random-materials`
![Screenshot 2025-06-27
000425](https://github.com/user-attachments/assets/9561388b-881d-46cf-8c3d-b15b3e9aedc7)


### TODO

- We almost certainly lost some parallelization from removing the type
params that could be gained back from smarter iteration.
- Test all the things that could have broken.
- ~Fix meshlets~

## Showcase

See [the
example](https://github.com/bevyengine/bevy/pull/19667/files#diff-9d768cfe1c3aa81eff365d250d3cbe5a63e8df63e81dd85f64c3c3cd993f6d94)
for a custom material implemented without the use of the `Material`
trait and thus `AsBindGroup`.


![image](https://github.com/user-attachments/assets/e3fcca7c-e04e-4a4e-9d89-39d697a9e3b8)

---------

Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: IceSentry <c.giguere42@gmail.com>
2025-06-27 22:57:24 +00:00
charlotte 🌸
a0b90cd618
Resolution override (#19817)
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
Co-authored-by: atlv <email@atlasdostal.com>
2025-06-27 16:30:54 +00:00
atlv
410ca48023
cleanup constants (#19831)
# Objective

- i think const exprs werent supported in naga when these were written,
and we've just stuck with that since then. they're supported now so lets
use them

## Solution

- do that thang

## Testing

- transparency_3d, transmission, ssr, 3d_scene, couple others. they all
look fine
2025-06-27 07:02:03 +00:00
atlv
b62b14c293
Add UVec to_extents helper method (#19807)
# Objective

- Simplify common usecase

## Solution

- Helper trait
2025-06-26 20:53:49 +00:00
charlotte 🌸
96dcbc5f8c
Ugrade to wgpu version 25.0 (#19563)
# Objective

Upgrade to `wgpu` version `25.0`.

Depends on https://github.com/bevyengine/naga_oil/pull/121

## Solution

### Problem

The biggest issue we face upgrading is the following requirement:
> To facilitate this change, there was an additional validation rule put
in place: if there is a binding array in a bind group, you may not use
dynamic offset buffers or uniform buffers in that bind group. This
requirement comes from vulkan rules on UpdateAfterBind descriptors.

This is a major difficulty for us, as there are a number of binding
arrays that are used in the view bind group. Note, this requirement does
not affect merely uniform buffors that use dynamic offset but the use of
*any* uniform in a bind group that also has a binding array.

### Attempted fixes

The easiest fix would be to change uniforms to be storage buffers
whenever binding arrays are in use:
```wgsl
#ifdef BINDING_ARRAYS_ARE_USED
@group(0) @binding(0) var<uniform> view: View;
@group(0) @binding(1) var<uniform> lights: types::Lights;
#else
@group(0) @binding(0) var<storage> view: array<View>;
@group(0) @binding(1) var<storage> lights: array<types::Lights>;
#endif
```

This requires passing the view index to the shader so that we know where
to index into the buffer:

```wgsl
struct PushConstants {
    view_index: u32,
}

var<push_constant> push_constants: PushConstants;
```

Using push constants is no problem because binding arrays are only
usable on native anyway.

However, this greatly complicates the ability to access `view` in
shaders. For example:
```wgsl
#ifdef BINDING_ARRAYS_ARE_USED
mesh_view_bindings::view.view_from_world[0].z
#else
mesh_view_bindings::view[mesh_view_bindings::view_index].view_from_world[0].z
#endif
```

Using this approach would work but would have the effect of polluting
our shaders with ifdef spam basically *everywhere*.

Why not use a function? Unfortunately, the following is not valid wgsl
as it returns a binding directly from a function in the uniform path.

```wgsl
fn get_view() -> View {
#if BINDING_ARRAYS_ARE_USED
    let view_index = push_constants.view_index;
    let view = views[view_index];
#endif
    return view;
}
```

This also poses problems for things like lights where we want to return
a ptr to the light data. Returning ptrs from wgsl functions isn't
allowed even if both bindings were buffers.

The next attempt was to simply use indexed buffers everywhere, in both
the binding array and non binding array path. This would be viable if
push constants were available everywhere to pass the view index, but
unfortunately they are not available on webgpu. This means either
passing the view index in a storage buffer (not ideal for such a small
amount of state) or using push constants sometimes and uniform buffers
only on webgpu. However, this kind of conditional layout infects
absolutely everything.

Even if we were to accept just using storage buffer for the view index,
there's also the additional problem that some dynamic offsets aren't
actually per-view but per-use of a setting on a camera, which would
require passing that uniform data on *every* camera regardless of
whether that rendering feature is being used, which is also gross.

As such, although it's gross, the simplest solution just to bump binding
arrays into `@group(1)` and all other bindings up one bind group. This
should still bring us under the device limit of 4 for most users.

### Next steps / looking towards the future

I'd like to avoid needing split our view bind group into multiple parts.
In the future, if `wgpu` were to add `@builtin(draw_index)`, we could
build a list of draw state in gpu processing and avoid the need for any
kind of state change at all (see
https://github.com/gfx-rs/wgpu/issues/6823). This would also provide
significantly more flexibility to handle things like offsets into other
arrays that may not be per-view.

### Testing

Tested a number of examples, there are probably more that are still
broken.

---------

Co-authored-by: François Mockers <mockersf@gmail.com>
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2025-06-26 19:41:47 +00:00
charlotte 🌸
92e65d5eb1
Upgrade to Rust 1.88 (#19825) 2025-06-26 19:38:19 +00:00
dependabot[bot]
c7b5bc93c3
Update derive_more requirement from 1 to 2 (#19671)
Updates the requirements on
[derive_more](https://github.com/JelteF/derive_more) to permit the
latest version.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/JelteF/derive_more/releases">derive_more's
releases</a>.</em></p>
<blockquote>
<h2>2.0.1</h2>
<p><a href="https://docs.rs/derive_more/2.0.1">API docs</a>
<a
href="https://github.com/JelteF/derive_more/blob/v2.0.1/CHANGELOG.md#201---2025-02-03">Changelog</a></p>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/JelteF/derive_more/blob/master/CHANGELOG.md">derive_more's
changelog</a>.</em></p>
<blockquote>
<h2>2.0.1 - 2025-02-03</h2>
<h3>Added</h3>
<ul>
<li>Add crate metadata for the Rust Playground. This makes sure that the
Rust
Playground will have all <code>derive_more</code> features available
once
<a
href="https://docs.rs/selectors/latest/selectors"><code>selectors</code></a>
crate updates its
<code>derive_more</code> version.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/445">#445</a>)</li>
</ul>
<h2>2.0.0 - 2025-02-03</h2>
<h3>Breaking changes</h3>
<ul>
<li><code>use derive_more::SomeTrait</code> now imports macro only.
Importing macro with
its trait along is possible now via <code>use
derive_more::with_trait::SomeTrait</code>.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/406">#406</a>)</li>
<li>Top-level <code>#[display(&quot;...&quot;)]</code> attribute on an
enum now has defaulting behavior
instead of replacing when no wrapping is possible (no
<code>_variant</code> placeholder).
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/395">#395</a>)</li>
</ul>
<h3>Fixed</h3>
<ul>
<li>Associated types of type parameters not being treated as generics in
<code>Debug</code>
and <code>Display</code> expansions.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/399">#399</a>)</li>
<li><code>unreachable_code</code> warnings on generated code when
<code>!</code> (never type) is used.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/404">#404</a>)</li>
<li>Ambiguous associated item error when deriving <code>TryFrom</code>,
<code>TryInto</code> or <code>FromStr</code>
with an associated item called <code>Error</code> or <code>Err</code>
respectively.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/410">#410</a>)</li>
<li>Top-level <code>#[display(&quot;...&quot;)]</code> attribute on an
enum being incorrectly treated
as transparent or wrapping.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/395">#395</a>)</li>
<li>Omitted raw identifiers in <code>Debug</code> and
<code>Display</code> expansions.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/431">#431</a>)</li>
<li>Incorrect rendering of raw identifiers as field names in
<code>Debug</code> expansions.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/431">#431</a>)</li>
<li>Top-level <code>#[display(&quot;...&quot;)]</code> attribute on an
enum not working transparently
for directly specified fields.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/438">#438</a>)</li>
<li>Incorrect dereferencing of unsized fields in <code>Debug</code> and
<code>Display</code> expansions.
(<a
href="https://redirect.github.com/JelteF/derive_more/pull/440">#440</a>)</li>
</ul>
<h2>0.99.19 - 2025-02-03</h2>
<ul>
<li>Add crate metadata for the Rust Playground.</li>
</ul>
<h2>1.0.0 - 2024-08-07</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="a78d8ee41d"><code>a78d8ee</code></a>
chore: Release</li>
<li><a
href="2aeee4d1c0"><code>2aeee4d</code></a>
Update changelog (<a
href="https://redirect.github.com/JelteF/derive_more/issues/446">#446</a>)</li>
<li><a
href="5afbaa1d8e"><code>5afbaa1</code></a>
Add Rust Playground metadata (<a
href="https://redirect.github.com/JelteF/derive_more/issues/445">#445</a>)</li>
<li><a
href="d6c3315f12"><code>d6c3315</code></a>
Prepare 2.0.0 release (<a
href="https://redirect.github.com/JelteF/derive_more/issues/444">#444</a>)</li>
<li><a
href="c5e5e82c0a"><code>c5e5e82</code></a>
Fix unsized fields usage in <code>Display</code>/<code>Debug</code>
derives (<a
href="https://redirect.github.com/JelteF/derive_more/issues/440">#440</a>,
<a
href="https://redirect.github.com/JelteF/derive_more/issues/432">#432</a>)</li>
<li><a
href="d391493a3c"><code>d391493</code></a>
Fix field transparency for top-level shared attribute in
<code>Display</code> (<a
href="https://redirect.github.com/JelteF/derive_more/issues/438">#438</a>)</li>
<li><a
href="f14c7a759a"><code>f14c7a7</code></a>
Fix raw identifiers usage in <code>Display</code>/<code>Debug</code>
derives (<a
href="https://redirect.github.com/JelteF/derive_more/issues/434">#434</a>,
<a
href="https://redirect.github.com/JelteF/derive_more/issues/431">#431</a>)</li>
<li><a
href="7b23de3d53"><code>7b23de3</code></a>
Update <code>convert_case</code> crate from 0.6 to 0.7 version (<a
href="https://redirect.github.com/JelteF/derive_more/issues/436">#436</a>)</li>
<li><a
href="cc9957e9cd"><code>cc9957e</code></a>
Fix <code>compile_fail</code> tests and make Clippy happy for 1.84 Rust
(<a
href="https://redirect.github.com/JelteF/derive_more/issues/435">#435</a>)</li>
<li><a
href="17d61c3118"><code>17d61c3</code></a>
Fix transparency and behavior of shared formatting on enums (<a
href="https://redirect.github.com/JelteF/derive_more/issues/395">#395</a>,
<a
href="https://redirect.github.com/JelteF/derive_more/issues/377">#377</a>,
<a
href="https://redirect.github.com/JelteF/derive_more/issues/411">#411</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/JelteF/derive_more/compare/v1.0.0...v2.0.1">compare
view</a></li>
</ul>
</details>
<br />


Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-06-24 11:13:04 +00:00
charlotte 🌸
7b5e4e3be0
Allow images to be resized on the GPU without losing data (#19462)
# Objective

#19410 added support for resizing images "in place" meaning that their
data was copied into the new texture allocation on the CPU. However,
there are some scenarios where an image may be created and populated
entirely on the GPU. Using this method would cause data to disappear, as
it wouldn't be copied into the new texture.

## Solution

When an image is resized in place, if it has no data in it's asset,
we'll opt into a new flag `copy_on_resize` which will issue a
`copy_texture_to_texture` command on the old allocation.

To support this, we require passing the old asset to all `RenderAsset`
implementations. This will be generally useful in the future for
reducing things like buffer re-allocations.

## Testing

Tested using the example in the issue.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-06-24 06:22:50 +00:00
Aevyrie
3cefe82aff
Projection Improvements (#18458)
# Objective

- Remove a component impl footgun
- Make projection code slightly nicer, and remove the need to import the
projection trait when using the methods on `Projection`.

## Solution

- Do the things.
2025-06-24 03:26:38 +00:00
andriyDev
a7fdd6fc6f
Replace FULLSCREEN_SHADER_HANDLE with a FullscreenShader resource. (#19426)
# Objective

- Related to #19024.

## Solution

- Remove the `FULLSCREEN_SHADER_HANDLE` `weak_handle` with a resource
holding the shader handle.
- This also changes us from using `load_internal_asset` to
`embedded_asset`/`load_embedded_asset`.
- All uses have been migrated to clone the `FullscreenShader` resource
and use its `to_vertex_state` method.

## Testing

- `anti_aliasing` example still works.
- `bloom_3d` example still works.

---------

Co-authored-by: charlotte 🌸 <charlotte.c.mcelwain@gmail.com>
2025-06-24 00:02:23 +00:00
Rob Parrett
d3ad66f033
Fix some typos (#19788)
# Objective

- Notice a word duplication typo
- Small quest to fix similar or nearby typos with my faithful companion
`\b(\w+)\s+\1\b`

## Solution

Fix em
2025-06-23 22:32:46 +00:00
mgi388
efd17f133d
Rename num_entities to entity_count (#19781)
As discussed in
https://github.com/bevyengine/bevy/pull/19780#issuecomment-2994554024.
2025-06-23 05:08:02 +00:00
theotherphil
7645ce91ed
Add newlines before impl blocks (#19746)
# Objective

Fix https://github.com/bevyengine/bevy/issues/19617 

# Solution

Add newlines before all impl blocks.

I suspect that at least some of these will be objectionable! If there's
a desired Bevy style for this then I'll update the PR. If not then we
can just close it - it's the work of a single find and replace.
2025-06-22 23:07:02 +00:00
github-actions[bot]
a466084167
Bump Version after Release (#19774)
Bump version after release
This PR has been auto-generated

Fixes #19766

---------

Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
2025-06-22 23:06:43 +00:00
atlv
a1d3c6197f
rename Transform::compute_matrix to to_matrix (#19646)
# Objective

- Parity with #19643

## Solution

- Rename

## Testing

- None

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-06-18 05:37:25 +00:00
atlv
2915a3b903
rename GlobalTransform::compute_matrix to to_matrix (#19643)
# Objective

- compute_matrix doesn't compute anything, it just puts an Affine3A into
a Mat4. the name is inaccurate

## Solution

- rename it to conform with to_isometry (which, ironically, does compute
a decomposition which is rather expensive)

## Testing

- Its a rename. If it compiles, its good to go

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-06-17 18:37:26 +00:00
Chris Russell
f7e112a3c9
Let query items borrow from query state to avoid needing to clone (#15396)
# Objective

Improve the performance of `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.

`FilteredEntityRef` needs an `Access<ComponentId>` to determine what
components it can access. There is one stored in the query state, but
query items cannot borrow from the state, so it has to `clone()` the
access for each row. Cloning the access involves memory allocations and
can be expensive.


## Solution

Let query items borrow from their query state.  

Add an `'s` lifetime to `WorldQuery::Item` and `WorldQuery::Fetch`,
similar to the one in `SystemParam`, and provide `&'s Self::State` to
the fetch so that it can borrow from the state.

Unfortunately, there are a few cases where we currently return query
items from temporary query states: the sorted iteration methods create a
temporary state to query the sort keys, and the
`EntityRef::components<Q>()` methods create a temporary state for their
query.

To allow these to continue to work with most `QueryData`
implementations, introduce a new subtrait `ReleaseStateQueryData` that
converts a `QueryItem<'w, 's>` to `QueryItem<'w, 'static>`, and is
implemented for everything except `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.

`#[derive(QueryData)]` will generate `ReleaseStateQueryData`
implementations that apply when all of the subqueries implement
`ReleaseStateQueryData`.

This PR does not actually change the implementation of
`FilteredEntity(Ref|Mut)` or `Entity(Ref|Mut)Except`! That will be done
as a follow-up PR so that the changes are easier to review. I have
pushed the changes as chescock/bevy#5.

## Testing

I ran performance traces of many_foxes, both against main and against
chescock/bevy#5, both including #15282. These changes do appear to make
generalized animation a bit faster:

(Red is main, yellow is chescock/bevy#5)

![image](https://github.com/user-attachments/assets/de900117-0c6a-431d-ab62-c013834f97a9)


## Migration Guide

The `WorldQuery::Item` and `WorldQuery::Fetch` associated types and the
`QueryItem` and `ROQueryItem` type aliases now have an additional
lifetime parameter corresponding to the `'s` lifetime in `Query`. Manual
implementations of `WorldQuery` will need to update the method
signatures to include the new lifetimes. Other uses of the types will
need to be updated to include a lifetime parameter, although it can
usually be passed as `'_`. In particular, `ROQueryItem` is used when
implementing `RenderCommand`.

Before: 

```rust
fn render<'w>(
    item: &P,
    view: ROQueryItem<'w, Self::ViewQuery>,
    entity: Option<ROQueryItem<'w, Self::ItemQuery>>,
    param: SystemParamItem<'w, '_, Self::Param>,
    pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```

After: 

```rust
fn render<'w>(
    item: &P,
    view: ROQueryItem<'w, '_, Self::ViewQuery>,
    entity: Option<ROQueryItem<'w, '_, Self::ItemQuery>>,
    param: SystemParamItem<'w, '_, Self::Param>,
    pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```

---

Methods on `QueryState` that take `&mut self` may now result in
conflicting borrows if the query items capture the lifetime of the
mutable reference. This affects `get()`, `iter()`, and others. To fix
the errors, first call `QueryState::update_archetypes()`, and then
replace a call `state.foo(world, param)` with
`state.query_manual(world).foo_inner(param)`. Alternately, you may be
able to restructure the code to call `state.query(world)` once and then
make multiple calls using the `Query`.

Before:
```rust
let mut state: QueryState<_, _> = ...;
let d1 = state.get(world, e1);
let d2 = state.get(world, e2); // Error: cannot borrow `state` as mutable more than once at a time
println!("{d1:?}");
println!("{d2:?}");
```

After: 
```rust
let mut state: QueryState<_, _> = ...;

state.update_archetypes(world);
let d1 = state.get_manual(world, e1);
let d2 = state.get_manual(world, e2);
// OR
state.update_archetypes(world);
let d1 = state.query(world).get_inner(e1);
let d2 = state.query(world).get_inner(e2);
// OR
let query = state.query(world);
let d1 = query.get_inner(e1);
let d1 = query.get_inner(e2);

println!("{d1:?}");
println!("{d2:?}");
```
2025-06-16 21:05:41 +00:00
JMS55
e610badf6c
Add more PreviousViewData (#19605)
Add some more matrices to PreviousViewData for future use with
bevy_solari.
2025-06-16 04:54:26 +00:00
Joona Aalto
38c3423693
Event Split: Event, EntityEvent, and BufferedEvent (#19647)
# Objective

Closes #19564.

The current `Event` trait looks like this:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The `Event` trait is used by both buffered events
(`EventReader`/`EventWriter`) and observer events. If they are observer
events, they can optionally be targeted at specific `Entity`s or
`ComponentId`s, and can even be propagated to other entities.

However, there has long been a desire to split the trait semantically
for a variety of reasons, see #14843, #14272, and #16031 for discussion.
Some reasons include:

- It's very uncommon to use a single event type as both a buffered event
and targeted observer event. They are used differently and tend to have
distinct semantics.
- A common footgun is using buffered events with observers or event
readers with observer events, as there is no type-level error that
prevents this kind of misuse.
- #19440 made `Trigger::target` return an `Option<Entity>`. This
*seriously* hurts ergonomics for the general case of entity observers,
as you need to `.unwrap()` each time. If we could statically determine
whether the event is expected to have an entity target, this would be
unnecessary.

There's really two main ways that we can categorize events: push vs.
pull (i.e. "observer event" vs. "buffered event") and global vs.
targeted:

|              | Push            | Pull                        |
| ------------ | --------------- | --------------------------- |
| **Global**   | Global observer | `EventReader`/`EventWriter` |
| **Targeted** | Entity observer | -                           |

There are many ways to approach this, each with their tradeoffs.
Ultimately, we kind of want to split events both ways:

- A type-level distinction between observer events and buffered events,
to prevent people from using the wrong kind of event in APIs
- A statically designated entity target for observer events to avoid
accidentally using untargeted events for targeted APIs

This PR achieves these goals by splitting event traits into `Event`,
`EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait
implemented by all events.

## `Event`, `EntityEvent`, and `BufferedEvent`

`Event` is now a very simple trait shared by all events.

```rust
pub trait Event: Send + Sync + 'static {
    // Required for observer APIs
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

You can call `trigger` for *any* event, and use a global observer for
listening to the event.

```rust
#[derive(Event)]
struct Speak {
    message: String,
}

// ...

app.add_observer(|trigger: On<Speak>| {
    println!("{}", trigger.message);
});

// ...

commands.trigger(Speak {
    message: "Y'all like these reworked events?".to_string(),
});
```

To allow an event to be targeted at entities and even propagated
further, you can additionally implement the `EntityEvent` trait:

```rust
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This lets you call `trigger_targets`, and to use targeted observer APIs
like `EntityCommands::observe`:

```rust
#[derive(Event, EntityEvent)]
#[entity_event(traversal = &'static ChildOf, auto_propagate)]
struct Damage {
    amount: f32,
}

// ...

let enemy = commands.spawn((Enemy, Health(100.0))).id();

// Spawn some armor as a child of the enemy entity.
// When the armor takes damage, it will bubble the event up to the enemy.
let armor_piece = commands
    .spawn((ArmorPiece, Health(25.0), ChildOf(enemy)))
    .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| {
        // Note: `On::target` only exists because this is an `EntityEvent`.
        let mut health = query.get(trigger.target()).unwrap();
        health.0 -= trigger.amount();
    });

commands.trigger_targets(Damage { amount: 10.0 }, armor_piece);
```

> [!NOTE]
> You *can* still also trigger an `EntityEvent` without targets using
`trigger`. We probably *could* make this an either-or thing, but I'm not
sure that's actually desirable.

To allow an event to be used with the buffered API, you can implement
`BufferedEvent`:

```rust
pub trait BufferedEvent: Event {}
```

The event can then be used with `EventReader`/`EventWriter`:

```rust
#[derive(Event, BufferedEvent)]
struct Message(String);

fn write_hello(mut writer: EventWriter<Message>) {
    writer.write(Message("I hope these examples are alright".to_string()));
}

fn read_messages(mut reader: EventReader<Message>) {
    // Process all buffered events of type `Message`.
    for Message(message) in reader.read() {
        println!("{message}");
    }
}
```

In summary:

- Need a basic event you can trigger and observe? Derive `Event`!
- Need the event to be targeted at an entity? Derive `EntityEvent`!
- Need the event to be buffered and support the
`EventReader`/`EventWriter` API? Derive `BufferedEvent`!

## Alternatives

I'll now cover some of the alternative approaches I have considered and
briefly explored. I made this section collapsible since it ended up
being quite long :P

<details>

<summary>Expand this to see alternatives</summary>

### 1. Unified `Event` Trait

One option is not to have *three* separate traits (`Event`,
`EntityEvent`, `BufferedEvent`), and to instead just use associated
constants on `Event` to determine whether an event supports targeting
and buffering or not:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    const BUFFERED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

Methods can then use bounds like `where E: Event<TARGETED = true>` or
`where E: Event<BUFFERED = true>` to limit APIs to specific kinds of
events.

This would keep everything under one `Event` trait, but I don't think
it's necessarily a good idea. It makes APIs harder to read, and docs
can't easily refer to specific types of events. You can also create
weird invariants: what if you specify `TARGETED = false`, but have
`Traversal` and/or `AUTO_PROPAGATE` enabled?

### 2. `Event` and `Trigger`

Another option is to only split the traits between buffered events and
observer events, since that is the main thing people have been asking
for, and they have the largest API difference.

If we did this, I think we would need to make the terms *clearly*
separate. We can't really use `Event` and `BufferedEvent` as the names,
since it would be strange that `BufferedEvent` doesn't implement
`Event`. Something like `ObserverEvent` and `BufferedEvent` could work,
but it'd be more verbose.

For this approach, I would instead keep `Event` for the current
`EventReader`/`EventWriter` API, and call the observer event a
`Trigger`, since the "trigger" terminology is already used in the
observer context within Bevy (both as a noun and a verb). This is also
what a long [bikeshed on
Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791)
seemed to land on at the end of last year.

```rust
// For `EventReader`/`EventWriter`
pub trait Event: Send + Sync + 'static {}

// For observers
pub trait Trigger: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The problem is that "event" is just a really good term for something
that "happens". Observers are rapidly becoming the more prominent API,
so it'd be weird to give them the `Trigger` name and leave the good
`Event` name for the less common API.

So, even though a split like this seems neat on the surface, I think it
ultimately wouldn't really work. We want to keep the `Event` name for
observer events, and there is no good alternative for the buffered
variant. (`Message` was suggested, but saying stuff like "sends a
collision message" is weird.)

### 3. `GlobalEvent` + `TargetedEvent`

What if instead of focusing on the buffered vs. observed split, we
*only* make a distinction between global and targeted events?

```rust
// A shared event trait to allow global observers to work
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For buffered events and non-targeted observer events
pub trait GlobalEvent: Event {}

// For targeted observer events
pub trait TargetedEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is actually the first approach I implemented, and it has the neat
characteristic that you can only use non-targeted APIs like `trigger`
with a `GlobalEvent` and targeted APIs like `trigger_targets` with a
`TargetedEvent`. You have full control over whether the entity should or
should not have a target, as they are fully distinct at the type-level.

However, there's a few problems:

- There is no type-level indication of whether a `GlobalEvent` supports
buffered events or just non-targeted observer events
- An `Event` on its own does literally nothing, it's just a shared trait
required to make global observers accept both non-targeted and targeted
events
- If an event is both a `GlobalEvent` and `TargetedEvent`, global
observers again have ambiguity on whether an event has a target or not,
undermining some of the benefits
- The names are not ideal

### 4. `Event` and `EntityEvent`

We can fix some of the problems of Alternative 3 by accepting that
targeted events can also be used in non-targeted contexts, and simply
having the `Event` and `EntityEvent` traits:

```rust
// For buffered events and non-targeted observer events
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For targeted observer events
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is essentially identical to this PR, just without a dedicated
`BufferedEvent`. The remaining major "problem" is that there is still
zero type-level indication of whether an `Event` event *actually*
supports the buffered API. This leads us to the solution proposed in
this PR, using `Event`, `EntityEvent`, and `BufferedEvent`.

</details>

## Conclusion

The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR
aims to solve all the common problems with Bevy's current event model
while keeping the "weirdness" factor minimal. It splits in terms of both
the push vs. pull *and* global vs. targeted aspects, while maintaining a
shared concept for an "event".

### Why I Like This

- The term "event" remains as a single concept for all the different
kinds of events in Bevy.
- Despite all event types being "events", they use fundamentally
different APIs. Instead of assuming that you can use an event type with
any pattern (when only one is typically supported), you explicitly opt
in to each one with dedicated traits.
- Using separate traits for each type of event helps with documentation
and clearer function signatures.
- I can safely make assumptions on expected usage.
- If I see that an event is an `EntityEvent`, I can assume that I can
use `observe` on it and get targeted events.
- If I see that an event is a `BufferedEvent`, I can assume that I can
use `EventReader` to read events.
- If I see both `EntityEvent` and `BufferedEvent`, I can assume that
both APIs are supported.

In summary: This allows for a unified concept for events, while limiting
the different ways to use them with opt-in traits. No more guess-work
involved when using APIs.

### Problems?

- Because `BufferedEvent` implements `Event` (for more consistent
semantics etc.), you can still use all buffered events for non-targeted
observers. I think this is fine/good. The important part is that if you
see that an event implements `BufferedEvent`, you know that the
`EventReader`/`EventWriter` API should be supported. Whether it *also*
supports other APIs is secondary.
- I currently only support `trigger_targets` for an `EntityEvent`.
However, you can technically target components too, without targeting
any entities. I consider that such a niche and advanced use case that
it's not a huge problem to only support it for `EntityEvent`s, but we
could also split `trigger_targets` into `trigger_entities` and
`trigger_components` if we wanted to (or implement components as
entities :P).
- You can still trigger an `EntityEvent` *without* targets. I consider
this correct, since `Event` implements the non-targeted behavior, and
it'd be weird if implementing another trait *removed* behavior. However,
it does mean that global observers for entity events can technically
return `Entity::PLACEHOLDER` again (since I got rid of the
`Option<Entity>` added in #19440 for ergonomics). I think that's enough
of an edge case that it's not a huge problem, but it is worth keeping in
mind.
- ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type
currently duplicates the `Event` implementation, so you instead need to
manually implement one of them.~~ Changed to always requiring `Event` to
be derived.

## Related Work

There are plans to implement multi-event support for observers,
especially for UI contexts. [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)
API looked like this:

```rust
// Truncated for brevity
trigger: Trigger<(
    OnAdd<Pressed>,
    OnRemove<Pressed>,
    OnAdd<InteractionDisabled>,
    OnRemove<InteractionDisabled>,
    OnInsert<Hovered>,
)>,
```

I believe this shouldn't be in conflict with this PR. If anything, this
PR might *help* achieve the multi-event pattern for entity observers
with fewer footguns: by statically enforcing that all of these events
are `EntityEvent`s in the context of `EntityCommands::observe`, we can
avoid misuse or weird cases where *some* events inside the trigger are
targeted while others are not.
2025-06-15 16:46:34 +00:00