# Objective
`RelatedSpawnerCommands` offers methods to get the underlying
`Commands`.
`RelatedSpawner` does not expose the inner `World` reference so far.
I currently want to write extension traits for both of them but I need
to duplicate the whole API for the latter because I cannot get it's
`&mut World`.
## Solution
Add methods for immutable and mutable `World` access
# Objective
Currently, `bevy_ecs`'s `children!` macro only supports spawning up to
twelve children at once. Ideally there would be no limit.
## Solution
`children!` is limited because `SpawnableList`, [the primary trait bound
here](https://docs.rs/bevy/0.16.0-rc.5/bevy/ecs/hierarchy/struct.Children.html#method.spawn),
uses the fake variadics pattern on tuples of up to twelve elements.
However, since a tuple itself implements `SpawnableList`, we can simply
nest tuples of entities when we run out of room.
This PR achieves this using `macro_rules` macros with a bit of brute
force, following [some discussion on
Discord](https://discord.com/channels/691052431525675048/692572690833473578/1362174415458013314).
If we create patterns for lists of up to eleven bundles, then use a
repetition pattern to handle the rest, we can "special-case" the
recursion into a nested tuple.
In principle, this would permit an arbitrary number of children, but
Rust's recursion limits will cut things short at around 1400 elements by
default. Of course, it's generally not a good idea to stick that many
bundles in a single invocation, but it might be worth mentioning in the
docs.
## Implementation notes
### Why are cases 0-11 expanded by hand?
We could make use of a tertiary macro:
```rs
macro_rules! recursive_spawn {
// so that this...
($a:expr, $b:expr) => {
(
$crate::spawn::Spawn($a),
$crate::spawn::Spawn($b),
)
};
// becomes this...
($a:expr, $b:expr) => {
$crate::spawn_tuple!($a, $b)
};
}
```
But I already feel a little bad exporting `recursive_spawn`. I'd really
like to avoid exposing more internals, even if they are annotated with
`#[doc(hidden)]`. If I had to guess, I'd say it'll also make the
expansion a tiny bit slower.
### Do we really need to handle up to twelve elements in the macro?
The macro is a little long, but doing it this way maximizes the
"flatness" of the types to be spawned. This should improve the codegen a
bit and makes the macro output a little bit easier to look at.
## Future work
The `related!` macro is essentially the same as `children!`, so if this
direction is accepted, `related!` should receive the same treatment. I
imagine we'd want to extract out the `recursive_spawn` macro into its
own file since it can be used for both. If this should be tackled in
this PR, let me know!
## Testing
This change is fairly trivial, but I added a single test to verify that
it compiles and nothing goes wrong once recursion starts happening. It's
pretty easy to verify that the change works in practice -- just spawn
over twelve entities as children at once!
# Objective
- Acts on certain elements of #18799
- Closes#1615
- New baseline for #18170
## Solution
- Created a new `cfg` module in `bevy_platform` which contains two
macros to aid in working with features like `web`, `std`, and `alloc`.
- `switch` is a stable implementation of
[`cfg_match`](https://doc.rust-lang.org/std/macro.cfg_match.html), which
itself is a `core` alternative to [`cfg_if`](https://docs.rs/cfg-if).
- `define_alias` is a `build.rs`-free alternative to
[`cfg_aliases`](https://docs.rs/cfg_aliases) with the ability to share
feature information between crates.
- Switched to these macros within `bevy_platform` to demonstrate usage.
## Testing
- CI
---
## Showcase
Consider the typical `std` feature as an example of a "virality". With
just `bevy_platform`, `bevy_utils`, and `bevy_ecs`, we have 3 crates in
a chain where activating `std` in any of them should really activate it
everywhere. The status-quo for this is for each crate to define its own
`std` feature, and ensure it includes the `std` feature of every
dependency in that feature. For crates which don't even interact with
`std` directly, this can be quite cumbersome. Especially considering
that Bevy has a fundamental crate, `bevy_platform`, which is a
dependency for effectively every crate.
Instead, we can use `define_alias` to create a macro which will
conditionally compile code if and only if the specified configuration
condition is met _in the defining crate_.
```rust
// In `bevy_platform`
define_alias! {
#[cfg(feature = "std")] => {
/// Indicates the `std` crate is available and can be used.
std
}
#[cfg(all(target_arch = "wasm32", feature = "web"))] => {
/// Indicates that this target has access to browser APIs.
web
}
}
```
The above `web` and `std` macros will either no-op the provided code if
the conditions are not met, or pass it unmodified if it is met. Since it
is evaluated in the context of the defining crate, `bevy_platform/std`
can be used to conditionally compile code in `bevy_utils` and `bevy_ecs`
_without_ those crates including their own `std` features.
```rust
// In `bevy_utils`
use bevy_platform::cfg;
// If `bevy_platform` has `std`, then we can too!
cfg::std! {
extern crate std;
}
```
To aid in more complex configurations, `switch` is provided to provide a
`cfg_if` alternative that is compatible with `define_alias`:
```rust
use bevy_platform::cfg;
cfg::switch! {
#[cfg(feature = "foo")] => { /* use the foo API */ }
cfg::web => { /* use browser API */ }
cfg::std => { /* use std */ }
_ => { /* use a fallback implementation */ }
}
```
This paradigm would allow Bevy's sub-crates to avoid re-exporting viral
features, and also enable functionality in response to availability in
their dependencies, rather than from explicit features (bottom-up
instead of top-down). I imagine that a "full rollout" of this paradigm
would remove most viral features from Bevy's crates, leaving only
`bevy_platform`, `bevy_internal`, and `bevy` (since `bevy`/`_internal`
are explicitly re-exports of all of Bevy's crates).
This bottom-up approach may be useful in other areas of Bevy's features
too. For example, `bevy_core_pipeline/tonemapping_luts` requires:
- bevy_render/ktx2
- bevy_image/ktx2
- bevy_image/zstd
If `define_alias` was used in `bevy_image`, `bevy_render` would not need
to re-export the `ktx2` feature, and `bevy_core_pipeline` could directly
probe `bevy_image` for the status of `ktx2` and `zstd` features to
determine if it should compile the `tonemapping_luts` functionality,
rather than having an explicitly feature. Of course, an explicit feature
is still important for _features_, so this may not be the best example,
but it highlights that with this paradigm crates can reactively provide
functionality, rather than needing to proactively declare feature
combinations up-front and hope the user enables them.
---------
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
# Objective
- Alternative to and builds on top of #16284.
- Fixes#15849.
## Solution
- Rename component `StateScoped` to `DespawnOnExitState`.
- Rename system `clear_state_scoped_entities` to
`despawn_entities_on_exit_state`.
- Add `DespawnOnEnterState` and `despawn_entities_on_enter_state` which
is the `OnEnter` equivalent.
> [!NOTE]
> Compared to #16284, the main change is that I did the rename in such a
way as to keep the terms `OnExit` and `OnEnter` together. In my own
game, I was adding `VisibleOnEnterState` and `HiddenOnExitState` and
when naming those, I kept the `OnExit` and `OnEnter` together. When I
checked #16284 it stood out to me that the naming was a bit awkward.
Putting the `State` in the middle and breaking up `OnEnter` and `OnExit`
also breaks searching for those terms.
## Open questions
1. Should we split `enable_state_scoped_entities` into two functions,
one for the `OnEnter` and one for the `OnExit`? I personally have zero
need thus far for the `OnEnter` version, so I'd be interested in not
having this enabled unless I ask for it.
2. If yes to 1., should we follow my lead in my `Visibility` state
components (see below) and name these
`app.enable_despawn_entities_on_enter_state()` and
`app.enable_despawn_entities_on_exit_state()`, which IMO says what it
does on the tin?
## Testing
Ran all changed examples.
## Side note: `VisibleOnEnterState` and `HiddenOnExitState`
For reference to anyone else and to help with the open questions, I'm
including the code I wrote for controlling entity visibility when a
state is entered/exited.
<details>
<summary>visibility.rs</summary>
```rust
use bevy_app::prelude::*;
use bevy_ecs::prelude::*;
use bevy_reflect::prelude::*;
use bevy_render::prelude::*;
use bevy_state::{prelude::*, state::StateTransitionSteps};
use tracing::*;
pub trait AppExtStates {
fn enable_visible_entities_on_enter_state<S: States>(&mut self) -> &mut Self;
fn enable_hidden_entities_on_exit_state<S: States>(&mut self) -> &mut Self;
}
impl AppExtStates for App {
fn enable_visible_entities_on_enter_state<S: States>(&mut self) -> &mut Self {
self.main_mut()
.enable_visible_entities_on_enter_state::<S>();
self
}
fn enable_hidden_entities_on_exit_state<S: States>(&mut self) -> &mut Self {
self.main_mut().enable_hidden_entities_on_exit_state::<S>();
self
}
}
impl AppExtStates for SubApp {
fn enable_visible_entities_on_enter_state<S: States>(&mut self) -> &mut Self {
if !self
.world()
.contains_resource::<Events<StateTransitionEvent<S>>>()
{
let name = core::any::type_name::<S>();
warn!("Visible entities on enter state are enabled for state `{}`, but the state isn't installed in the app!", name);
}
// We work with [`StateTransition`] in set
// [`StateTransitionSteps::ExitSchedules`] as opposed to [`OnExit`],
// because [`OnExit`] only runs for one specific variant of the state.
self.add_systems(
StateTransition,
update_to_visible_on_enter_state::<S>.in_set(StateTransitionSteps::ExitSchedules),
)
}
fn enable_hidden_entities_on_exit_state<S: States>(&mut self) -> &mut Self {
if !self
.world()
.contains_resource::<Events<StateTransitionEvent<S>>>()
{
let name = core::any::type_name::<S>();
warn!("Hidden entities on exit state are enabled for state `{}`, but the state isn't installed in the app!", name);
}
// We work with [`StateTransition`] in set
// [`StateTransitionSteps::ExitSchedules`] as opposed to [`OnExit`],
// because [`OnExit`] only runs for one specific variant of the state.
self.add_systems(
StateTransition,
update_to_hidden_on_exit_state::<S>.in_set(StateTransitionSteps::ExitSchedules),
)
}
}
#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
pub struct VisibleOnEnterState<S: States>(pub S);
#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
pub struct HiddenOnExitState<S: States>(pub S);
/// Makes entities marked with [`VisibleOnEnterState<S>`] visible when the state
/// `S` is entered.
pub fn update_to_visible_on_enter_state<S: States>(
mut transitions: EventReader<StateTransitionEvent<S>>,
mut query: Query<(&VisibleOnEnterState<S>, &mut Visibility)>,
) {
// We use the latest event, because state machine internals generate at most
// 1 transition event (per type) each frame. No event means no change
// happened and we skip iterating all entities.
let Some(transition) = transitions.read().last() else {
return;
};
if transition.entered == transition.exited {
return;
}
let Some(entered) = &transition.entered else {
return;
};
for (binding, mut visibility) in query.iter_mut() {
if binding.0 == *entered {
visibility.set_if_neq(Visibility::Visible);
}
}
}
/// Makes entities marked with [`HiddenOnExitState<S>`] invisible when the state
/// `S` is exited.
pub fn update_to_hidden_on_exit_state<S: States>(
mut transitions: EventReader<StateTransitionEvent<S>>,
mut query: Query<(&HiddenOnExitState<S>, &mut Visibility)>,
) {
// We use the latest event, because state machine internals generate at most
// 1 transition event (per type) each frame. No event means no change
// happened and we skip iterating all entities.
let Some(transition) = transitions.read().last() else {
return;
};
if transition.entered == transition.exited {
return;
}
let Some(exited) = &transition.exited else {
return;
};
for (binding, mut visibility) in query.iter_mut() {
if binding.0 == *exited {
visibility.set_if_neq(Visibility::Hidden);
}
}
}
```
</details>
---------
Co-authored-by: Benjamin Brienen <Benjamin.Brienen@outlook.com>
Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
# Objective
Contributes to #18741 and #18453.
## Solution
Deprecate `SimpleExecutor`. If users run into migration issues, we can
backtrack. Otherwise, we follow this up with #18741
We can't easily deprecate the module too because of
[this](https://github.com/rust-lang/rust/issues/47238).
## Testing
CI
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Cyrill Schenkel <cyrill.schenkel@gmail.com>
# Objective
- bevy removed `Observe` type parameters in #15151 ,it enables merging
`Observer` and `ObserverState ` into a single component. with this
consolidation ,we can improve efficiency while reducing boilerplate.
## Solution
- remove `ObserverState `and merge it into `Observer`
## Testing
40%~60% performance win due to removal of redundant look up.

This also improves ergonomics when using dynamic observer
```rust
// previously
world.spawn(ObserverState {
// SAFETY: we registered `event_a` above and it matches the type of EventA
descriptor: unsafe { ObserverDescriptor::default().with_events(vec![event_a]) },
runner: |mut world, _trigger, _ptr, _propagate| {
world.resource_mut::<Order>().observed("event_a");
},
..Default::default()
});
// now
let observe = unsafe {
Observer::with_dynamic_runner(|mut world, _trigger, _ptr, _propagate| {
world.resource_mut::<Order>().observed("event_a");
})
.with_event(event_a)
};
world.spawn(observe);
```
# Objective
Simplify code in the `SingleThreadedExecutor` by removing a special case
for exclusive systems.
The `SingleThreadedExecutor` runs systems without immediately applying
deferred buffers. That required calling `run_unsafe()` instead of
`run()`, but that would `panic` for exclusive systems, so the code also
needed a special case for those. Following #18076 and #18406, we have a
`run_without_applying_deferred` method that has the exact behavior we
want and works on exclusive systems.
## Solution
Replace the code in `SingleThreadedExecutor` that runs systems with a
single call to `run_without_applying_deferred()`. Also add this as a
wrapper in the `__rust_begin_short_backtrace` module to preserve the
special behavior for backtraces.
# Objective
Colors currently do not implement `StableInterpolate`, which makes them
ineligible for functions like `smooth_nudge` and make some generic APIs
awkward.
## Solution
Implemented `StableInterpolate` for linear color types that should be
uncontroversial. Non-linear types like `Hsl` are not implemented in this
PR.
## Testing
Added a test that checks implementations are correct.
# Objective
- Minor cleanup.
- This seems to have been introduced in #8336. There is no discussion
about it I can see, there's no comment explaining why this is here and
not in `ScreenshotPlugin`. This seems to have just been misplaced.
## Solution
- Move this to the ScreenshotPlugin!
## Testing
- The screenshot example still works at least on desktop.
# Objective
It has long been a todo item in the ecs to create a `BundleRemover`
alongside the inserter, spawner, etc.
This is an uncontroversial first step of #18514.
## Solution
Move existing code from complex helper functions to one generalized
`BundleRemover`.
## Testing
Existing tests.
# Objective
Let `FilteredEntityRef` and `FilteredEntityMut` receive access when
nested inside tuples or `#[derive(QueryData)]` types. Make sure to
exclude any access that would conflict with other subqueries!
Fixes#14349
## Solution
Replace `WorldQuery::set_access(state, access)` with a new method,
`QueryData::provide_extra_access(state, access, available_access)`, that
passes both the total available access and the currently used access.
This is called after `WorldQuery::update_component_access()`, so any
access used by ordinary subqueries will be known. `FilteredEntityRef`
and `FilteredEntityMut` can use the combination to determine how much
access they can safely take, while tuples can safely pass those
parameters directly to their subqueries.
This requires a new `Access::remove_conflicting_access()` method that
can be used to remove any access that would conflict with existing
access. Implementing this method was easier by first factoring some
common set manipulation code out of `Access::extend`. I can extract that
refactoring to a separate PR if desired.
Have `FilteredEntity(Ref|Mut)` store `Access` instead of
`FilteredAccess` because they do not need to keep track of the filter.
This was necessary in an early draft but no longer is. I left it in
because it's small and I'm touching that code anyway, but I can extract
it to a separate PR if desired.
# Objective
Fixes#17803
## Solution
- Add an `Allows<T>` `QueryFilter` that adds archetypal access for `T`
- Fix access merging to include archetypal from both sides
## Testing
- Added a case to the unit test for the application of
`DefaultQueryFilters`
# Objective
Based on and closes#18054, this PR builds on #18035 and #18147 to
remove:
- `Commands::insert_or_spawn_batch`
- `Entities::alloc_at_without_replacement`
- `Entities::alloc_at`
- `entity::AllocAtWithoutReplacement`
- `World::insert_or_spawn_batch`
- `World::insert_or_spawn_batch_with_caller`
## Testing
Just removing unused, deprecated code, so no new tests. Note that as of
writing, #18035 is still under testing and review.
## Future Work
Per
[this](https://github.com/bevyengine/bevy/issues/18054#issuecomment-2689088899)
comment on #18054, there may be additional performance improvements
possible to the entity allocator now that `alloc_at` no longer is
supported. At a glance, I don't see anything obvious to improve, but it
may be worth further investigation in the future.
---------
Co-authored-by: JaySpruce <jsprucebruce@gmail.com>
The LogPlugin now allows overriding the default
`tracing_subscriber::fmt::Layer` through a new `fmt_layer` option. This
enables customization of the default log output format without having to
replace the entire logging system.
For example, to disable timestamps in the log output:
```rust
fn fmt_layer(_app: &mut App) -> Option<bevy::log::BoxedFmtLayer> {
Some(Box::new(
bevy::log::tracing_subscriber::fmt::Layer::default()
.without_time()
.with_writer(std::io::stderr),
))
}
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(bevy::log::LogPlugin {
fmt_layer,
..default()
}))
.run();
}
```
This is different from the existing `custom_layer` option, because that
option _adds_ additional layers to the subscriber, but can't modify the
default formatter layer (at least, not to my knowledge).
I almost always disable timestamps in my Bevy logs, and usually also
tweak other default log formatting (such as `with_span_events`), which
made it so that I always had to disable the default logger. This allows
me to use everything the Bevy logger supports (including tracy support),
while still formatting the default logs the way I like them.
---------
Signed-off-by: Jean Mertz <git@jeanmertz.com>
# Objective
Add a viewport widget.
## Solution
- Add a new `ViewportNode` component to turn a UI node into a viewport.
- Add `viewport_picking` to pass pointer inputs from other pointers to
the viewport's pointer.
- Notably, this is somewhat functionally different from the viewport
widget in [the editor
prototype](https://github.com/bevyengine/bevy_editor_prototypes/pull/110/files#L124),
which just moves the pointer's location onto the render target. Viewport
widgets have their own pointers.
- Care is taken to handle dragging in and out of viewports.
- Add `update_viewport_render_target_size` to update the viewport node's
render target's size if the node size changes.
- Feature gate picking-related viewport items behind
`bevy_ui_picking_backend`.
## Testing
I've been using an example I made to test the widget (and added it as
`viewport_node`):
<details><summary>Code</summary>
```rust
//! A simple scene to demonstrate spawning a viewport widget. The example will demonstrate how to
//! pick entities visible in the widget's view.
use bevy::picking::pointer::PointerInteraction;
use bevy::prelude::*;
use bevy::ui::widget::ViewportNode;
use bevy::{
image::{TextureFormatPixelInfo, Volume},
window::PrimaryWindow,
};
use bevy_render::{
camera::RenderTarget,
render_resource::{
Extent3d, TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
},
};
fn main() {
App::new()
.add_plugins((DefaultPlugins, MeshPickingPlugin))
.add_systems(Startup, test)
.add_systems(Update, draw_mesh_intersections)
.run();
}
#[derive(Component, Reflect, Debug)]
#[reflect(Component)]
struct Shape;
fn test(
mut commands: Commands,
window: Query<&Window, With<PrimaryWindow>>,
mut images: ResMut<Assets<Image>>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Spawn a UI camera
commands.spawn(Camera3d::default());
// Set up an texture for the 3D camera to render to
let window = window.get_single().unwrap();
let window_size = window.physical_size();
let size = Extent3d {
width: window_size.x,
height: window_size.y,
..default()
};
let format = TextureFormat::Bgra8UnormSrgb;
let image = Image {
data: Some(vec![0; size.volume() * format.pixel_size()]),
texture_descriptor: TextureDescriptor {
label: None,
size,
dimension: TextureDimension::D2,
format,
mip_level_count: 1,
sample_count: 1,
usage: TextureUsages::TEXTURE_BINDING
| TextureUsages::COPY_DST
| TextureUsages::RENDER_ATTACHMENT,
view_formats: &[],
},
..default()
};
let image_handle = images.add(image);
// Spawn the 3D camera
let camera = commands
.spawn((
Camera3d::default(),
Camera {
// Render this camera before our UI camera
order: -1,
target: RenderTarget::Image(image_handle.clone().into()),
..default()
},
))
.id();
// Spawn something for the 3D camera to look at
commands
.spawn((
Mesh3d(meshes.add(Cuboid::new(5.0, 5.0, 5.0))),
MeshMaterial3d(materials.add(Color::WHITE)),
Transform::from_xyz(0.0, 0.0, -10.0),
Shape,
))
// We can observe pointer events on our objects as normal, the
// `bevy::ui::widgets::viewport_picking` system will take care of ensuring our viewport
// clicks pass through
.observe(on_drag_cuboid);
// Spawn our viewport widget
commands
.spawn((
Node {
position_type: PositionType::Absolute,
top: Val::Px(50.0),
left: Val::Px(50.0),
width: Val::Px(200.0),
height: Val::Px(200.0),
border: UiRect::all(Val::Px(5.0)),
..default()
},
BorderColor(Color::WHITE),
ViewportNode::new(camera),
))
.observe(on_drag_viewport);
}
fn on_drag_viewport(drag: Trigger<Pointer<Drag>>, mut node_query: Query<&mut Node>) {
if matches!(drag.button, PointerButton::Secondary) {
let mut node = node_query.get_mut(drag.target()).unwrap();
if let (Val::Px(top), Val::Px(left)) = (node.top, node.left) {
node.left = Val::Px(left + drag.delta.x);
node.top = Val::Px(top + drag.delta.y);
};
}
}
fn on_drag_cuboid(drag: Trigger<Pointer<Drag>>, mut transform_query: Query<&mut Transform>) {
if matches!(drag.button, PointerButton::Primary) {
let mut transform = transform_query.get_mut(drag.target()).unwrap();
transform.rotate_y(drag.delta.x * 0.02);
transform.rotate_x(drag.delta.y * 0.02);
}
}
fn draw_mesh_intersections(
pointers: Query<&PointerInteraction>,
untargetable: Query<Entity, Without<Shape>>,
mut gizmos: Gizmos,
) {
for (point, normal) in pointers
.iter()
.flat_map(|interaction| interaction.iter())
.filter_map(|(entity, hit)| {
if !untargetable.contains(*entity) {
hit.position.zip(hit.normal)
} else {
None
}
})
{
gizmos.arrow(point, point + normal.normalize() * 0.5, Color::WHITE);
}
}
```
</details>
## Showcase
https://github.com/user-attachments/assets/39f44eac-2c2a-4fd9-a606-04171f806dc1
## Open Questions
- <del>Not sure whether the entire widget should be feature gated behind
`bevy_ui_picking_backend` or not? I chose a partial approach since maybe
someone will want to use the widget without any picking being
involved.</del>
- <del>Is `PickSet::Last` the expected set for `viewport_picking`?
Perhaps `PickSet::Input` is more suited.</del>
- <del>Can `dragged_last_frame` be removed in favor of a better dragging
check? Another option that comes to mind is reading `Drag` and `DragEnd`
events, but this seems messier.</del>
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
Stop using `ArchetypeComponentId` in the executor. These IDs will grow
even more quickly with relations, and the size may start to degrade
performance.
## Solution
Have systems expose their `FilteredAccessSet<ComponentId>`, and have the
executor use that to determine which systems conflict. This can be
determined statically, so determine all conflicts during initialization
and only perform bit tests when running.
## Testing
I ran many_foxes and didn't see any performance changes. It's probably
worth testing this with a wider range of realistic schedules to see
whether the reduced concurrency has a cost in practice, but I don't know
what sort of test cases to use.
## Migration Guide
The schedule will now prevent systems from running in parallel if there
*could* be an archetype that they conflict on, even if there aren't
actually any. For example, these systems will now conflict even if no
entity has both `Player` and `Enemy` components:
```rust
fn player_system(query: Query<(&mut Transform, &Player)>) {}
fn enemy_system(query: Query<(&mut Transform, &Enemy)>) {}
```
To allow them to run in parallel, use `Without` filters, just as you
would to allow both queries in a single system:
```rust
// Either one of these changes alone would be enough
fn player_system(query: Query<(&mut Transform, &Player), Without<Enemy>>) {}
fn enemy_system(query: Query<(&mut Transform, &Enemy), Without<Player>>) {}
```
# Objective
- When loading a folder with dot files inside, Bevy crashes:
```
thread 'IO Task Pool (1)' panicked at crates/bevy_asset/src/io/mod.rs:260:10:
asset paths must have extensions
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
```
- those files are common for other tools to store their
settings/metadata
## Solution
- Ignore files starting with a dot when loading folders
# Objective
Prevent using exclusive systems as observers. Allowing them is unsound,
because observers are only expected to have `DeferredWorld` access, and
the observer infrastructure will keep pointers that are invalidated by
the creation of `&mut World`.
See
https://github.com/bevyengine/bevy/actions/runs/14778342801/job/41491517847?pr=19011
for a MIRI failure in a recent PR caused by an exclusive system being
used as an observer in a test.
## Solution
Have `Observer::new` panic if `System::is_exclusive()` is true. Document
that method, and methods that call it, as panicking.
(It should be possible to express this in the type system so that the
calls won't even compile, but I did not want to attempt that.)
## Testing
Added a unit test that calls `World::add_observer` with an exclusive
system.
# Objective
I've been tinkering with ECS insertion/removal lately, and noticed that
sparse sets just... don't interact with `InsertMode` at all. Sure
enough, using `insert_if_new` with a sparse component does the same
thing as `insert`.
# Solution
- Add a check in `BundleInfo::write_components` to drop the new value if
the entity already has the component and `InsertMode` is `Keep`.
- Add necessary methods to sparse set internals to fetch the drop
function.
# Testing
Minimal reproduction:
<details>
<summary>Code</summary>
```
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(PostStartup, component_print)
.run();
}
#[derive(Component)]
#[component(storage = "SparseSet")]
struct SparseComponent(u32);
fn setup(mut commands: Commands) {
let mut entity = commands.spawn_empty();
entity.insert(SparseComponent(1));
entity.insert(SparseComponent(2));
let mut entity = commands.spawn_empty();
entity.insert(SparseComponent(3));
entity.insert_if_new(SparseComponent(4));
}
fn component_print(query: Query<&SparseComponent>) {
for component in &query {
info!("{}", component.0);
}
}
```
</details>
Here it is on Bevy Playground (0.15.3):
https://learnbevy.com/playground?share=2a96a68a81e804d3fdd644a833c1d51f7fa8dd33fc6192fbfd077b082a6b1a41
Output on `main`:
```
2025-05-04T17:50:50.401328Z INFO system{name="fork::component_print"}: fork: 2
2025-05-04T17:50:50.401583Z INFO system{name="fork::component_print"}: fork: 4
```
Output with this PR :
```
2025-05-04T17:51:33.461835Z INFO system{name="fork::component_print"}: fork: 2
2025-05-04T17:51:33.462091Z INFO system{name="fork::component_print"}: fork: 3
```
# Objective
- Contributes to #18978
## Solution
- Disable default features on all dependencies in `bevy_asset` and
explicitly enable ones that are required.
- Remove `compile_error` caused by enabling `file_watcher` without
`multi_threaded` by including `multi_threaded` in `file_watcher`.
## Testing
- CI
---
## Notes
No breaking changes here, just a little cleaning before the more
controversial changes for `no_std` support.
---------
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
Fixes#18969
## Solution
Also updated `Aabb3d` implementation for consistency.
## Testing
Added tests for `Aabb2d` and `Aabb3d` to verify correct rotation
behavior for angles greater than 90 degrees.
# Objective
`BTreeSet` doesn't implement `RelationshipSourceCollection`.
## Solution
Implement it.
## Testing
`cargo clippy`
---
## Showcase
You can now use `BTreeSet` in a `RelationshipTarget`
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
Create a `When` system param wrapper for skipping systems that fail
validation.
Currently, the `Single` and `Populated` parameters cause systems to skip
when they fail validation, while the `Res` family causes systems to
error. Generalize this so that any fallible parameter can be used either
to skip a system or to raise an error. A parameter used directly will
always raise an error, and a parameter wrapped in `When<P>` will always
cause the system to be silently skipped.
~~Note that this changes the behavior for `Single` and `Populated`. The
current behavior will be available using `When<Single>` and
`When<Populated>`.~~
Fixes#18516
## Solution
Create a `When` system param wrapper that wraps an inner parameter and
converts all validation errors to `skipped`.
~~Change the behavior of `Single` and `Populated` to fail by default.~~
~~Replace in-engine use of `Single` with `When<Single>`. I updated the
`fallible_systems` example, but not all of the others. The other
examples I looked at appeared to always have one matching entity, and it
seemed more clear to use the simpler type in those cases.~~
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
- If using a `NonNilUuid` in Bevy, it's difficult to reflect it.
## Solution
- Adds `NonNilUuid` using `impl_reflect_opaque!`.
## Testing
- Built with no issues found locally.
- Essentially the same as the `Uuid` support except without `Default`.
Co-authored-by: TM Storey <mail@tmstorey.id.au>
# Objective
Add background colors for text.
Fixes#18889
## Solution
New component `TextBackgroundColor`, add it to any UI `Text` or
`TextSpan` entity to add a background color to its text.
New field on `TextLayoutInfo` `section_rects` holds the list of bounding
rects for each text section.
The bounding rects are generated in `TextPipeline::queue_text` during
text layout, `extract_text_background_colors` extracts the colored
background rects for rendering.
Didn't include `Text2d` support because of z-order issues.
The section rects can also be used to implement interactions targeting
individual text sections.
## Testing
Includes a basic example that can be used for testing:
```
cargo run --example text_background_colors
```
---
## Showcase

Using a proportional font with kerning the results aren't so tidy (since
the bounds of adjacent glyphs can overlap) but it still works fine:

---------
Co-authored-by: Olle Lukowski <lukowskiolle@gmail.com>
Co-authored-by: Gilles Henaux <ghx_github_priv@fastmail.com>
Adopted #13869
# Objective
Fixes#9076
## Solution
Using `rodio`'s `try_seek`
## Testing
@ivanstepanovftw added a `seek` system using `AudioSink` to the
`audio_control.rs` example. I got it working with .mp3 files, but rodio
doesn't support seeking for .ogg and .flac files, so I removed it from
the commit (since the assets folder only has .ogg files). Another thing
to note is that `try_seek` fails when using `PlaybackMode::Loop`, as
`rodio::source::buffered::Buffered` doesn't support `try_seek`. I
haven't tested `SpatialAudioSink`.
## Notes
I copied the docs for `try_seek` verbatim from `rodio`, and re-exported
`rodio::source::SeekError`. I'm not completely confident in those
decisions, please let me know if I'm doing anything wrong.
</details>
---------
Co-authored-by: Ivan Stepanov <ivanstepanovftw@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
The default should be `OverflowClipBox::PaddingBox` not
`OverflowClipBox::ContentBox`
`padding-box` is the default in CSS.
## Solution
Set the default to `PaddingBox`.
## Testing
Compare the `overflow` UI example on main vs with this PR. You should
see that on main the outline around the inner node gets clipped. With
this PR by default clipping starts at the inner edge of the border (the
`padding-box`) and the outlines are visible.
Fixes#18934
# Objective
We have methods to:
- Add related entities
- Replace related entities
- Remove specific related entities
We don't have a method the remove all related entities so.
## Solution
Add a method to remove all related entities.
## Testing
A new test case.
# Objective
When implementing `SystemParam` for an object which contains a mutable
reference to World, which cannot be derived due to a required lifetime
parameter, it's necessary to check that there aren't any conflicts.
As far as I know, the is_empty method is the only way provided to check
for no conflicts at all
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/15389.
- Add documentation for RawHandleWrapper::_window field since It's
needed to drop the window at the correct time.
## Solution
- Added documentation to RawHandleWrapper::_window field as same as
WindowWrapper documentation.
## Testing
- No testing needed since it is documentation.
---
# Objective
Subtle, very minor issue. The following code fails to compile on main:
```rs
struct bevy;
#[derive(::bevy::ecs::component::Component)]
struct MyComponent;
```
The derive proc macro is pasting in essentially:
```rs
impl bevy::ecs::component::Component for MyComponent
```
...which normally works, but I've added `struct bevy`, which makes the
proc macro spit out incorrect code.
Very cursed, but to my knowledge has never been encountered in practice.
All the same, it's technically incorrect and should be fixed.
## Solution
The solution is simply to prepend `::` to crate names. Specifically, all
(all?) Bevy's derive macros determine the root crate name using
`BevyManifest`, which does some toml-parsing witchcraft to figure out
whether to qualify names using the umbrella `bevy` crate or individual
`bevy_xxx` crates. I just added a `::` to the spot where we parse the
`syn::Path`. The above example compiles properly after that.
## Testing
- CI should catch any errors since this change should cause compile
errors if for some reason they're being used in a cursed way somewhere
that would make this break something.
## Note
If this does break something for someone, this *really* needs a comment
in `BevyManifest::maybe_get_path` explaining why we can't make this
change.
# Objective
Fixes#18943
## Solution
Reintroduces support for `hashbrown`'s `HashMap` and `HashSet` types.
These were inadvertently removed when `bevy_platform` newtyped the
`hashbrown` types.
Since we removed our `hashbrown` dependency, I gated these impls behind
a `hashbrown` feature. Not entirely sure if this is necessary since we
enabled it for `bevy_reflect` through `bevy_platform` anyways. (Complex
features still confuse me a bit so let me know if I can just remove it!)
I also went ahead and preemptively implemented `TypePath` for `PassHash`
while I was here.
## Testing
You can test that it works by adding the following to a Bevy example
based on this PR (you'll also need to include `hashbrown` of course):
```rust
#[derive(Reflect)]
struct Foo(hashbrown::HashMap<String, String>);
```
Then check it compiles with:
```
cargo check --example hello_world --no-default-features --features=bevy_reflect/hashbrown
```
# Objective
- Fixes#18856.
## Solution
After PR #17633, `Camera::viewport_to_world` method corrects
`viewport_position` passed in that input so that it's offset by camera's
viewport. `Camera::viewport_to_world` is used by `make_ray` function
which in turn also offsets pointer position by viewport position, which
causes picking objects to be shifted by viewport position, and it wasn't
removed in the aforementioned PR. This second offsetting in `make_ray`
was removed.
## Testing
- I tested simple_picking example by applying some horizontal offset to
camera's viewport.
- I tested my application that displayed a single rectangle with picking
on two cameras arranged in a row. When using local bevy with this fix,
both cameras can be used for picking correctly.
- I modified split_screen example: I added observer to ground plane that
changes color on hover, and removed UI as it interfered with picking
both on master and my branch. On master, only top left camera was
triggering the observer, and on my branch all cameras could change
plane's color on hover.
- I added viewport offset to mesh_picking, with my changes it works
correctly, while on master picking ray is shifted.
- Sprite picking with viewport offset doesn't work both on master and on
this branch.
These are the only scenarios I tested. I think other picking functions
that use this function should be tested but I couldn't track more uses
of it.
Co-authored-by: Krzysztof Zywiecki <krzysiu@pop-os.Dlink>
# Objective
Fixes#18857.
## Solution
Add the requested method, and a `try_` variant as well.
## Testing
It compiles, doctests succeed, and is trivial enough that I don't think
it needs a unit test (correct me if I'm wrong though).
# Objective
Fix problems with `FontAtlasSet`:
* `FontAtlasSet` derives `Asset` but `FontAtlasSet`s are not Bevy
assets.
* The doc comments state that `FontAtlasSet`s are assets that are
created automatically when fonts are loaded. They aren't, they are
created as needed during text updates.
## Solution
* Removed the `Asset` derive.
* Rewrote the doc comments.
# Objective
Was copying off `bevy_ui`'s homework writing a picking backend and
noticed the `Has<IsDefaultPickingCamera>` is not used anywhere.
## Testing
Ran a random example.
This shouldn't cause any behavioral changes at all because the
component/archetype access/filter flags should be the same. `Has<X>`
doesn't affect access since it doesn't actually read or write anything,
and it doesn't affect matched archetypes either. Can't think of another
reason any behavior would change.
# Objective
A small typo was found on `bevy_ecs/examples/event.rs`.
I know it's very minor but I'd think fixing it would still help others
in the long run.
## Solution
Fix the typo.
## Testing
I don't think this is necessary.
# Objective
Fixes#18843
## Solution
We need to account for the material being added and removed in the
course of the same frame. We evict the caches first because the entity
will be re-added if it was marked as needing specialization, which
avoids another check on removed components to see if it was "really"
despawned.
# Objective
One to one relationships (added in
https://github.com/bevyengine/bevy/pull/18087) can currently easily be
invalidated by having two entities relate to the same target.
Alternative to #18817 (removing one-to-one relationships)
## Solution
Panic if a RelationshipTarget is already targeted. Thanks @urben1680 for
the idea!
---------
Co-authored-by: François Mockers <mockersf@gmail.com>
There's still a race resulting in blank materials whenever a material of
type A is added on the same frame that a material of type B is removed.
PR #18734 improved the situation, but ultimately didn't fix the race
because of two issues:
1. The `late_sweep_material_instances` system was never scheduled. This
PR fixes the problem by scheduling that system.
2. `early_sweep_material_instances` needs to be called after *every*
material type has been extracted, not just when the material of *that*
type has been extracted. The `chain()` added during the review process
in PR #18734 broke this logic. This PR reverts that and fixes the
ordering by introducing a new `SystemSet` that contains all material
extraction systems.
I also took the opportunity to switch a manual reference to
`AssetId::<StandardMaterial>::invalid()` to the new
`DUMMY_MESH_MATERIAL` constant for clarity.
Because this is a bug that can affect any application that switches
material types in a single frame, I think this should be uplifted to
Bevy 0.16.
This reverts commit ac52cca033.
Fixes#18815
# Objective
#18782 resulted in using `log` macros instead of `tracing` macros (in
the interest of providing no_std support, specifically no_atomic
support). That tradeoff isn't worth it, especially given that tracing is
likely to get no_atomic support.
## Solution
Revert #18782
Fixes#18834.
`EntityWorldMut::remove_children` and `EntityCommands::remove_children`
were removed in the relationships overhaul (#17398) and never got
replaced.
I don't *think* this was intentional (the methods were never mentioned
in the PR or its comments), but I could've missed something.
# Objective
I was wrong about how RPITIT works when I wrote this stuff initially,
and in order to actually give people access to all the traits
implemented by the output (e.g. Debug and so on) it's important to
expose the real output type, even if it makes the trait uglier and less
comprehensible. (☹️)
## Solution
Expose the curve output type of the `CurveWithDerivative` trait and its
double-derivative companion. I also added a bunch of trait derives to
`WithDerivative<T>`, since I think that was just an oversight.
Fixes a small mix-up from #18058, which added bulk relationship
replacement methods.
`EntityCommands::replace_related_with_difference` calls
`EntityWorldMut::replace_children_with_difference` instead of
`EntityWorldMut::replace_related_with_difference`, which means it always
operates on the `ChildOf` relationship instead of the `R: Relationship`
generic it's provided.
`EntityCommands::replace_children_with_difference` takes an `R:
Relationship` generic that it shouldn't, but it accidentally works
correctly on `main` because it calls the above method.
# Objective
After #17967, closures which always panic no longer satisfy various Bevy
traits. Principally, this affects observers, systems and commands.
While this may seem pointless (systems which always panic are kind of
useless), it is distinctly annoying when using the `todo!` macro, or
when writing tests that should panic.
Fixes#18778.
## Solution
- Add failing tests to demonstrate the problem
- Add the trick from
[`never_say_never`](https://docs.rs/never-say-never/latest/never_say_never/)
to name the `!` type on stable Rust
- Write looots of docs explaining what the heck is going on and why
we've done this terrible thing
## To do
Unfortunately I couldn't figure out how to avoid conflicting impls, and
I am out of time for today, the week and uh the week after that.
Vacation! If you feel like finishing this for me, please submit PRs to
my branch and I can review and press the button for it while I'm off.
Unless you're Cart, in which case you have write permissions to my
branch!
- [ ] fix for commands
- [ ] fix for systems
- [ ] fix for observers
- [ ] revert https://github.com/bevyengine/bevy-website/pull/2092/
## Testing
I've added a compile test for these failure cases and a few adjacent
non-failing cases (with explicit return types).
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
The parameter `In` of `call_inner` is completely unconstrained by its
arguments and return type. We are only able to infer it by assuming that
the only associated type equal to `In::Param<'_>` is `In::Param<'_>`
itself. It could just as well be some other associated type which only
normalizes to `In::Param<'_>`. This will change with the next-generation
trait solver and was encountered by a crater run
https://github.com/rust-lang/rust/pull/133502-
cc
https://github.com/rust-lang/trait-system-refactor-initiative/issues/168
I couldn't think of a cleaner alternative here. I first tried to just
provide `In` as an explicit type parameter. This is also kinda ugly as I
need to provide a variable number of them and `${ignore(..)}` is
currently still unstable https://github.com/rust-lang/rust/issues/83527.
Sorry for the inconvenience. Also fun that this function exists to avoid
a separate solver bug in the first place 😅
Fixes#18809Fixes#18823
Meshes despawned in `Last` can still be in visisible entities if they
were visible as of `PostUpdate`. Sanity check that the mesh actually
exists before we specialize. We still want to unconditionally assume
that the entity is in `EntitySpecializationTicks` as its absence from
that cache would likely suggest another bug.
# Objective
Fixes#18808
## Solution
When an asset emits a removed event, mark it as modified in the render
world to ensure any appropriate bookkeeping runs as necessary.
# Objective
The goal of `bevy_platform_support` is to provide a set of platform
agnostic APIs, alongside platform-specific functionality. This is a high
traffic crate (providing things like HashMap and Instant). Especially in
light of https://github.com/bevyengine/bevy/discussions/18799, it
deserves a friendlier / shorter name.
Given that it hasn't had a full release yet, getting this change in
before Bevy 0.16 makes sense.
## Solution
- Rename `bevy_platform_support` to `bevy_platform`.
# Objective
- `bevy_dylib` currently doesn't build independently
```
cargo build -p bevy_dylib
Compiling bevy_dylib v0.16.0-rc.4 (/crates/bevy_dylib)
error: no global memory allocator found but one is required; link to std or add `#[global_allocator]` to a static item that implements the GlobalAlloc trait
error: `#[panic_handler]` function required, but not found
error: unwinding panics are not supported without std
|
= help: using nightly cargo, use -Zbuild-std with panic="abort" to avoid unwinding
= note: since the core library is usually precompiled with panic="unwind", rebuilding your crate with panic="abort" may not be enough to fix the problem
error: could not compile `bevy_dylib` (lib) due to 3 previous errors
```
## Solution
- remove `#![no_std]` from `bevy_dylib`
## Testing
- it builds now
# Objective
- Fixes#18781
## Solution
- Moved `LogPlugin` into its own file gated behind a new `tracing`
feature.
- Used `log` instead of `tracing` where possible.
- Exposed a new `tracing` feature in `bevy` which enables
`bevy_log/tracing`.
- Gated `LogPlugin` from `DefaultPlugins` on `tracing` feature.
## Testing
- CI
---
## Migration Guide
- If you were previously using `bevy_log` with default features
disabled, enable the new `std` and `tracing` features.
- If you were using `bevy` with the default features disabled, enable
the new `tracing` feature.
## Notes
Almost all of the diffs in this PR come from moving `LogPlugin` into its
own file. This just makes the PR less noisy, since the alternative is
excessive `#[cfg(feature = "tracing")]` directives all over the plugin.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
Fixes#17591
Looking at the arm downloads page, "r48p0" is a version number that
increments, where rXX is the major version and pX seems to be a patch
version. Take the conservative approach here that we know gpu
preprocessing is working on at least version 48 and presumably higher.
The assumption here is that the driver_info string will be reported
similarly on non-pixel devices.
# Objective
- Piped systems are an edge case that we missed when reworking system
parameter validation.
- Fixes#18755.
## Solution
- Validate the parameters for both systems, ~~combining the errors if
both failed validation~~ by simply using an early out.
- ~~Also fix the same bug for combinator systems while we're here.~~
## Testing
I've added a large number of tests checking the behavior under various
permutations. These are separate tests, rather than one mega test
because a) it's easier to track down bugs that way and b) many of these
are `should_panic` tests, which will halt the evaluation of the rest of
the test!
I've also added a test for exclusive systems being pipeable because we
don't have one and I was very surprised that that works!
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
- The referenced `ScheduleLabel` for `OnPrimaryClosed` and `OnAllClosed`
in `ExitCondition` was incorrect
## Solution
- Changed `Update` to `PostUpdate`
A clippy failure slipped into #18768, although I'm not sure why CI
didn't catch it.
```sh
> cargo clippy --version
clippy 0.1.85 (4eb161250e 2025-03-15)
> cargo run -p ci
...
error: empty line after doc comment
--> crates\bevy_pbr\src\light\mod.rs:105:5
|
105 | / /// The width and height of each of the 6 faces of the cubemap.
106 | |
| |_^
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#empty_line_after_doc_comments
= note: `-D clippy::empty-line-after-doc-comments` implied by `-D warnings`
= help: to override `-D warnings` add `#[allow(clippy::empty_line_after_doc_comments)]`
= help: if the empty line is unintentional remove it
help: if the documentation should include the empty line include it in the comment
|
106 | ///
|
```
# Objective
- Improve the docs for `PointLightShadowMap` and
`DirectionalLightShadowMap`
## Solution
- Add example for how to use `PointLightShadowMap` and move the
`DirectionalLightShadowMap` example from `DirectionalLight`.
- Match `PointLight` and `DirectionalLight` docs about shadows.
- Describe what `size` means.
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
# Objective
Fixes#16896Fixes#17737
## Solution
Adds a new render phase, including all the new cold specialization
patterns, for wireframes. There's a *lot* of regrettable duplication
here between 3d/2d.
## Testing
All the examples.
## Migration Guide
- `WireframePlugin` must now be created with
`WireframePlugin::default()`.
Currently, `RenderMaterialInstances` and `RenderMeshMaterialIds` are
very similar render-world resources: the former maps main world meshes
to typed material asset IDs, and the latter maps main world meshes to
untyped material asset IDs. This is needlessly-complex and wasteful, so
this patch unifies the two in favor of a single untyped
`RenderMaterialInstances` resource.
This patch also fixes a subtle issue that could cause mesh materials to
be incorrect if a `MeshMaterial3d<A>` was removed and replaced with a
`MeshMaterial3d<B>` material in the same frame. The problematic pattern
looks like:
1. `extract_mesh_materials<B>` runs and, seeing the
`Changed<MeshMaterial3d<B>>` condition, adds an entry mapping the mesh
to the new material to the untyped `RenderMeshMaterialIds`.
2. `extract_mesh_materials<A>` runs and, seeing that the entity is
present in `RemovedComponents<MeshMaterial3d<A>>`, removes the entry
from `RenderMeshMaterialIds`.
3. The material slot is now empty, and the mesh will show up as whatever
material happens to be in slot 0 in the material data slab.
This commit fixes the issue by splitting out `extract_mesh_materials`
into *three* phases: *extraction*, *early sweeping*, and *late
sweeping*, which run in that order:
1. The *extraction* system, which runs for each material, updates
`RenderMaterialInstances` records whenever `MeshMaterial3d` components
change, and updates a change tick so that the following system will know
not to remove it.
2. The *early sweeping* system, which runs for each material, processes
entities present in `RemovedComponents<MeshMaterial3d>` and removes each
such entity's record from `RenderMeshInstances` only if the extraction
system didn't update it this frame. This system runs after *all*
extraction systems have completed, fixing the race condition.
3. The *late sweeping* system, which runs only once regardless of the
number of materials in the scene, processes entities present in
`RemovedComponents<ViewVisibility>` and, as in the early sweeping phase,
removes each such entity's record from `RenderMeshInstances` only if the
extraction system didn't update it this frame. At the end, the late
sweeping system updates the change tick.
Because this pattern happens relatively frequently, I think this PR
should land for 0.16.
Due to the preprocessor usage in the shader, different combinations of
features could cause the fields of `StandardMaterialBindings` to shift
around. In certain cases, this could cause them to not line up with the
bindings specified in `StandardMaterial`. This resulted in #18104.
This commit fixes the issue by making `StandardMaterialBindings` have a
fixed size. On the CPU side, it uses the
`#[bindless(index_table(range(M..N)))]` feature I added to `AsBindGroup`
in #18025 to do so. Thus this patch has a dependency on #18025.
Closes#18104.
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
This fixes a panic that occurs if one calls
`PipelineCache::get_render_pipeline_state(id)` or
`PipelineCache::get_compute_pipeline_state(id)` with a queued pipeline
id that has not yet been processed by `PipelineCache::process_queue()`.
```
thread 'Compute Task Pool (0)' panicked at [...]/bevy/crates/bevy_render/src/render_resource/pipeline_cache.rs:611:24:
index out of bounds: the len is 0 but the index is 20
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
```
# Objective
Fixes#18550.
Because bin state for unbatchable meshes wasn't being cleared each
frame, the buffer indices for unbatchable meshes would demote from
sparse to dense storage and aggressively leak memory, with all kinds of
weird consequences downstream, namely supplying invalid instance ranges
for render.
## Solution
Clear out the unbatchable mesh bin state when we start a new frame.
PR #17898 disabled bindless support for `ExtendedMaterial`. This commit
adds it back. It also adds a new example, `extended_material_bindless`,
showing how to use it.
# Objective
Fixes#18678
## Solution
Moved the current `with_related` method to `with_relationships` and
added a new `with_related` that uses a bundle.
I'm not entirely sold on the name just yet, if anyone has any ideas let
me know.
## Testing
I wasn't able to test these changes because it crashed my computer every
time I tried (fun). But there don't seem to be any tests that use the
old `with_related` method so it should be fine, hopefully
## Showcase
```rust
commands.spawn_empty()
.with_related::<Relationship>(Name::new("Related thingy"))
.with_relationships(|rel| {
rel.spawn(Name::new("Second related thingy"));
});
```
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Allow viewing and setting the added tick for change detection aware
data, to allow operations like checking if the value has been modified
since first being added, and spoofing that state (i.e. returning the
value to default in place without a remove/insert dance)
## Solution
- Added corresponding functions matching the existing `changed` API:
- `fn added(&self) -> Tick`
- `fn set_added(&mut self)`
- `fn set_last_added(&mut self, last_added: Tick)`
Discussed on discord @
https://canary.discord.com/channels/691052431525675048/749335865876021248/1358718892465193060
## Testing
- Running the bevy test suite by.. making a PR, heck.
- No new tests were introduced due to triviality (i.e. I don't know what
to test about this API, and the corresponding API for `changed` is
similarly lacking tests.)
---------
Co-authored-by: moonheart08 <moonheart08@users.noreply.github.com>
Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net>
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
Fixes#18685
## Solution
* Don't apply the camera translation.
* Calculate the min and max bounds of the accessibility node rect taking
the UI translation relative to its center not the top-left corner.
## Testing
Install [NVDA](https://www.nvaccess.org/). In NVDA set `Preferences ->
Settings -> Vision -> Enable Highlighting`.
Then run bevy's `tab_navigation` example:
```
cargo run --example tab_navigation
```
If everything is working correctly, NVDA should draw a border around the
currently selected tab button:

# Objective
Clarify information in the docs about the bundle removal commands.
## Solution
Added information about how the intersection of components are removed.
# Objective
Add web support to atmosphere by gating dual source blending and using a
macro to determine the target platform.
The main objective of this PR is to ensure that users of Bevy's
atmosphere feature can also run it in a web-based context where WebGPU
support is enabled.
## Solution
- Make use of the `#[cfg(not(target_arch = "wasm32"))]` macro to gate
the dual source blending, as this is not (yet) supported in web
browsers.
- Rename the function `sample_sun_illuminance` to `sample_sun_radiance`
and move calls out of conditionals to ensure the shader compiles and
runs in both native and web-based contexts.
- Moved the multiplication of the transmittance out when calculating the
sun color, because calling the `sample_sun_illuminance` function was
causing issues in web. Overall this results in cleaner code and more
readable.
## Testing
- Tested by building a wasm target and loading it in a web page with
Vite dev server using `mate-h/bevy-webgpu` repo template.
- Tested the native build with `cargo run --example atmosphere` to
ensure it still works with dual source blending.
---
## Showcase
Screenshots show the atmosphere example running in two different
contexts:
<img width="1281" alt="atmosphere-web-showcase"
src="https://github.com/user-attachments/assets/40b1ee91-89ae-41a6-8189-89630d1ca1a6"
/>
---------
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
## Objective
The `MotionBlur` component exposes renderer internals. Users shouldn't
have to deal with this.
```rust
MotionBlur {
shutter_angle: 1.0,
samples: 2,
#[cfg(all(feature = "webgl2", target_arch = "wasm32", not(feature = "webgpu")))]
_webgl2_padding: Default::default(),
},
```
## Solution
The renderer now uses a separate `MotionBlurUniform` struct for its
internals. `MotionBlur` no longer needs padding.
I was a bit unsure about the name `MotionBlurUniform`. Other modules use
a mix of `Uniform` and `Uniforms`.
## Testing
```
cargo run --example motion_blur
```
Tested on Win10/Nvidia across Vulkan, WebGL/Chrome, WebGPU/Chrome.
# Objective
- Fixes#18690
- Closes [#2065](https://github.com/bevyengine/bevy-website/pull/2065)
- Alternative to #18691
The changes to the Hash made in #15801 to the
[BuildHasher](https://doc.rust-lang.org/std/hash/trait.BuildHasher.html)
resulted in serious migration problems and downgraded UX for users of
Bevy's re-exported hashmaps. Once merged, we need to go in and remove
the migration guide added as part of #15801.
## Solution
- Newtype `HashMap` and `HashSet` instead of type aliases
- Added `Deref/Mut` to allow accessing future `hashbrown` methods
without maintenance from Bevy
- Added bidirectional `From` implementations to provide escape hatch for
API incompatibility
- Added inlinable re-exports of all methods directly to Bevy's types.
This ensures `HashMap::new()` works (since the `Deref` implementation
wont cover these kinds of invocations).
## Testing
- CI
---
## Migration Guide
- If you relied on Bevy's `HashMap` and/or `HashSet` types to be
identical to `hashbrown`, consider using `From` and `Into` to convert
between the `hashbrown` and Bevy types as required.
- If you relied on `hashbrown/serde` or `hashbrown/rayon` features, you
may need to enable `bevy_platform_support/serialize` and/or
`bevy_platform_support/rayon` respectively.
---
## Notes
- Did not replicate the Rayon traits, users will need to rely on the
`Deref/Mut` or `From` implementations for those methods.
- Did not re-expose the `unsafe` methods from `hashbrown`. In most cases
users will still have access via `Deref/Mut` anyway.
- I have added `inline` to all methods as they are trivial wrappings of
existing methods.
- I chose to make `HashMap::new` and `HashSet::new` const, which is
different to `hashbrown`. We can do this because we default to a
fixed-state build-hasher. Mild ergonomic win over using
`HashMap::with_hasher(FixedHasher)`.
## Objective
Fix #18714.
## Solution
Make sure `SkinUniforms::prev_buffer` is resized at the same time as
`current_buffer`.
There will be a one frame visual glitch when the buffers are resized,
since `prev_buffer` is incorrectly initialised with the current joint
transforms.
Note that #18074 includes the same fix. I'm assuming this smaller PR
will land first.
## Testing
See repro instructions in #18714. Tested on `animated_mesh`,
`many_foxes`, `custom_skinned_mesh`, Win10/Nvidia with Vulkan,
WebGL/Chrome, WebGPU/Chrome.
# Objective
In `bevy_enhanced_input`, I'm trying to associate `Actions` with a
schedule. I can do this via an associated type on a trait, but there's
no way to construct the associated label except by requiring a `Default`
implementation. However, Bevy labels don't implement `Default`.
## Solution
Add `Default` to all built-in labels. I think it should be useful in
general.
# Objective
This PR exposes the wgpu types necessary to use the result of
`RenderAdapter::get_texture_format_features`:
```rust
use bevy::render::render_resource::TextureFormatFeatureFlags;
// ^ now available
let adapter = world.resource::<RenderAdapter>();
let flags = adapter.get_texture_format_features(TextureFormat::R32Float).flags;
let filtering = flags.contains(TextureFormatFeatureFlags::FILTERABLE);
```
## Solution
- Expose `TextureFormatFeatureFlags`, `TextureFormatFeatures` like other
wgpu types in bevy_render
## Objective
Fix motion blur not working on skinned meshes.
## Solution
`set_mesh_motion_vector_flags` can set
`RenderMeshInstanceFlags::HAS_PREVIOUS_SKIN` after specialization has
already cached the material. This can lead to
`MeshPipelineKey::HAS_PREVIOUS_SKIN` never getting set, disabling motion
blur.
The fix is to make sure `set_mesh_motion_vector_flags` happens before
specialization.
Note that the bug is fixed in a different way by #18074, which includes
other fixes but is a much larger change.
## Testing
Open the `animated_mesh` example and add these components to the
`Camera3d` entity:
```rust
MotionBlur {
shutter_angle: 5.0,
samples: 2,
#[cfg(all(feature = "webgl2", target_arch = "wasm32", not(feature = "webgpu")))]
_webgl2_padding: Default::default(),
},
#[cfg(all(feature = "webgl2", target_arch = "wasm32", not(feature = "webgpu")))]
Msaa::Off,
```
Tested on `animated_mesh`, `many_foxes`, `custom_skinned_mesh`,
Win10/Nvidia with Vulkan, WebGL/Chrome, WebGPU/Chrome. Note that testing
`many_foxes` WebGL requires #18715.
# Objective
Fixes#18701
## Solution
Add reflection of `PartialEq` and `Hash` to `AnimationNodeIndex`
## Testing
Added a new `#[test]` with the minimal reproduction posted on #18701.
# Objective
- The `#[deprecated]` attributes supports a `since` field, which
documents in which version an item was deprecated. This field is visible
in `rustdoc`.
- We inconsistently use `since` throughout the project.
For an example of what `since` renders as, take a look at
`ChildOf::get()`:
```rust
/// The parent entity of this child entity.
#[deprecated(since = "0.16.0", note = "Use child_of.parent() instead")]
#[inline]
pub fn get(&self) -> Entity {
self.0
}
```

## Solution
- Add `since = "0.16.0"` to all `#[deprecated]` attributes that do not
already use it.
- Add an example of deprecating a struct with the `since` field in the
migration guide document.
I would appreciate if this could be included in 0.16's release, as its a
low-risk documentation improvement that is valuable for the release, but
I'd understand if this was cut.
## Testing
You can use `cargo doc` to inspect the rendered form of
`#[deprecated(since = "0.16.0", ...)]`.
# Objective
Newest installment of the #16547 series.
In #18319 we introduced `Entity` defaults to accomodate the most common
use case for these types, however that resulted in the switch of the `T`
and `N` generics of `UniqueEntityArray`.
Swapping generics might be somewhat acceptable for `UniqueEntityArray`,
it is not at all acceptable for map and set types, which we would make
generic over `T: EntityEquivalent` in #18408.
Leaving these defaults in place would result in a glaring inconsistency
between these set collections and the others.
Additionally, the current standard in the engine is for "entity" to mean
`Entity`. APIs could be changed to accept `EntityEquivalent`, however
that is a separate and contentious discussion.
## Solution
Name these set collections `UniqueEntityEquivalent*`, and retain the
`UniqueEntity*` name for an alias of the `Entity` case.
While more verbose, this allows for all generics to be in proper order,
full consistency between all set types*, and the "entity" name to be
restricted to `Entity`.
On top of that, `UniqueEntity*` now always have 1 generic less, when
previously this was not enforced for the default case.
*`UniqueEntityIter<I: Iterator<T: EntityEquivalent>>` is the sole
exception to this. Aliases are unable to enforce bounds
(`lazy_type_alias` is needed for this), so for this type, doing this
split would be a mere suggestion, and in no way enforced.
Iterator types are rarely ever named, and this specific one is intended
to be aliased when it sees more use, like we do for the corresponding
set collection iterators.
Furthermore, the `EntityEquivalent` precursor `Borrow<Entity>` was used
exactly because of such iterator bounds!
Because of that, we leave it as is.
While no migration guide for 0.15 users, for those that upgrade from
main:
`UniqueEntityVec<T>` -> `UniqueEntityEquivalentVec<T>`
`UniqueEntitySlice<T>` -> `UniqueEntityEquivalentSlice<T>`
`UniqueEntityArray<N, T>` -> `UniqueEntityEquivalentArray<T, N>`
#18555 improved syntax for required components.
However some code was a bit redundant after the new parsing and struct
initializing would not give proper errors.
This PR fixes that.
---------
Co-authored-by: Tim Overbeek <oorbecktim@Tims-MacBook-Pro.local>
# Objective
Improve the parameter validation error message for
`Event(Reader|Writer|Mutator)`.
System parameters defined using `#[derive(SystemParam)]`, including the
parameters for events, currently propagate the validation errors from
their subparameters. The error includes the type of the failing
parameter, so the resulting error includes the type of the failing
subparameter instead of the derived parameter.
In particular, `EventReader<T>` will report an error from a
`Res<Events<T>>`, even though the user has no parameter of that type!
This is a follow-up to #18593.
## Solution
Have `#[derive]`d system parameters map errors during propagation so
that they report the outer parameter type.
To continue to provide context, add a field to
`SystemParamValidationError` that identifies the subparameter by name,
and is empty for non-`#[derive]`d parameters.
Allow them to override the failure message for individual parameters.
Use this to convert "Resource does not exist" to "Event not initialized"
for `Event(Reader|Writer|Mutator)`.
## Showcase
The validation error for a `EventReader<SomeEvent>` parameter when
`add_event` has not been called changes from:
Before:
```
Parameter `Res<Events<SomeEvent>>` failed validation: Resource does not exist
```
After
```
Parameter `EventReader<SomeEvent>::events` failed validation: Event not initialized
```
Extension of #18409.
I was updating a migration guide for hierarchy commands and realized
`insert_children` wasn't added to `EntityCommands`, only
`EntityWorldMut`.
This adds that and `insert_related` (basically just some
copy-and-pasting).
# Objective
In #17905 we swapped to a named field on `ChildOf` to help resolve
variable naming ambiguity of child vs parent (ex: `child_of.parent`
clearly reads as "I am accessing the parent of the child_of
relationship", whereas `child_of.0` is less clear).
Unfortunately this has the side effect of making initialization less
ideal. `ChildOf { parent }` reads just as well as `ChildOf(parent)`, but
`ChildOf { parent: root }` doesn't read nearly as well as
`ChildOf(root)`.
## Solution
Move back to `ChildOf(pub Entity)` but add a `child_of.parent()`
function and use it for all accesses. The downside here is that users
are no longer "forced" to access the parent field with `parent`
nomenclature, but I think this strikes the right balance.
Take a look at the diff. I think the results provide strong evidence for
this change. Initialization has the benefit of reading much better _and_
of taking up significantly less space, as many lines go from 3 to 1, and
we're cutting out a bunch of syntax in some cases.
Sadly I do think this should land in 0.16 as the cost of doing this
_after_ the relationships migration is high.
# Objective
The `visited: Local<HashSet<Entity>>` system param is meant to track
which entities `update_contexts_recursively` has visited and updated but
when the reparent_nodes_query isn't ordered descending from parent to
child nodes can get marked as visited even though their camera target is
unset and if the camera target is unset then the node won't be rendered.
Fixes#18616
## Solution
Remove the `visited` system param from `update_ui_context_system` and
the associated visited check from `update_contexts_recursively`. It was
redundant anyway since the set_if_neq check is sufficient to track
already updated nodes.
## Testing
The example from #18616 can be used for testing.
# Objective
Provide more useful errors when `World::run_system` and related methods
fail parameter validation.
Let callers determine whether the validation failure would have skipped
or failed the system.
Follow-up to #18541.
## Solution
Add a `SystemParamValidationError` value to the
`RunSystemError::InvalidParams` and
`RegisteredSystemError::InvalidParams` variants. That includes the
complete context of the parameter validation error, including the
`skipped` flag.
fixes#17478
# Objective
- Complete #17558.
- the `insert_children` method was previously removed, and as #17478
points out, needs to be added back.
## Solution
- Add a `OrderedRelationshipSourceCollection`, which allows sorting,
ordering, rearranging, etc of a `RelationshipSourceCollection`.
- Implement `insert_related`
- Implement `insert_children`
- Tidy up some docs while I'm here.
## Testing
@bjoernp116 set up a unit test, and I added a doc test to
`OrderedRelationshipSourceCollection`.
---------
Co-authored-by: bjoernp116 <bjoernpollen@gmail.com>
Co-authored-by: Dmytro Banin <banind@cs.washington.edu>
Co-authored-by: Talin <viridia@gmail.com>
# Objective
#18173 allows components to be queued without being fully registered.
But much of bevy's debug logging contained
`components.get_name(id).unwrap()`. However, this panics when the id is
queued. This PR fixes this, allowing names to be retrieved for debugging
purposes, etc, even while they're still queued.
## Solution
We change `ComponentInfo::descriptor` to be `Arc<ComponentDescriptor>`
instead of not arc'd. This lets us pass the descriptor around (as a name
or otherwise) as needed. The alternative would require some form of
`MappedRwLockReadGuard`, which is unstable, and would be terribly
blocking. Putting it in an arc also signifies that it doesn't change,
which is a nice signal to users. This does mean there's an extra pointer
dereference, but I don't think that's an issue here, as almost all paths
that use this are for debugging purposes or one-time set ups.
## Testing
Existing tests.
## Migration Guide
`Components::get_name` now returns `Option<Cow<'_, str>` instead of
`Option<&str>`. This is because it now returns results for queued
components. If that behavior is not desired, or you know the component
is not queued, you can use
`components.get_info().map(ComponentInfo::name)` instead.
Similarly, `ScheduleGraph::conflicts_to_string` now returns `impl
Iterator<Item = (String, String, Vec<Cow<str>>)>` instead of `impl
Iterator<Item = (String, String, Vec<&str>)>`. Because `Cow<str>` derefs
to `&str`, most use cases can remain unchanged.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
- Fixes#18617
## Solution
- Added `thread::sleep` to `bevy_platform_support` using a spin-based
fallback.
- Fixed bug in `bevy_platform_support::time::Instant::elapsed`
(comparison was backwards)
- Switched `ScheduleRunnerPlugin` to use
`bevy_platform_support:🧵:sleep` on `std` and `no_std` platforms
(WASM + Browser excluded)
## Testing
- Ran reproduction code from @mockersf in linked issue and confirmed a
consistent 60 counts per `println!`.
---
## Notes
- I chose to add `bevy_platform_support:🧵:sleep` instead of
putting the fix in-line within `ScheduleRunnerPlugin` to keep the
separation of concerns clean. `sleep` is only used in one other location
in Bevy, `bevy_asset`, but I have decided to leave that as-is since
`bevy_asset` isn't `no_std` compatible anyway.
- The bug in `bevy_platform_support::time::Instant::elapsed` wasn't the
cause of this issue, but it did prevent this fix from working so I have
included the it in this PR.
- Lots of nits, formatting, and rephrasing, with the goal of making
things more consistent.
- Fix outdated error handler explanation in `Commands` and
`EntityCommands` docs.
- Expand docs for system-related commands.
- Remove panic notes if the command only panics with the default error
handler.
- Update error handling notes for `try_` variants.
- Hide `prelude` import in most doctest examples, unless the example
uses something that people might not realize is in the prelude (like
`Name`).
- Remove a couple doctest examples that (in my opinion) didn't make
sense.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
The `NoIndirectDrawing` wasn't working and was causing the scene not to
be rendered.
## Solution
Check the configured preprocessing mode when adding new batch sets and
mark them as batchable instead of muli-drawable if indirect rendering
has been disabled.
## Testing
`cargo run --example many_cubes -- --no-indirect-drawing`
# Objective
- Fixes#18397
- Supersedes #18474
- Simplifies 0.16 migration
## Solution
- Upgrade to Glam 0.29.3, which has backported the `nostd-libm` feature.
- Expose a similar feature in `bevy_math` and enable it in
`bevy_internal`, allowing `bevy_math`, `bevy_input`, and
`bevy_transform` to be unconditional dependencies again.
## Testing
- CI
---
## Notes
- This includes `libm` as a dependency, but this was already the case in
the common scenario where `rand` or many other features were enabled.
Considering `libm` is an official Rust crate, it's a very low-risk
dependency to unconditionally include.
- For users who do not want `libm` included, simply import Bevy's
subcrates directly, since `bevy_math/nostd-libm` will not be enabled.
- I know we are _very_ late in the RC cycle for 0.16, but this has a
substantial impact on the usability of `bevy` that I consider worth
including.
# Objective
- Fixes#18081
- Enable use-cases like getting UVs or texture colors for the hit point
(which are currently not possible due to this bug).
## Solution
- Return the triangle index instead of the first vertex index of the
triangle.
## Testing
Tested successfully with my project which does a raycast to get the UV
coordinates of the hit. My code:
```rust
fn get_uv(
mesh: &Mesh,
attribute: &MeshVertexAttribute,
hit: &RayMeshHit,
_gizmos: &mut Gizmos,
) -> Result<Vec2> {
let (a, b, c) = get_indices(mesh, hit)?;
let attrs = mesh
.attribute(*attribute)
.ok_or_eyre(format!("Attribute {:?} not found", &attribute))?;
let all_uvs: &Vec<[f32; 2]> = match &attrs {
VertexAttributeValues::Float32x2(positions) => positions,
_ => bail!("Unexpected types in {:?}", Mesh::ATTRIBUTE_UV_0),
};
let bary = hit.barycentric_coords;
Ok(Vec2::from_array(all_uvs[a]) * bary.x
+ Vec2::from_array(all_uvs[b]) * bary.y
+ Vec2::from_array(all_uvs[c]) * bary.z)
}
fn get_indices(mesh: &Mesh, hit: &RayMeshHit) -> Result<(usize, usize, usize)> {
let i = hit
.triangle_index
.ok_or_eyre("Intersection Index not found")?;
Ok(mesh.indices().map_or_else(
|| (i, i + 1, i + 2),
|indices| match indices {
Indices::U16(indices) => (
indices[i * 3] as usize,
indices[i * 3 + 1] as usize,
indices[i * 3 + 2] as usize,
),
Indices::U32(indices) => (
indices[i * 3] as usize,
indices[i * 3 + 1] as usize,
indices[i * 3 + 2] as usize,
),
},
))
}
```
PS: created a new PR because the old one was coming from and targeting
the wrong branches
# Objective
Make all feature gated bindings consistent with each other
## Solution
Make the bindings of fields gated by `pbr_specular_textures` feature
consistent with the other gated bindings
# Objective
- In the latest released version (15.3) I am able to obtain this
information by getting the actual `EventLoop` via `non_send_resource`.
Now that this object has (probably rightfully so) been replaced by the
`EventLoopProxy`, I can no longer maintain my custom render backend:
https://github.com/HugoPeters1024/bevy_vulkan. I also need the display
handle for a custom winit integration, for which I've made patches to
bevy before: XREF: https://github.com/bevyengine/bevy/pull/15884
## Solution
- Luckily, all that is required is exposing the `OwnedDisplayHandle` in
its own wrapper resource.
## Testing
- Aforementioned custom rendering backend works on this commit.
---------
Co-authored-by: HugoPeters1024 <hugopeters1024@gmail.com>
# Objective
- Cleanup
## Solution
- Remove completely unused weak_handle
(`MESH_PREPROCESS_TYPES_SHADER_HANDLE`). This value is not used
directly, and is never populated.
- Delete multiple loads of `BUILD_INDIRECT_PARAMS_SHADER_HANDLE`. We
load it three times right after one another. This looks to be a
copy-paste error.
## Testing
- None.
# Objective
Improve error messages for missing resources.
The default error handler currently prints the `Debug` representation of
the error type instead of `Display`. Most error types use
`#[derive(Debug)]`, resulting in a dump of the structure, but will have
a user-friendly message for `Display`.
Follow-up to #18593
## Solution
Change the default error handler to use `Display` instead of `Debug`.
Change `BevyError` to include the backtrace in the `Display` format in
addition to `Debug` so that it is still included.
## Showcase
Before:
```
Encountered an error in system `system_name`: SystemParamValidationError { skipped: false, message: "Resource does not exist", param: "bevy_ecs::change_detection::Res<app_name::ResourceType>" }
Encountered an error in system `other_system_name`: "String message with\nmultiple lines."
```
After
```
Encountered an error in system `system_name`: Parameter `Res<ResourceType>` failed validation: Resource does not exist
Encountered an error in system `other_system_name`: String message with
multiple lines.
```
# Objective
My ecosystem crate, bevy_mod_outline, currently uses `SetMeshBindGroup`
as part of its custom rendering pipeline. I would like to allow for
possibility that, due to changes in 0.16, I need to customise the
behaviour of `SetMeshBindGroup` in order to make it work. However, not
all of the symbol needed to implement this render command are public
outside of Bevy.
## Solution
- Include `MorphIndices` in re-export list. I feel this is morally
equivalent to `SkinUniforms` already being exported.
- Change `MorphIndex::index` field to be public. I feel this is morally
equivalent to the `SkinByteOffset::byte_offset` field already being
public.
- Change `RenderMeshIntances::mesh_asset_id()` to be public (although
since all the fields of `RenderMeshInstances` are public it's possible
to work around this one by reimplementing).
These changes exclude:
- Making any change to the `RenderLightmaps` type as I don't need to
bind the light-maps for my use-case and I wanted to keep these changes
minimal. It has a private field which would need to be public or have
access methods.
- The changes already included in #18612.
## Testing
Confirmed that a copy of `SetMeshBindGroup` can be compiled outside of
Bevy with these changes, provided that the light-map code is removed.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fixes#17872
## Solution
This should have basically no impact on static scenes. We can optimize
more later if anything comes up. Needing to iterate the two level bin is
a bit unfortunate but shouldn't matter for apps that use a single
camera.
# Objective
- There's been several changes to `Query` for this release cycle, and
`Query`'s top-level documentation has gotten slightly out-of-date.
- Alternative to #18615.
## Solution
- Edit `Query`'s docs for consistency, clarity, and correctness.
- Make sure to group `get()` and `get_many()` together instead of
`single()` and `get_many()`, to enforce the distinction from
https://github.com/bevyengine/bevy/pull/18615#issuecomment-2764355672.
- Reformat doc tests so they would be readable if extracted into their
own file. (Which mainly involves adding more spacing.)
- Move link definitions to be nearer where they are used.
- Fix the tables so they are up-to-date and correctly escape square
brackets `\[ \]`.
## Testing
I ran `cargo doc -p bevy_ecs --no-deps` to view the docs and `cargo test
-p bevy_ecs --doc` to test the doc comments.
## Reviewing
The diff is difficult to read, so I don't recommend _just_ looking at
that. Instead, run `cargo doc -p bevy_ecs --no-deps` locally and read
through the new version. It should theoretically read smoother with less
super-technical jargon. :)
## Follow-up
I want to go through some of `Query`'s methods, such as `single()`,
`get()`, and `get_many()`, but I'll leave that for another PR.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
Fixes#17986Fixes#18608
## Solution
Guard against situations where an extracted mesh does not have an
associated material. The way that mesh is dependent on the material api
(although decoupled) here is a bit unfortunate and we might consider
ways in the future to support these material features without this
indirect dependency.
# Objective
- the bevy workspace fails to publish
```
Packaging bevy_asset v0.16.0-dev (/home/runner/work/bevy-releasability/bevy-releasability/crates/bevy_asset)
Updating crates.io index
Updating `kellnr` index
error: failed to prepare local package for uploading
Caused by:
no matching package named `bevy_log` found
location searched: `kellnr` index
required by package `bevy_asset v0.16.0-dev (/home/runner/work/bevy-releasability/bevy-releasability/crates/bevy_asset)`
```
-
https://github.com/TheBevyFlock/bevy-releasability/actions/runs/14153238476/job/39649160443
## Solution
- Remove bevy_log dev-dependency from bevy_asset
- Not sure of why this is a problem, but the dev-dependency is not
really needed so... 🤷
# Objective
Fixes#9367.
Yet another follow-up to #16547.
These traits were initially based on `Borrow<Entity>` because that trait
was what they were replacing, and it felt close enough in meaning.
However, they ultimately don't quite match: `borrow` always returns
references, whereas `EntityBorrow` always returns a plain `Entity`.
Additionally, `EntityBorrow` can imply that we are borrowing an `Entity`
from the ECS, which is not what it does.
Due to its safety contract, `TrustedEntityBorrow` is important an
important and widely used trait for `EntitySet` functionality.
In contrast, the safe `EntityBorrow` does not see much use, because even
outside of `EntitySet`-related functionality, it is a better idea to
accept `TrustedEntityBorrow` over `EntityBorrow`.
Furthermore, as #9367 points out, abstracting over returning `Entity`
from pointers/structs that contain it can skip some ergonomic friction.
On top of that, there are aspects of #18319 and #18408 that are relevant
to naming:
We've run into the issue that relying on a type default can switch
generic order. This is livable in some contexts, but unacceptable in
others.
To remedy that, we'd need to switch to a type alias approach:
The "defaulted" `Entity` case becomes a
`UniqueEntity*`/`Entity*Map`/`Entity*Set` alias, and the base type
receives a more general name. `TrustedEntityBorrow` does not mesh
clearly with sensible base type names.
## Solution
Replace any `EntityBorrow` bounds with `TrustedEntityBorrow`.
+
Rename them as such:
`EntityBorrow` -> `ContainsEntity`
`TrustedEntityBorrow` -> `EntityEquivalent`
For `EntityBorrow` we produce a change in meaning; We designate it for
types that aren't necessarily strict wrappers around `Entity` or some
pointer to `Entity`, but rather any of the myriad of types that contain
a single associated `Entity`.
This pattern can already be seen in the common `entity`/`id` methods
across the engine.
We do not mean for `ContainsEntity` to be a trait that abstracts input
API (like how `AsRef<T>` is often used, f.e.), because eliding
`entity()` would be too implicit in the general case.
We prefix "Contains" to match the intuition of a struct with an `Entity`
field, like some contain a `length` or `capacity`.
It gives the impression of structure, which avoids the implication of a
relationship to the `ECS`.
`HasEntity` f.e. could be interpreted as "a currently live entity",
As an input trait for APIs like #9367 envisioned, `TrustedEntityBorrow`
is a better fit, because it *does* restrict itself to strict wrappers
and pointers. Which is why we replace any
`EntityBorrow`/`ContainsEntity` bounds with
`TrustedEntityBorrow`/`EntityEquivalent`.
Here, the name `EntityEquivalent` is a lot closer to its actual meaning,
which is "A type that is both equivalent to an `Entity`, and forms the
same total order when compared".
Prior art for this is the
[`Equivalent`](https://docs.rs/hashbrown/latest/hashbrown/trait.Equivalent.html)
trait in `hashbrown`, which utilizes both `Borrow` and `Eq` for its one
blanket impl!
Given that we lose the `Borrow` moniker, and `Equivalent` can carry
various meanings, we expand on the safety comment of `EntityEquivalent`
somewhat. That should help prevent the confusion we saw in
[#18408](https://github.com/bevyengine/bevy/pull/18408#issuecomment-2742094176).
The new name meshes a lot better with the type aliasing approach in
#18408, by aligning with the base name `EntityEquivalentHashMap`.
For a consistent scheme among all set types, we can use this scheme for
the `UniqueEntity*` wrapper types as well!
This allows us to undo the switched generic order that was introduced to
`UniqueEntityArray` by its `Entity` default.
Even without the type aliases, I think these renames are worth doing!
## Migration Guide
Any use of `EntityBorrow` becomes `ContainsEntity`.
Any use of `TrustedEntityBorrow` becomes `EntityEquivalent`.
# Objective
Unlike for their helper typers, the import paths for
`unique_array::UniqueEntityArray`, `unique_slice::UniqueEntitySlice`,
`unique_vec::UniqueEntityVec`, `hash_set::EntityHashSet`,
`hash_map::EntityHashMap`, `index_set::EntityIndexSet`,
`index_map::EntityIndexMap` are quite redundant.
When looking at the structure of `hashbrown`, we can also see that while
both `HashSet` and `HashMap` have their own modules, the main types
themselves are re-exported to the crate level.
## Solution
Re-export the types in their shared `entity` parent module, and simplify
the imports where they're used.
# Objective
- bevy_image fails to build without default features:
```
error[E0277]: `image::Image` does not implement `TypePath` so cannot provide static type path information
--> crates/bevy_image/src/image.rs:341:12
|
341 | pub struct Image {
| ^^^^^ the trait `bevy_reflect::type_path::TypePath` is not implemented for `image::Image`
|
= note: consider annotating `image::Image` with `#[derive(Reflect)]` or `#[derive(TypePath)]`
= help: the following other types implement trait `bevy_reflect::type_path::TypePath`:
&'static Location<'static>
&'static T
&'static mut T
()
(P,)
(P1, P0)
(P1, P2, P0)
(P1, P2, P3, P0)
and 146 others
note: required by a bound in `Asset`
--> /home/runner/work/bevy-releasability/bevy-releasability/crates/bevy_asset/src/lib.rs:415:43
|
415 | pub trait Asset: VisitAssetDependencies + TypePath + Send + Sync + 'static {}
| ^^^^^^^^ required by this bound in `Asset`
= note: `Asset` is a "sealed trait", because to implement it you also need to implement `bevy_reflect::type_path::TypePath`, which is not accessible; this is usually done to force you to use one of the provided types that already implement it
= help: the following types implement the trait:
bevy_asset::AssetIndex
bevy_asset::LoadedUntypedAsset
bevy_asset::AssetEvent<A>
bevy_asset::LoadedFolder
bevy_asset::StrongHandle
bevy_asset::Handle<A>
bevy_asset::AssetId<A>
bevy_asset::AssetPath<'a>
and 148 others
error[E0277]: `image::Image` does not implement `TypePath` so cannot provide static type path information
--> crates/bevy_image/src/image_loader.rs:121:18
|
121 | type Asset = Image;
| ^^^^^ the trait `bevy_reflect::type_path::TypePath` is not implemented for `image::Image`
|
= note: consider annotating `image::Image` with `#[derive(Reflect)]` or `#[derive(TypePath)]`
= help: the following other types implement trait `bevy_reflect::type_path::TypePath`:
&'static Location<'static>
&'static T
&'static mut T
()
(P,)
(P1, P0)
(P1, P2, P0)
(P1, P2, P3, P0)
and 146 others
= note: required for `<ImageLoader as AssetLoader>::Asset` to implement `Asset`
note: required by a bound in `bevy_asset::AssetLoader::Asset`
--> /home/runner/work/bevy-releasability/bevy-releasability/crates/bevy_asset/src/loader.rs:33:17
|
33 | type Asset: Asset;
| ^^^^^ required by this bound in `AssetLoader::Asset`
error[E0277]: `texture_atlas::TextureAtlasLayout` does not implement `TypePath` so cannot provide static type path information
--> crates/bevy_image/src/texture_atlas.rs💯12
|
100 | pub struct TextureAtlasLayout {
| ^^^^^^^^^^^^^^^^^^ the trait `bevy_reflect::type_path::TypePath` is not implemented for `texture_atlas::TextureAtlasLayout`
|
= note: consider annotating `texture_atlas::TextureAtlasLayout` with `#[derive(Reflect)]` or `#[derive(TypePath)]`
= help: the following other types implement trait `bevy_reflect::type_path::TypePath`:
&'static Location<'static>
&'static T
&'static mut T
()
(P,)
(P1, P0)
(P1, P2, P0)
(P1, P2, P3, P0)
and 146 others
note: required by a bound in `Asset`
--> /home/runner/work/bevy-releasability/bevy-releasability/crates/bevy_asset/src/lib.rs:415:43
|
415 | pub trait Asset: VisitAssetDependencies + TypePath + Send + Sync + 'static {}
| ^^^^^^^^ required by this bound in `Asset`
= note: `Asset` is a "sealed trait", because to implement it you also need to implement `bevy_reflect::type_path::TypePath`, which is not accessible; this is usually done to force you to use one of the provided types that already implement it
= help: the following types implement the trait:
bevy_asset::AssetIndex
bevy_asset::LoadedUntypedAsset
bevy_asset::AssetEvent<A>
bevy_asset::LoadedFolder
bevy_asset::StrongHandle
bevy_asset::Handle<A>
bevy_asset::AssetId<A>
bevy_asset::AssetPath<'a>
and 148 others
```
- `Asset` trait depends on `TypePath` which is in bevy_reflect. it's
usually implemented by the `Reflect` derive
## Solution
- make bevy_reflect not an optional dependency
- when feature `bevy_reflect` is not enabled, derive `TypePath` directly
# Objective
- Optimize static scene performance by marking unchanged subtrees.
-
[bef0209](bef0209de1)
fixes#18255 and #18363.
- Closes#18365
- Includes change from #18321
## Solution
- Mark hierarchy subtrees with dirty bits to avoid transform propagation
where not needed
- This causes a performance regression when spawning many entities, or
when the scene is entirely dynamic.
- This results in massive speedups for largely static scenes.
- In the future we could allow the user to change this behavior, or add
some threshold based on how dynamic the scene is?
## Testing
- Caldera Hotel scene
# Objective
Fixes#18515
After the recent changes to system param validation, the panic message
for a missing resource is currently:
```
Encountered an error in system `missing_resource_error::res_system`: SystemParamValidationError { skipped: false }
```
Add the parameter type name and a descriptive message, improving the
panic message to:
```
Encountered an error in system `missing_resource_error::res_system`: SystemParamValidationError { skipped: false, message: "Resource does not exist", param: "bevy_ecs::change_detection::Res<missing_resource_error::MissingResource>" }
```
## Solution
Add fields to `SystemParamValidationError` for error context. Include
the `type_name` of the param and a message.
Store them as `Cow<'static, str>` and only format them into a friendly
string in the `Display` impl. This lets us create errors using a
`&'static str` with no allocation or formatting, while still supporting
runtime `String` values if necessary.
Add a unit test that verifies the panic message.
## Future Work
If we change the default error handling to use `Display` instead of
`Debug`, and to use `ShortName` for the system name, the panic message
could be further improved to:
```
Encountered an error in system `res_system`: Parameter `Res<MissingResource>` failed validation: Resource does not exist
```
However, `BevyError` currently includes the backtrace in `Debug` but not
`Display`, and I didn't want to try to change that in this PR.
# Objective
This fixes `NonMesh` draw commands not receiving render-world entities
since
- https://github.com/bevyengine/bevy/pull/17698
This unbreaks item queries for queued non-mesh entities:
```rust
struct MyDrawCommand {
type ItemQuery = Read<DynamicUniformIndex<SomeUniform>>;
// ...
}
```
### Solution
Pass render entity to `NonMesh` draw commands instead of
`Entity::PLACEHOLDER`. This PR also introduces sorting of the `NonMesh`
bin keys like other types, which I assume is the intended behavior.
@pcwalton
## Testing
- Tested on a local project that extensively uses `NonMesh` items.
# Objective
- Avoid breaking builds for projects that have glam `0.29.0` in their
`Cargo.lock` files.
## Solution
Reflection support for additional `glam` types were added in #17493,
which were only introduced to `glam` in [`0.29.1`][glam-changelog]. If
you have a `Cargo.lock` file that refers to `0.29.0`, then `bevy_derive`
will fail to compile.
The workaround is easy enough once you figure out what's going on, but
specifying the required minimum will avoid the paper cut for others.
`0.29.2` is used here as the required version to include the fix for a
regression that was introduced `0.29.1`.
[glam-changelog]:
<https://github.com/bitshifter/glam-rs/blob/main/CHANGELOG.md#0291---2024-10-30>
# Objective
As of bevy 0.16-dev, the pre-existing public function
`bevy::pbr::setup_morph_and_skinning_defs()` is now passed a boolean
flag called `skins_use_uniform_buffers`. The value of this boolean is
computed by the function
`bevy_pbr::render::skin::skins_use_uniform_buffers()`, but it is not
exported publicly.
Found while porting
[bevy_mod_outline](https://github.com/komadori/bevy_mod_outline) to
0.16.
## Solution
Add `skin::skins_use_uniform_buffers` to the re-export list of
`bevy_pbr::render`.
## Testing
Confirmed test program can access public API.
# Objective
The flags are referenced later outside of the VERTEX_UVS ifdef/endif
block. The current behavior causes the pre-pass shader to fail to
compile when UVs are not present in the mesh, such as when using a
`LineStrip` to render a grid.
Fixes#18600
## Solution
Move the definition of the `flags` outside of the ifdef/endif block.
## Testing
Ran a modified `3d_example` that used a mesh and material with
alpha_mode blend, `LineStrip` topology, and no UVs.
# Objective
Fixes#18606
When a type implements `Add` for `String`, the compiler can get confused
when attempting to add a `&String` to a `String`.
Unfortunately, this seems to be [expected
behavior](https://github.com/rust-lang/rust/issues/77143#issuecomment-698369286)
which causes problems for generic types since the current `TypePath`
derive generates code that appends strings in this manner.
## Solution
Explicitly use the `Add<&str>` implementation in the `TypePath` derive
macro.
## Testing
You can test locally by running:
```
cargo check -p bevy_reflect --tests
```
# Objective
For the LogDiagnosticsPlugin, the log target is "bevy diagnostic" with a
space; I think it may (?) be a typo intended to be "bevy_diagnostic"
with an underline.
I couldn't get filtering INFO level logs with work with this plugin,
changing this seems to produce the expected behavior.
# Objective
- feature `shader_format_wesl` doesn't compile in Wasm
- once fixed, example `shader_material_wesl` doesn't work in WebGL2
## Solution
- remove special path handling when loading shaders. this seems like a
way to escape the asset folder which we don't want to allow, and can't
compile on android or wasm, and can't work on iOS (filesystem is rooted
there)
- pad material so that it's 16 bits. I couldn't get conditional
compilation to work in wesl for type declaration, it fails to parse
- the shader renders the color `(0.0, 0.0, 0.0, 0.0)` when it's not a
polka dot. this renders as black on WebGPU/metal/..., and white on
WebGL2. change it to `(0.0, 0.0, 0.0, 1.0)` so that it's black
everywhere
* `submit_graph_commands` was incorrectly timing the command buffer
generation tasks as well, and not only the queue submission. Moved the
span to fix that.
* Added a new `command_buffer_generation_tasks` span as a parent for all
the individual command buffer generation tasks that don't run as part of
the Core3d span.

# Objective
Fixes#18562.
## Solution
- Specified that `StateTransition` is actually run before `PreStartup`.
- Specified consequences of this and how to actually run systems before
any game logic regardless of state.
- Updated docs of `StateTransition` to reflect that it is run before
`PreStartup` in addition to being run after `PreUpdate`.
## Testing
- `cargo doc`
- `cargo test --doc`
# Objective
Per title. I was using the `bevy_gizmos` crate without the `webgl`
feature enabled, and noticed there were other warnings with no features
enabled as well.
## Testing
- `cargo check -p bevy_gizmos --no-default-features`
- `cargo check -p bevy_gizmos --all-features`
- `cargo run -p ci -- test`
- Ran gizmo examples.
# Objective
Fixes https://github.com/bevyengine/bevy/issues/16586.
## Solution
- Free meshes before allocating new ones (so hopefully the existing
allocation is used, but it's not guaranteed since it might end up
getting used by a smaller mesh first).
- Keep track of modified render assets, and have the mesh allocator free
their allocations.
- Cleaned up some render asset code to make it more understandable,
since it took me several minutes to reverse engineer/remember how it was
supposed to work.
Long term we'll probably want to explicitly reusing allocations for
modified meshes that haven't grown in size, or do delta uploads using a
compute shader or something, but this is an easy fix for the near term.
## Testing
Ran the example provided in the issue. No crash after a few minutes, and
memory usage remains steady.
## Objective
Fix#18557.
## Solution
As described in the bug, `remaining_weight` should have been inside the
loop.
## Testing
Locally changed the `animated_mesh_control` example to spawn multiple
meshes and play different transitions.
# Objective
- Fixes#18010.
## Solution
- Revert the offending PRs! These are #15481 and #18013. We now no
longer get an error if there are duplicate subassets.
- In theory we could untangle #18013 from #15481, but that may be
tricky, and may still introduce regressions. To avoid this worry (since
we're already in RC mode), I am just reverting both.
## Testing
- This is just a revert.
---
## Migration Guide
<Remove the migration guides for #15481 and #18013>
I will make a PR to the bevy_website repo after this is merged.
# Objective
#18555 added improved require syntax, but inline structs didn't support
`..Default::default()` syntax (for technical reasons we can't parse the
struct directly, so there is manual logic that missed this case).
## Solution
When a `{}` or `()` section is encountered for a required component,
rather than trying to parse the fields directly, just pass _all_ of the
tokens through. This ensures no tokens are dropped, protects us against
any future syntax changes, and optimizes our parsing logic (as we're
dropping the field parsing logic entirely).
# Objective
Requires are currently more verbose than they need to be. People would
like to define inline component values. Additionally, the current
`#[require(Foo(custom_constructor))]` and `#[require(Foo(|| Foo(10))]`
syntax doesn't really make sense within the context of the Rust type
system. #18309 was an attempt to improve ergonomics for some cases, but
it came at the cost of even more weirdness / unintuitive behavior. Our
approach as a whole needs a rethink.
## Solution
Rework the `#[require()]` syntax to make more sense. This is a breaking
change, but I think it will make the system easier to learn, while also
improving ergonomics substantially:
```rust
#[derive(Component)]
#[require(
A, // this will use A::default()
B(1), // inline tuple-struct value
C { value: 1 }, // inline named-struct value
D::Variant, // inline enum variant
E::SOME_CONST, // inline associated const
F::new(1), // inline constructor
G = returns_g(), // an expression that returns G
H = SomethingElse::new(), // expression returns SomethingElse, where SomethingElse: Into<H>
)]
struct Foo;
```
## Migration Guide
Custom-constructor requires should use the new expression-style syntax:
```rust
// before
#[derive(Component)]
#[require(A(returns_a))]
struct Foo;
// after
#[derive(Component)]
#[require(A = returns_a())]
struct Foo;
```
Inline-closure-constructor requires should use the inline value syntax
where possible:
```rust
// before
#[derive(Component)]
#[require(A(|| A(10))]
struct Foo;
// after
#[derive(Component)]
#[require(A(10)]
struct Foo;
```
In cases where that is not possible, use the expression-style syntax:
```rust
// before
#[derive(Component)]
#[require(A(|| A(10))]
struct Foo;
// after
#[derive(Component)]
#[require(A = A(10)]
struct Foo;
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
This variable was cruelly abandoned in #15589.
Seems fairly safe to remove as it's private. I'm assuming something
could have used it via reflection, but that seems unlikely
## Testing
```
cargo run --example animated_mesh
cargo run --example animation_graph
```
# Objective
- We currently default to "App" for the window title, it would be nice
if examples had more descriptive names
## Solution
- Use `std::env::current_exe` to try to figure out a default title. If
it's not present. Use "App".
## Testing
- I tested that examples that set a custom title still use the custom
title and that examples without a custom title use the example name
---
### Showcase
Here's the 3d_scene example:

### Notes
Here's a previous attempt at this from a few years ago
https://github.com/bevyengine/bevy/pull/3404
There's some relevant discussion in there, but cart's decision was to
default to "App" when no name was found.
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
## Objective
- Remove the second to last `bevy_animation` dependency on
`bevy_render`.
- Update some older documentation to reflect later changes to the crate.
## Narrative
I'm trying to make `bevy_animation` independent of `bevy_render`. The
documentation for `bevy_animation::AnimatableProperty` is one of the
last few dependencies. It uses `bevy_render::Projection` to demonstrate
animating an arbitrary value, but I thought that could be easily swapped
for something else.
I then realised that the rest of the documentation was a bit out of
date. Originally `AnimatableProperty` was the only way to animate a
property and so the documentation was quite detailed. But over time the
crate has gained more documentation and other ways to hook up
properties, leaving parts of the docs stale or covered elsewhere. So
I've slimmed down the `AnimatableProperty` docs and added a link to the
main alternative (`animated_field`).
I've probably swung too far towards brevity, so I can build them back up
if preferred. Also the example is kinda contrived and doesn't show the
range of `AnimatableProperty`, like being able to choose different
components. And finally the memes might be a bit stale?
## Showcase

## Testing
```
cargo doc -p bevy_animation --no-deps --all-features
cargo test -p bevy_animation --doc --all-features
```
# Objective
Fix panic in `run_system` when running an exclusive system wrapped in a
`PipeSystem` or `AdapterSystem`.
#18076 introduced a `System::run_without_applying_deferred` method. It
normally calls `System::run_unsafe`, but
`ExclusiveFunctionSystem::run_unsafe` panics, so it was overridden for
that type. Unfortunately, `PipeSystem::run_without_applying_deferred`
still calls `PipeSystem::run_unsafe`, which can then call
`ExclusiveFunctionSystem::run_unsafe` and panic.
## Solution
Make `ExclusiveFunctionSystem::run_unsafe` work instead of panicking.
Clarify the safety requirements that make this sound.
The alternative is to override `run_without_applying_deferred` in
`PipeSystem`, `CombinatorSystem`, `AdapterSystem`,
`InfallibleSystemWrapper`, and `InfallibleObserverWrapper`. That seems
like a lot of extra code just to preserve a confusing special case!
Remove some implementations of `System::run` that are no longer
necessary with this change. This slightly changes the behavior of
`PipeSystem` and `CombinatorSystem`: Currently `run` will call
`apply_deferred` on the first system before running the second, but
after this change it will only call it after *both* systems have run.
The new behavior is consistent with `run_unsafe` and
`run_without_applying_deferred`, and restores the behavior prior to
#11823.
The panic was originally necessary because [`run_unsafe` took
`&World`](https://github.com/bevyengine/bevy/pull/6083/files#diff-708dfc60ec5eef432b20a6f471357a7ea9bfb254dc2f918d5ed4a66deb0e85baR90).
Now that it takes `UnsafeWorldCell`, it is possible to make it work. See
also Cart's concerns at
https://github.com/bevyengine/bevy/pull/4166#discussion_r979140356,
although those also predate `UnsafeWorldCell`.
And see #6698 for a previous bug caused by this panic.
# Objective
Make it easier to short-circuit system parameter validation.
Simplify the API surface by combining `ValidationOutcome` with
`SystemParamValidationError`.
## Solution
Replace `ValidationOutcome` with `Result<(),
SystemParamValidationError>`. Move the docs from `ValidationOutcome` to
`SystemParamValidationError`.
Add a `skipped` field to `SystemParamValidationError` to distinguish the
`Skipped` and `Invalid` variants.
Use the `?` operator to short-circuit validation in tuples of system
params.
# Objective
- Fixes#16861
## Solution
- Added:
- `UnsafeEntityCell::get_mut_assume_mutable_by_id`
- `EntityMut::get_mut_assume_mutable_by_id`
- `EntityMut::get_mut_assume_mutable_by_id_unchecked`
- `EntityWorldMut::into_mut_assume_mutable_by_id`
- `EntityWorldMut::into_mut_assume_mutable`
- `EntityWorldMut::get_mut_assume_mutable_by_id`
- `EntityWorldMut::into_mut_assume_mutable_by_id`
- `EntityWorldMut::modify_component_by_id`
- `World::modify_component_by_id`
- `DeferredWorld::modify_component_by_id`
- Added `fetch_mut_assume_mutable` to `DynamicComponentFetch` trait
(this is a breaking change)
## Testing
- CI
---
## Migration Guide
If you had previously implemented `DynamicComponentFetch` you must now
include a definition for `fetch_mut_assume_mutable`. In general this
will be identical to `fetch_mut` using the relevant alternatives for
actually getting a component.
---
## Notes
All of the added methods are minor variations on existing functions and
should therefore be of low risk for inclusion during the RC process.
# Objective
The fix in #17488 forced Windows to always behave as if it were in
`UpdateMode::Continuous`.
CC https://github.com/bevyengine/bevy/pull/17991
## Solution
Removed the unconditional `redraw_requested = true` and added a check
for `Reactive` in `about_to_wait`.
## Testing
- Verified that the `low_power` example worked as expected with all
`UpdateMode` options.
- Verified that animation continued in both `eased_motion ` and
`low_power` examples when in `Continuous` update mode while:
- Resizing the Window
- Moving the window via clicking and dragging the title bar
- Verified that `window_settings` example still worked as expected.
- Verified that `monitor_info` example still worked as expected.
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/17891
- Cherry-picked from https://github.com/bevyengine/bevy/pull/18411
## Solution
The `name` argument could either be made permanent (by removing the
`#[cfg(...)]` condition) or eliminated entirely. I opted to remove it,
as debugging a specific DDS texture edge case in GLTF files doesn't seem
necessary, and there isn't any other foreseeable need to have it.
## Migration Guide
- `Image::from_buffer()` no longer has a `name` argument that's only
present in debug builds when the `"dds"` feature is enabled. If you
happen to pass a name, remove it.
# Objective
fixes#18452.
## Solution
Spawning used to flush commands only, but those commands can reserve
entities. Now, spawning flushes everything, including reserved entities.
I checked, and this was the only place where `flush_commands` is used
instead of `flush` by mistake.
## Testing
I simplified the MRE from #18452 into its own test, which fails on main,
but passes on this branch.
Migration guide:
# Objective
Currently there seems to be no way to enable picking through
render-to-texture cameras
## Solution
This PR allows casting rays from the game code quite easily.
## Testing
- I've tested these in my game and it seems to work
- I haven't tested edge cases
---
## Showcase
<details>
<summary>Click to view showcase</summary>
```rust
fn cast_rays_from_additional_camera(
cameras: Query<(&GlobalTransform, &Camera, Entity), With<RenderToTextureCamera>>,
mut rays: ResMut<RayMap>,
pointers: Query<(&PointerId, &PointerLocation)>,
) {
for (camera_global_transform, camera, camera_entity) in &cameras {
for (pointer_id, pointer_loc) in &pointers {
let Some(viewport_pos) = pointer_loc.location() else {
continue;
};
// if camera result is transformed in any way, the reverse transformation
// should be applied somewhere here
let ray = camera
.viewport_to_world(camera_global_transform, viewport_pos.position)
.ok();
if let Some(r) = ray {
rays.map.insert(RayId::new(camera_entity, *pointer_id), r);
}
}
}
}
```
</details>
## Migration Guide
The `bevy_picking::backend::ray::RayMap::map` method is removed as
redundant,
In systems using `Res<RayMap>` replace `ray_map.map()` with
`&ray_map.map`
# Objective
- The prepass pipeline has a generic bound on the specialize function
but 95% of it doesn't need it
## Solution
- Move most of the fields to an internal struct and use a separate
specialize function for those fields
## Testing
- Ran the 3d_scene and it worked like before
---
## Migration Guide
If you were using a field of the `PrepassPipeline`, most of them have
now been move to `PrepassPipeline::internal`.
## Notes
Here's the cargo bloat size comparison (from this tool
https://github.com/bevyengine/bevy/discussions/14864):
```
before:
(
"<bevy_pbr::prepass::PrepassPipeline<M> as bevy_render::render_resource::pipeline_specializer::SpecializedMeshPipeline>::specialize",
25416,
0.05582993,
),
after:
(
"<bevy_pbr::prepass::PrepassPipeline<M> as bevy_render::render_resource::pipeline_specializer::SpecializedMeshPipeline>::specialize",
2496,
0.005490916,
),
(
"bevy_pbr::prepass::PrepassPipelineInternal::specialize",
11444,
0.025175499,
),
```
The size for the specialize function that is generic is now much
smaller, so users won't need to recompile it for every material.
# Objective
- #18495
## Solution
- The code in the PR #18232 accidentally used a vertex index as a
triangle index, causing the wrong triangle to be used for normal
computation and if the triangle went out of bounds, it would skip the
ray-hit.
- Don't do that.
## Testing
- Run `cargo run --example mesh_picking`
# Objective
Enabling `serialize`, `critical-section`, or `async-executor` would
improperly enable `bevy_math`, `bevy_input`, and/or `bevy_transform`.
This was caused by those crates previously being required but are now
optional (gated behind `std` and/or `libm`).
## Solution
- Added `?` to features not intended to enable those crates
## Testing
- CI
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/11682
## Solution
- https://github.com/bevyengine/bevy/pull/4086 introduced an
optimization to not do redundant calculations, but did not take into
account changes to the resource `global_lights`. I believe that my patch
includes the optimization benefit but adds the required nuance to fix
said bug.
## Testing
The example originally given by
[@kirillsurkov](https://github.com/kirillsurkov) and then updated by me
to bevy 15.3 here:
https://github.com/bevyengine/bevy/issues/11682#issuecomment-2746287416
will not have shadows without this patch:
```rust
use bevy::prelude::*;
#[derive(Resource)]
struct State {
x: f32,
}
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, update)
.insert_resource(State { x: -40.0 })
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
commands.spawn((
Mesh3d(meshes.add(Circle::new(4.0))),
MeshMaterial3d(materials.add(Color::WHITE)),
));
commands.spawn((
Mesh3d(meshes.add(Cuboid::new(1.0, 1.0, 1.0))),
MeshMaterial3d(materials.add(Color::linear_rgb(0.0, 1.0, 0.0))),
));
commands.spawn((
PointLight {
shadows_enabled: true,
..default()
},
Transform::from_xyz(4.0, 8.0, 4.0),
));
commands.spawn(Camera3d::default());
}
fn update(mut state: ResMut<State>, mut camera: Query<&mut Transform, With<Camera3d>>) {
let mut camera = camera.single_mut().unwrap();
let t = Vec3::new(state.x, 0.0, 10.0);
camera.translation = t;
camera.look_at(t - Vec3::Z, Vec3::Y);
state.x = 0.0;
}
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
# Objective
When introduced, `Single` was intended to simply be silently skipped,
allowing for graceful and efficient handling of systems during invalid
game states (such as when the player is dead).
However, this also caused missing resources to *also* be silently
skipped, leading to confusing and very hard to debug failures. In
0.15.1, this behavior was reverted to a panic, making missing resources
easier to debug, but largely making `Single` (and `Populated`)
worthless, as they would panic during expected game states.
Ultimately, the consensus is that this behavior should differ on a
per-system-param basis. However, there was no sensible way to *do* that
before this PR.
## Solution
Swap `SystemParam::validate_param` from a `bool` to:
```rust
/// The outcome of system / system param validation,
/// used by system executors to determine what to do with a system.
pub enum ValidationOutcome {
/// All system parameters were validated successfully and the system can be run.
Valid,
/// At least one system parameter failed validation, and an error must be handled.
/// By default, this will result in1 a panic. See [crate::error] for more information.
///
/// This is the default behavior, and is suitable for system params that should *always* be valid,
/// either because sensible fallback behavior exists (like [`Query`] or because
/// failures in validation should be considered a bug in the user's logic that must be immediately addressed (like [`Res`]).
Invalid,
/// At least one system parameter failed validation, but the system should be skipped due to [`ValidationBehavior::Skip`].
/// This is suitable for system params that are intended to only operate in certain application states, such as [`Single`].
Skipped,
}
```
Then, inside of each `SystemParam` implementation, return either Valid,
Invalid or Skipped.
Currently, only `Single`, `Option<Single>` and `Populated` use the
`Skipped` behavior. Other params (like resources) retain their current
failing
## Testing
Messed around with the fallible_params example. Added a pair of tests:
one for panicking when resources are missing, and another for properly
skipping `Single` and `Populated` system params.
## To do
- [x] get https://github.com/bevyengine/bevy/pull/18454 merged
- [x] fix the todo!() in the macro-powered tuple implementation (please
help 🥺)
- [x] test
- [x] write a migration guide
- [x] update the example comments
## Migration Guide
Various system and system parameter validation methods
(`SystemParam::validate_param`, `System::validate_param` and
`System::validate_param_unsafe`) now return and accept a
`ValidationOutcome` enum, rather than a `bool`. The previous `true`
values map to `ValidationOutcome::Valid`, while `false` maps to
`ValidationOutcome::Invalid`.
However, if you wrote a custom schedule executor, you should now respect
the new `ValidationOutcome::Skipped` parameter, skipping any systems
whose validation was skipped. By contrast, `ValidationOutcome::Invalid`
systems should also be skipped, but you should call the
`default_error_handler` on them first, which by default will result in a
panic.
If you are implementing a custom `SystemParam`, you should consider
whether failing system param validation is an error or an expected
state, and choose between `Invalid` and `Skipped` accordingly. In Bevy
itself, `Single` and `Populated` now once again skip the system when
their conditions are not met. This is the 0.15.0 behavior, but stands in
contrast to the 0.15.1 behavior, where they would panic.
---------
Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
Co-authored-by: Dmytro Banin <banind@cs.washington.edu>
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
Fixes#18461
Apparently `RustRover` creates a temporary file with a tilde like
`load_scene_example.scn.ron~` and at the moment of calling
`.canonicalize()` the file does not exists anymore.
## Solution
Not call `.unwrap()` and return `None` fixes the issue.
## Testing
- `cargo ci`: OK
- Tested the `scene` example with `file_watcher` feature and it works as
expected.
Co-authored-by: François Mockers <mockersf@gmail.com>
## Objective
Reduce dependencies on `bevy_render` by preferring `bevy_mesh` imports
over `bevy_render` re-exports.
```diff
- use bevy_render::mesh::Mesh;
+ use bevy_mesh::Mesh;
```
This is intended to help with #18423 (render crate restructure). Affects
`bevy_gltf`, `bevy_animation` and `bevy_picking`.
## But Why?
As part of #18423, I'm assuming there'll be a push to make crates less
dependent on the big render crates. This PR seemed like a small and safe
step along that path - it only changes imports and makes the `bevy_mesh`
crate dependency explicit in `Cargo.toml`. Any remaining dependencies on
`bevy_render` are true dependencies.
## Testing
```
cargo run --example testbed_3d
cargo run --example mesh_picking
```
# Objective
- Fixes#18225
## Solution
- Updated `accesskit` version requirement from 0.17 to 0.18
- Updated `accesskit_winit` version requirement from 0.23 to 0.25
## Testing
- Ran CI checks locally.
---------
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
# Objective
Instead of extracting an individual sprite per glyph of a text spawn or
slice of a nine-patched sprite, add a buffer to store the extracted
slice geometry.
Fixes#16972
## Solution
* New struct `ExtractedSlice` to hold sprite slice size, position and
atlas info (for text each glyph is a slice).
* New resource `ExtractedSlices` that wraps the `ExtractedSlice` buffer.
This is a separate resource so it can be used without sprites (with a
text material, for example).
* New enum `ExtractedSpriteKind` with variants `Single` and `Slices`.
`Single` represents a single sprite, `Slices` contains a range into the
`ExtractedSlice` buffer.
* Only queue a single `ExtractedSprite` for sets of glyphs or slices and
push the geometry for each individual slice or glyph into the
`ExtractedSlice` buffer.
* Modify `ComputedTextureSlices` to return an `ExtractedSlice` iterator
instead of `ExtractedSprites`.
* Modify `extract_text2d_sprite` to only queue new `ExtractedSprite`s on
font changes and otherwise push slices.
I don't like the name `ExtractedSpriteKind` much, it's a bit redundant
and too haskellish. But although it's exported, it's not something users
will interact with most of the time so don't want to overthink it.
## Testing
yellow = this pr, red = main
```cargo run --example many_glyphs --release --features "trace_tracy" -- --no-ui```
<img width="454" alt="many-glyphs" src="https://github.com/user-attachments/assets/711b52c9-2d4d-43c7-b154-e81a69c94dce" />
```cargo run --example many_text2d --release --features "trace_tracy"```
<img width="415" alt="many-text2d"
src="https://github.com/user-attachments/assets/5ea2480a-52e0-4cd0-9f12-07405cf6b8fa"
/>
## Migration Guide
* `ExtractedSprite` has a new `kind: ExtractedSpriteKind` field with
variants `Single` and `Slices`.
- `Single` represents a single sprite. `ExtractedSprite`'s `anchor`,
`rect`, `scaling_mode` and `custom_size` fields have been moved into
`Single`.
- `Slices` contains a range that indexes into a new resource
`ExtractedSlices`. Slices are used to draw elements composed from
multiple sprites such as text or nine-patched borders.
* `ComputedTextureSlices::extract_sprites` has been renamed to
`extract_slices`. Its `transform` and `original_entity` parameters have
been removed.
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
Remove `critical-section` from required dependencies, allowing linking
without any features.
## Solution
- Switched from `OnceCell` to `LazyLock`
- Removed `std` feature from `bevy_dylib` (proof that it works)
## Testing
- CI
# Objective
- This variable is unused and never populated. I searched for the
literal text of the const and got no hits.
## Solution
- Delete it!
## Testing
- None.
# Objective
There are two related problems here:
1. Users should be able to change the fallback behavior of *all*
ECS-based errors in their application by setting the
`GLOBAL_ERROR_HANDLER`. See #18351 for earlier work in this vein.
2. The existing solution (#15500) for customizing this behavior is high
on boilerplate, not global and adds a great deal of complexity.
The consensus is that the default behavior when a parameter fails
validation should be set based on the kind of system parameter in
question: `Single` / `Populated` should silently skip the system, but
`Res` should panic. Setting this behavior at the system level is a
bandaid that makes getting to that ideal behavior more painful, and can
mask real failures (if a resource is missing but you've ignored a system
to make the Single stop panicking you're going to have a bad day).
## Solution
I've removed the existing `ParamWarnPolicy`-based configuration, and
wired up the `GLOBAL_ERROR_HANDLER`/`default_error_handler` to the
various schedule executors to properly plumb through errors .
Additionally, I've done a small cleanup pass on the corresponding
example.
## Testing
I've run the `fallible_params` example, with both the default and a
custom global error handler. The former panics (as expected), and the
latter spams the error console with warnings 🥲
## Questions for reviewers
1. Currently, failed system param validation will result in endless
console spam. Do you want me to implement a solution for warn_once-style
debouncing somehow?
2. Currently, the error reporting for failed system param validation is
very limited: all we get is that a system param failed validation and
the name of the system. Do you want me to implement improved error
reporting by bubbling up errors in this PR?
3. There is broad consensus that the default behavior for failed system
param validation should be set on a per-system param basis. Would you
like me to implement that in this PR?
My gut instinct is that we absolutely want to solve 2 and 3, but it will
be much easier to do that work (and review it) if we split the PRs
apart.
## Migration Guide
`ParamWarnPolicy` and the `WithParamWarnPolicy` have been removed
completely. Failures during system param validation are now handled via
the `GLOBAL_ERROR_HANDLER`: please see the `bevy_ecs::error` module docs
for more information.
---------
Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
# Objective
- building bevy_winit on linux fails with
```
error: The platform you're compiling for is not supported by winit
--> /home/runner/.cargo/registry/src/index.crates.io-1949cf8c6b5b557f/winit-0.30.9/src/platform_impl/mod.rs:78:1
|
78 | compile_error!("The platform you're compiling for is not supported by winit");
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
- this blocks publishing Bevy from linux during the verification step
## Solution
- Enable `x11` by default when building bevy_winit, and disable default
features of bevy_winit in bevy_internal
- This doesn't change anything when depending on Bevy
# Objective
- Some crates don't compile or have clippy warnings when building for
wasm32
## Solution
- bevy_asset: unused lifetime
- bevy_gltf: the error is not too large in wasm32
- bevy_remote: fails to compile as feature http is also gated on wasm32
- bevy_winit: unused import `error`
# Objective
`cargo clippy -p bevy_asset` warns on a pair of lints on my Windows 10
development machine (return from let binding).
## Solution
Addressed them!
## Testing
- CI
# Objective
Bevy 0.15 used to have methods on `Children` for sorting and reordering
them. This is very important, because in certain situations, the order
of children matters. For example, in the context of UI nodes.
These methods are missing/omitted/forgotten in the current version,
after the Relationships rework.
Without them, it is impossible for me to upgrade `iyes_perf_ui` to Bevy
0.16.
## Solution
Reintroduce the methods. This PR simply copy-pastes them from Bevy 0.15.
# Objective
Create new `NonSendMarker` that does not depend on `NonSend`.
Required, in order to accomplish #17682. In that issue, we are trying to
replace `!Send` resources with `thread_local!` in order to unblock the
resources-as-components effort. However, when we remove all the `!Send`
resources from a system, that allows the system to run on a thread other
than the main thread, which is against the design of the system. So this
marker gives us the control to require a system to run on the main
thread without depending on `!Send` resources.
## Solution
Create a new `NonSendMarker` to replace the existing one that does not
depend on `NonSend`.
## Testing
Other than running tests, I ran a few examples:
- `window_resizing`
- `wireframe`
- `volumetric_fog` (looks so cool)
- `rotation`
- `button`
There is a Mac/iOS-specific change and I do not have a Mac or iOS device
to test it. I am doubtful that it would cause any problems for 2
reasons:
1. The change is the same as the non-wasm change which I did test
2. The Pixel Eagle tests run Mac tests
But it wouldn't hurt if someone wanted to spin up an example that
utilizes the `bevy_render` crate, which is where the Mac/iSO change was.
## Migration Guide
If `NonSendMarker` is being used from `bevy_app::prelude::*`, replace it
with `bevy_ecs::system::NonSendMarker` or use it from
`bevy_ecs::prelude::*`. In addition to that, `NonSendMarker` does not
need to be wrapped like so:
```rust
fn my_system(_non_send_marker: Option<NonSend<NonSendMarker>>) {
...
}
```
Instead, it can be used without any wrappers:
```rust
fn my_system(_non_send_marker: NonSendMarker) {
...
}
```
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
`queue_uinodes` looks up the `ExtractedView` for every extracted UI
node, but there's no need to look it up again if consecutive nodes have
the same `extracted_camera_entity`.
## Solution
In queue uinodes reuse the previously looked up extracted view if the
`extracted_camera_entity` doesn't change
## Showcase
```
cargo run --example many_buttons --release --features "trace_tracy"
```
<img width="521" alt="queue-ui-improvement"
src="https://github.com/user-attachments/assets/2f111837-8c2e-4a6d-94cd-3c3462c58bc9"
/>
yellow is this PR, red is main
# Objective
- `bevy_ecs` has lint errors without some features
## Solution
- Fix `clippy::allow-attributes-without-reason` when `bevy_reflect` is
disabled by adding a reason
- Fix `clippy::needless_return` when `std` is disabled by adding a gated
`expect` attribute and a comment to remove it when the `no_std` stuff is
addressed
## Testing
- `cargo clippy -p bevy_ecs --no-default-features --no-deps -- --D
warnings`
- CI
# Objective
- Compiling `bevy_time` without the `std`-feature results in a
`clippy::unnecessary-literal-unwrap`.
## Solution
- Fix lint error
## Testing
- CI
---
# Objective
- Compiling `bevy_a11y` without default features fails because you need
to select a floating point backed. But you actually don't need it, this
requirement is from an unused linkage to `bevy_input_focus`
## Solution
- Remove link
## Testing
- CI
---------
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
- Compile failure with `bevy_anti_aliasing` due to `dds` feature not
enabling `bevy_core_pipeline/dds`, causing a public API desync.
## Solution
- Ensured feature is enabled
## Testing
- CI
# Objective
Noticed that `bevy_remote` fails to compile without default features.
## Solution
Adjusted offending method to avoid reliance on `http` module when it is
disabled.
## Testing
- CI
- `cargo clippy -p bevy_remote --no-default-features`
# Objective
Every time I run `cargo clippy -p bevy_ecs` it pops up and it's
distracting.
## Solution
Removed unnecessary returns. The blocks themselves are necessary or the
`#[cfg(...)]` doesn't apply properly
## Testing
`cargo clippy -p bevy_ecs` + ci build tests
# Objective
The `Anchor` component doesn't need to be a enum. The variants are just
mapped to `Vec2`s so it could be changed to a newtype with associated
const values, saving the space needed for the discriminator by the enum.
Also there was no benefit I think in hiding the underlying `Vec2`
representation of `Anchor`s.
Suggested by @atlv24.
Fixes#18459Fixes#18460
## Solution
Change `Anchor` to a struct newtyping a `Vec2`, and its variants into
associated constants.
## Migration Guide
The anchor component has been changed from an enum to a struct newtyping
a `Vec2`. The `Custom` variant has been removed, instead to construct a
custom `Anchor` use its tuple constructor:
```rust
Sprite {
anchor: Anchor(Vec2::new(0.25, 0.4)),
..default()
}
```
The other enum variants have been replaced with corresponding constants:
* `Anchor::BottomLeft` to `Anchor::BOTTOM_LEFT`
* `Anchor::Center` to `Anchor::CENTER`
* `Anchor::TopRight` to `Anchor::TOP_RIGHT`
* .. and so on for the remaining variants
# Objective
There are currently too many disparate ways to handle entity mapping,
especially after #17687. We now have MapEntities, VisitEntities,
VisitEntitiesMut, Component::visit_entities,
Component::visit_entities_mut.
Our only known use case at the moment for these is entity mapping. This
means we have significant consolidation potential.
Additionally, VisitEntitiesMut cannot be implemented for map-style
collections like HashSets, as you cant "just" mutate a `&mut Entity`.
Our current approach to Component mapping requires VisitEntitiesMut,
meaning this category of entity collection isn't mappable. `MapEntities`
is more generally applicable. Additionally, the _existence_ of the
blanket From impl on VisitEntitiesMut blocks us from implementing
MapEntities for HashSets (or any types we don't own), because the owner
could always add a conflicting impl in the future.
## Solution
Use `MapEntities` everywhere and remove all "visit entities" usages.
* Add `Component::map_entities`
* Remove `Component::visit_entities`, `Component::visit_entities_mut`,
`VisitEntities`, and `VisitEntitiesMut`
* Support deriving `Component::map_entities` in `#[derive(Coomponent)]`
* Add `#[derive(MapEntities)]`, and share logic with the
`Component::map_entities` derive.
* Add `ComponentCloneCtx::queue_deferred`, which is command-like logic
that runs immediately after normal clones. Reframe `FromWorld` fallback
logic in the "reflect clone" impl to use it. This cuts out a lot of
unnecessary work and I think justifies the existence of a pseudo-command
interface (given how niche, yet performance sensitive this is).
Note that we no longer auto-impl entity mapping for ` IntoIterator<Item
= &'a Entity>` types, as this would block our ability to implement cases
like `HashMap`. This means the onus is on us (or type authors) to add
explicit support for types that should be mappable.
Also note that the Component-related changes do not require a migration
guide as there hasn't been a release with them yet.
## Migration Guide
If you were previously implementing `VisitEntities` or
`VisitEntitiesMut` (likely via a derive), instead use `MapEntities`.
Those were almost certainly used in the context of Bevy Scenes or
reflection via `ReflectMapEntities`. If you have a case that uses
`VisitEntities` or `VisitEntitiesMut` directly, where `MapEntities` is
not a viable replacement, please let us know!
```rust
// before
#[derive(VisitEntities, VisitEntitiesMut)]
struct Inventory {
items: Vec<Entity>,
#[visit_entities(ignore)]
label: String,
}
// after
#[derive(MapEntities)]
struct Inventory {
#[entities]
items: Vec<Entity>,
label: String,
}
```
# Objective
Const values should be more ergonomic to insert, since this is too
verbose
``` rust
#[derive(Component)]
#[require(
LockedAxes(||LockedAxes::ROTATION_LOCKED),
)]
pub struct CharacterController;
```
instead, users can now abbreviate that nonsense like this
``` rust
#[derive(Component)]
#[require(
LockedAxes = ROTATION_LOCKED),
)]
pub struct CharacterController;
```
it also works for enum labels.
I chose to omit the type, since were trying to reduce typing here. The
alternative would have been this:
```rust
#[require(
LockedAxes = LockedAxes::ROTATION_LOCKED),
)]
```
This of course has its disadvantages, since the const has to be
associated, but the old closure method is still possible, so I dont
think its a problem.
- Fixes#16720
## Testing
I added one new test in the docs, which also explain the new change. I
also saw that the docs for the required components on line 165 was
missing an assertion, so I added it back in
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
While working on #18058 I realized I could use
`RelationshipTargetCollection::new`, so I added it.
## Solution
- Add `RelationshipTargetCollection::new`
- Add `RelationshipTargetCollection::reserve`. Could generally be useful
when doing micro-optimizations.
- Add `RelationshipTargetCollection::shrink_to_fit`. Rust collections
generally don't shrink when removing elements. Might be a good idea to
call this once in a while.
## Testing
`cargo clippy`
---
## Showcase
`RelationshipSourceCollection` now implements `new`, `reserve` and
`shrink_to_fit` to give greater control over how much memory it
consumes.
## Migration Guide
Any type implementing `RelationshipSourceCollection` now needs to also
implement `new`, `reserve` and `shrink_to_fit`. `reserve` and
`shrink_to_fit` can be made no-ops if they conceptually mean nothing to
a collection.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
correctly load gltfs without explicit bindposes
## Solution
use identity matrices if bindposes are not found.
note: currently does nothing, as gltfs without explicit bindposes fail
to load, see <https://github.com/gltf-rs/gltf/pull/449>
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Add a way to efficiently replace a set of specifically related entities
with a new set.
Closes#18041
## Solution
Add new `replace_(related/children)` to `EntityWorldMut` and friends.
## Testing
Added a new test to `hierarchy.rs` that specifically check if
`replace_children` actually correctly replaces the children on a entity
while keeping the original one.
---
## Showcase
`EntityWorldMut` and `EntityCommands` can now be used to efficiently
replace the entities a entity is related to.
```rust
/// `parent` has 2 children. `entity_a` and `entity_b`.
assert_eq!([entity_a, entity_b], world.entity(parent).get::<Children>());
/// Replace `parent`s children with `entity_a` and `entity_c`
world.entity_mut(parent).replace_related(&[entity_a, entity_c]);
/// `parent` now has 2 children. `entity_a` and `entity_c`.
///
/// `replace_children` has saved time by not removing and reading
/// the relationship between `entity_a` and `parent`
assert_eq!([entity_a, entity_c], world.entity(parent).get::<Children>());
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
## Objective
Fix `bevy_ecs` doc tests failing when used with `--all-features`.
```
---- crates\bevy_ecs\src\error\handler.rs - error::handler::GLOBAL_ERROR_HANDLER (line 87) stdout ----
error[E0425]: cannot find function `default_error_handler` in this scope
--> crates\bevy_ecs\src\error\handler.rs:92:24
|
8 | let error_handler = default_error_handler();
| ^^^^^^^^^^^^^^^^^^^^^ not found in this scope
```
I happened to come across this while testing #12207. I'm not sure it
actually needs fixing but seemed worth a go
## Testing
```
cargo test --doc -p bevy_ecs --all-features
```
## Side Notes
The CI misses this error as it doesn't use `--all-features`. Perhaps it
should?
I tried adding `--all-features` to `ci/src/commands/doc_tests.rs` but
this triggered a linker error:
```
Compiling bevy_dylib v0.16.0-dev (C:\Projects\bevy\crates\bevy_dylib)
error: linking with `link.exe` failed: exit code: 1189
= note: LINK : fatal error LNK1189: library limit of 65535 objects exceeded␍
```
# Objective
- bevy_core_pipeline is getting really big and it's a big bottleneck for
compilation time. A lot of parts of it can be broken up
## Solution
- Add a new bevy_anti_aliasing crate that contains all the anti_aliasing
implementations
- I didn't move any MSAA related code to this new crate because that's a
lot more invasive
## Testing
- Tested the anti_aliasing example to make sure all methods still worked
---
## Showcase
before:

after:

Notice that now bevy_core_pipeline is 1s shorter and bevy_anti_aliasing
now compiles in parallel with bevy_pbr.
## Migration Guide
When using anti aliasing features, you now need to import them from
`bevy::anti_aliasing` instead of `bevy::core_pipeline`
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/18332
## Solution
- Move specialize_shadows to ManageViews so that it can run after
prepare_lights, so that shadow views exist for specialization.
- Unfortunately this means that specialize_shadows is no longer in
PrepareMeshes like the rest of the specialization systems.
## Testing
- Ran anti_aliasing example, switched between the different AA options,
observed no glitches.
# Objective
For materials that aren't being used or a visible entity doesn't have an
instance of, we were unnecessarily constantly checking whether they
needed specialization, saying yes (because the material had never been
specialized for that entity), and failing to look up the material
instance.
## Solution
If an entity doesn't have an instance of the material, it can't possibly
need specialization, so exit early before spending time doing the check.
Fixes#18388.
# Objective
- bevy_dylib fails to build:
```
Compiling bevy_dylib v0.16.0-rc.1 (/bevy/crates/bevy_dylib)
error: linking with `cc` failed: exit status: 1
|
= note: some arguments are omitted. use `--verbose` to show all linker arguments
= note: Undefined symbols for architecture arm64:
"__critical_section_1_0_acquire", referenced from:
critical_section::with::h00cfbe529dea9dc9 in libbevy_tasks-53c9db6a3865f250.rlib[58](bevy_tasks-53c9db6a3865f250.evom2xwveqp508omiiqb25xig.rcgu.o)
"__critical_section_1_0_release", referenced from:
core::ptr::drop_in_place$LT$critical_section..with..Guard$GT$::hfa034e0208e1a49d in libbevy_tasks-53c9db6a3865f250.rlib[48](bevy_tasks-53c9db6a3865f250.d9dwgpd0156zfn2h5z5ff94zn.rcgu.o)
ld: symbol(s) not found for architecture arm64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
```
## Solution
- enable `std` when building bevy_dylib
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
- `collect_path` is only declared when feature `bevy_animation` is
enabled
- it is imported without checking for the feature, not compiling when
not enabled
## Solution
- Gate the import
# Objective
I was looking over a PR yesterday, and got confused by the docs on
deferred world. I thought I would add a little more detail to the struct
in order to clarify it a little.
## Solution
Document some more about deferred worlds.
# Objective
@cart noticed some issues with my work in
https://github.com/bevyengine/bevy/pull/17348#discussion_r2001815637,
which I somehow missed before merging the PR.
## Solution
- feature gate the UiPickingPlugin correctly
- don't manually add the picking plugins
## Testing
Ran the debug_picking and sprite_picking examples (for UI and sprites
respectively): both seem to work fine.
# Objective
The resources were converted via `clone_reflect_value` and the cloned
value was mapped. But the value that is inserted is the source of the
clone, which was not mapped.
I ran into this issue while working on #18380. Having non consecutive
entity allocations has caught a lot of bugs.
## Solution
Use the cloned value for insertion if it exists.
# Objective
- ECS error handling is a lovely flagship feature for Bevy 0.16, all in
the name of reducing panics and encouraging better error handling
(#14275).
- Currently though, command and system error handling are completely
disjoint and use different mechanisms.
- Additionally, there's a number of distinct ways to set the
default/fallback/global error handler that have limited value. As far as
I can tell, this will be cfg flagged to toggle between dev and
production builds in 99.9% of cases, with no real value in more granular
settings or helpers.
- Fixes#17272
## Solution
- Standardize error handling on the OnceLock global error mechanisms
ironed out in https://github.com/bevyengine/bevy/pull/17215
- As discussed there, there are serious performance concerns there,
especially for commands
- I also think this is a better fit for the use cases, as it's truly
global
- Move from `SystemErrorContext` to a more general purpose
`ErrorContext`, which can handle observers and commands more clearly
- Cut the superfluous setter methods on `App` and `SubApp`
- Rename the limited (and unhelpful) `fallible_systems` example to
`error_handling`, and add an example of command error handling
## Testing
Ran the `error_handling` example.
## Notes for reviewers
- Do you see a clear way to allow commands to retain &mut World access
in the per-command custom error handlers? IMO that's a key feature here
(allowing the ad-hoc creation of custom commands), but I'm not sure how
to get there without exploding complexity.
- I've removed the feature gate on the default_error_handler: contrary
to @cart's opinion in #17215 I think that virtually all apps will want
to use this. Can you think of a category of app that a) is extremely
performance sensitive b) is fine with shipping to production with the
panic error handler? If so, I can try to gather performance numbers
and/or reintroduce the feature flag. UPDATE: see benches at the end of
this message.
- ~~`OnceLock` is in `std`: @bushrat011899 what should we do here?~~
- Do you have ideas for more automated tests for this collection of
features?
## Benchmarks
I checked the impact of the feature flag introduced: benchmarks might
show regressions. This bears more investigation. I'm still skeptical
that there are users who are well-served by a fast always panicking
approach, but I'm going to re-add the feature flag here to avoid
stalling this out.

---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Currently, our picking backends are inconsistent:
- Mesh picking and sprite picking both have configurable opt in/out
behavior. UI picking does not.
- Sprite picking uses `SpritePickingCamera` and `Pickable` for control,
but mesh picking uses `RayCastPickable`.
- `MeshPickingPlugin` is not a part of `DefaultPlugins`.
`SpritePickingPlugin` and `UiPickingPlugin` are.
## Solution
- Add configurable opt in/out behavior to UI picking (defaults to opt
out).
- Replace `RayCastPickable` with `MeshPickingCamera` and `Pickable`.
- Remove `SpritePickingPlugin` and `UiPickingPlugin` from
`DefaultPlugins`.
## Testing
Ran some examples.
## Migration Guide
`UiPickingPlugin` and `SpritePickingPlugin` are no longer included in
`DefaultPlugins`. They must be explicitly added.
`RayCastPickable` has been replaced in favor of the `MeshPickingCamera`
and `Pickable` components. You should add them to cameras and entities,
respectively, if you have `MeshPickingSettings::require_markers` set to
`true`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fixes https://github.com/bevyengine/bevy/issues/18366 which seems to
have a similar underlying cause than the already closed (but not fixed)
https://github.com/bevyengine/bevy/issues/16185.
## Solution
For Windows with the AMD vulkan driver, there was already a hack to
force serial command encoding, which prevented these issues. The Linux
version of the AMD vulkan driver seems to have similar issues than its
Windows counterpart, so I extended the hack to also cover AMD on Linux.
I also removed the mention of `wgpu` since it was already outdated, and
doesn't seem to be relevant to the core issue (the AMD driver being
buggy).
## Testing
- Did you test these changes? If so, how?
- I ran the `3d_scene` example, which on `main` produced the flickering
shadows on Linux with the amdvlk driver, while it no longer does with
the workaround applied.
- Are there any parts that need more testing?
- Not sure.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Requires a Linux system with an AMD card and the AMDVLK driver.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- My change should only affect Linux, where I did test it.
# Objective
- #17219 introduced a circular dependency between bevy_image and
bevy_sprite for documentation
## Solution
- Remove the circular dependency
- Simplify the doc example
# Objective
Fixes#18357
## Solution
Generalize `RelationshipInsertHookMode` to `RelationshipHookMode`, wire
it up to on_replace execution, and use it in the
`Relationship::on_replace` hook.
# Objective
- https://github.com/bevyengine/bevy/pull/17887 introduced a circular
dependency between bevy_image and bevy_core_pipeline
- This makes it impossible to publish Bevy
## Solution
- Remove the circular dependency, reintroduce the compilation failure
- This failure shouldn't be an issue for users of Bevy, only for users
of subcrates, and can be workaround
- Proper fix should be done with
https://github.com/bevyengine/bevy/issues/17891
- Limited compilation failure is better than publish failure
# Objective
Extract sprites into a `Vec` instead of a `HashMap`.
## Solution
Extract UI nodes into a `Vec` instead of an `EntityHashMap`.
Add an index into the `Vec` to `Transparent2d`.
Compare both the index and render entity in prepare so there aren't any
collisions.
## Showcase
yellow this PR, red main
```
cargo run --example many_sprites --release --features "trace_tracy"
```
`extract_sprites`
<img width="452" alt="extract_sprites"
src="https://github.com/user-attachments/assets/66c60406-7c2b-4367-907d-4a71d3630296"
/>
`queue_sprites`
<img width="463" alt="queue_sprites"
src="https://github.com/user-attachments/assets/54b903bd-4137-4772-9f87-e10e1e050d69"
/>
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fixes#17506
- Fixes#16258
## Solution
- Added a new folder of examples, `no_std`, similar to the `mobile`
folder.
- Added a single example, `no_std_library`, which demonstrates how to
make a `no_std` compatible Bevy library.
- Added a new CI task, `check-compiles-no-std-examples`, which checks
that `no_std` examples compile on `no_std` targets.
- Added `bevy_platform_support::prelude` to `bevy::prelude`.
## Testing
- CI
---
## Notes
- I've structured the folders here to permit further `no_std` examples
(e.g., GameBoy Games, ESP32 firmware, etc.), but I am starting with the
simplest and least controversial example.
- I've tried to be as clear as possible with the documentation for this
example, catering to an audience who may not have even heard of `no_std`
before.
---------
Co-authored-by: Greeble <166992735+greeble-dev@users.noreply.github.com>
# Objective
I experienced an issue where `HashMap::new` was not returning a value
typed appropriately for a `HashMap<K,V>` declaration that omitted the
Hasher- e.g. the Default Hasher for the type is different than what the
`new` method produces.
After discussion on discord, this appears to be an issue in `hashbrown`,
and working around it would be very nontrivial, requiring a newtype on
top of the `hashbrown` implementation. Rather than doing that, it was
suggested that we add docs to make the issue more visible and provide a
clear workaround.
## Solution
Updated the docs for `bevy_platform_support::collections`. I couldn't
update Struct docs because they're re-exports, so I had to settle for
the module.
Note that the `[HashMap::new]` link wasn't generating properly- I'm not
sure why. I see the method in the docs.rs site,
https://docs.rs/hashbrown/0.15.1/hashbrown/struct.HashMap.html#method.new,
but not on the generated internal documentation. I wonder if `hashbrown`
isn't actually implementing the new or something?
## Testing
n/a although I did generate and open the docs on my Ubuntu machine.
---
## Showcase
before:

after:

---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
WESL was broken on windows.
## Solution
- Upgrade to `wesl_rs` 1.2.
- Fix path handling on windows.
- Improve example for khronos demo this week.
# Objective
- #17581 broke gizmos
- Fixes#18325
## Solution
- Revert #17581
- Add gizmos to testbed
## Testing
- Run any example with gizmos, it renders correctly
# Objective
On iOS:
- Allow `std` to do its runtime initialization.
- Avoid requiring the user to specify linked libraries and framework in
Xcode.
- Reduce the amount of work that `#[bevy_main]` does
- In the future we may also be able to eliminate the need for it on
Android, cc @daxpedda.
## Solution
We previously:
- Exposed an `extern "C" fn main_rs` entry point.
- Ran Cargo in a separate Xcode target as an external build system.
- Imported that as a dependency of `bevy_mobile_example.app`.
- Compiled a trampoline C file with Xcode that called `main_rs`.
- Linked that via. Xcode.
All of this is unnecessary; `rustc` is well capable of creating iOS
executables, the trick is just to place it at the correct location for
Xcode to understand it, namely `$TARGET_BUILD_DIR/$EXECUTABLE_PATH`
(places it in `bevy_mobile_example.app/bevy_mobile_example`).
Note: We might want to wait with the changes to `#[bevy_main]` until the
problem is resolved on Android too, to make the migration easier.
## Testing
Open the Xcode project, and build for an iOS target.
---
## Migration Guide
**If you have been building your application for iOS:**
Previously, the `#[bevy_main]` attribute created a `main_rs` entry point
that most Xcode templates were using to run your Rust code from C. This
was found to be unnecessary, as you can simply let Rust build your
application as a binary, and run that directly.
You have two options for dealing with this:
If you've added further C code and Xcode customizations, or it makes
sense for your use-case to continue link with Xcode, you can revert to
the old behaviour by adding `#[no_mangle] extern "C" main_rs() { main()
}` to your `main.rs`. Note that the old approach of linking a static
library prevents the Rust standard library from doing runtime
initialization, so certain functionality provided by `std` might be
unavailable (stack overflow handlers, stdout/stderr flushing and other
such functionality provided by the initialization routines).
The other, preferred option is to remove your "compile" and "link" build
phases, and instead replace it with a "run script" phase that invokes
`cargo build --bin ...`, and moves the built binary to the Xcode path
`$TARGET_BUILD_DIR/$EXECUTABLE_PATH`. An example of how to do this can
be viewed at [INSERT LINK TO UPDATED EXAMPLE PROJECT].
To make the debugging experience in Xcode nicer after this, you might
also want to consider either enabling `panic = "abort"` or to set a
breakpoint on the `rust_panic` symbol.
---------
Co-authored-by: François Mockers <mockersf@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
As pointed out by @cart on
[Discord](https://discord.com/channels/691052431525675048/1002362493634629796/1351279139872571462),
we should be careful when using tuple shorthand to register types. Doing
so incurs some unnecessary penalties such as memory/compile/performance
cost to generate registrations for a tuple type that will never be used.
A better solution would be to create a custom lint for this, but for now
we can at least remove the existing usages of this pattern.
> [!note]
> This pattern of using tuples to register multiple types at once isn't
inherently bad. Users should feel free to use this pattern, knowing the
side effects it may have. What this problem really is about is using
this in _library_ code, where users of Bevy have no choice in whether a
tuple is unnecessarily registered in an internal plugin or not.
## Solution
Replace tuple registrations with single-type registrations.
Note that I left the tuple registrations in test code since I feel like
brevity is more important in those cases. But let me know if I should
change them or leave a comment above them!
## Testing
You can test locally by running:
```
cargo check --workspace --all-features
```
# Objective
FilteredResource::get should return a Result instead of Option
Fixes#17480
---
## Migration Guide
Users will need to handle the different return type on
FilteredResource::get, FilteredResource::get_id,
FilteredResource::get_mut as it is now a Result not an Option.
# Objective
Continuation of #17449.
#17449 implemented the wrapper types around `IndexMap`/`Set` and co.,
however punted on the slice types.
They are needed to support creating `EntitySetIterator`s from their
slices, not just the base maps and sets.
## Solution
Add the wrappers, in the same vein as #17449 and #17589 before.
The `Index`/`IndexMut` implementations take up a lot of space, however
they cannot be merged because we'd then get overlaps.
They are simply named `Slice` to match the `indexmap` naming scheme, but
this means they cannot be differentiated properly until their modules
are made public, which is already a follow-up mentioned in #17954.
# Objective
Now that #13432 has been merged, it's important we update our reflected
types to properly opt into this feature. If we do not, then this could
cause issues for users downstream who want to make use of
reflection-based cloning.
## Solution
This PR is broken into 4 commits:
1. Add `#[reflect(Clone)]` on all types marked `#[reflect(opaque)]` that
are also `Clone`. This is mandatory as these types would otherwise cause
the cloning operation to fail for any type that contains it at any
depth.
2. Update the reflection example to suggest adding `#[reflect(Clone)]`
on opaque types.
3. Add `#[reflect(clone)]` attributes on all fields marked
`#[reflect(ignore)]` that are also `Clone`. This prevents the ignored
field from causing the cloning operation to fail.
Note that some of the types that contain these fields are also `Clone`,
and thus can be marked `#[reflect(Clone)]`. This makes the
`#[reflect(clone)]` attribute redundant. However, I think it's safer to
keep it marked in the case that the `Clone` impl/derive is ever removed.
I'm open to removing them, though, if people disagree.
4. Finally, I added `#[reflect(Clone)]` on all types that are also
`Clone`. While not strictly necessary, it enables us to reduce the
generated output since we can just call `Clone::clone` directly instead
of calling `PartialReflect::reflect_clone` on each variant/field. It
also means we benefit from any optimizations or customizations made in
the `Clone` impl, including directly dereferencing `Copy` values and
increasing reference counters.
Along with that change I also took the liberty of adding any missing
registrations that I saw could be applied to the type as well, such as
`Default`, `PartialEq`, and `Hash`. There were hundreds of these to
edit, though, so it's possible I missed quite a few.
That last commit is **_massive_**. There were nearly 700 types to
update. So it's recommended to review the first three before moving onto
that last one.
Additionally, I can break the last commit off into its own PR or into
smaller PRs, but I figured this would be the easiest way of doing it
(and in a timely manner since I unfortunately don't have as much time as
I used to for code contributions).
## Testing
You can test locally with a `cargo check`:
```
cargo check --workspace --all-features
```
# Objective
Add a `UiRect::AUTO` const which is a `UiRect` with all its edge values
set to `Val::Auto`.
IIRC `UiRect`'s default for its fields a few versions ago was
`Val::Auto` because positions were represented using a `UiRect` and they
required `Val::Auto` as a default. Then when position was split up and
the `UiRect` default was changed, we forgot add a `UiRect::AUTO` const.
Extracted from my DLSS branch.
## Changelog
* Added `source_texture` and `destination_texture` to
`PostProcessWrite`, in addition to the existing texture views.
obtaining a reference to an empty enum is not possible in Rust, so I
just replaced any match on self with an `unreachable!()`
I checked if an enum is empty by checking if the `variant_patterns` vec
of the `EnumVariantOutputData` struct is empty
Fixes#18277
## Testing
I added one new unit test.
``` rust
#[test]
fn should_allow_empty_enums() {
#[derive(Reflect)]
enum Empty {}
assert_impl_all!(Empty: Reflect);
}
```
# Objective
In its existing form, the clamping that's done in `camera_system`
doesn't work well when the `physical_position` of the associated
viewport is nonzero. In such cases, it may produce invalid viewport
rectangles (i.e. not lying inside the render target), which may result
in crashes during the render pass.
The goal of this PR is to eliminate this possibility by making the
clamping behavior always result in a valid viewport rectangle when
possible.
## Solution
Incorporate the `physical_position` information into the clamping
behavior. In particular, always cut off enough so that it's contained in
the render target rather than clamping it to the same dimensions as the
target itself. In weirder situations, still try to produce a valid
viewport rectangle to avoid crashes.
## Testing
Tested these changes on my work branch where I encountered the crash.
# Objective
Currently experimenting with manually implementing
`Relationship`/`RelationshipTarget` to support associated edge data,
which means I need to replace the default hook implementations provided
by those traits. However, copying them over for editing revealed that
`UnsafeWorldCell::get_raw_command_queue` is `pub(crate)`, and I would
like to not have to clone the source collection, like the default impl.
So instead, I've taken to providing a safe abstraction for being able to
access entities and queue commands simultaneously.
## Solution
Added `World::entities_and_commands` and
`DeferredWorld::entities_and_commands`, which can be used like so:
```rust
let eid: Entity = /* ... */;
let (mut fetcher, mut commands) = world.entities_and_commands();
let emut = fetcher.get_mut(eid).unwrap();
commands.entity(eid).despawn();
```
## Testing
- Added a new test for each of the added functions.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Continuation to #16547 and #17954.
The `get_many` family are the last methods on `Query`/`QueryState` for
which we're still missing a `unique` version.
## Solution
Offer `get_many_unique`/`get_many_unique_mut` and
`get_many_unique_inner`!
Their implementation is the same as `get_many`, the difference lies in
their guaranteed-to-be unique inputs, meaning we never do any aliasing
checks.
To reduce confusion, we also rename `get_many_readonly` into
`get_many_inner` and the current `get_many_inner` into
`get_many_mut_inner` to clarify their purposes.
## Testing
Doc examples.
## Migration Guide
`get_many_inner` is now called `get_many_mut_inner`.
`get_many_readonly` is now called `get_many_inner`.
# Objective
- Fixes#18342.
## Solution
- Canonicalize the root path so that when we try to strip the prefix, it
matches the canonicalized asset path.
- This is basically just a followup to #18023.
## Testing
- Ran the hot_asset_reloading example and it no longer panics.
# Objective
The `ViewportConversionError` error type does not implement `Error`,
making it incompatible with `BevyError`.
## Solution
Derive `Error` for `ViewportConversionError`.
I chose to use `thiserror` since it's already a dependency, but do let
me know if we should be preferring `derive_more`.
## Testing
You can test this by trying to compile the following:
```rust
let error: BevyError = ViewportConversionError::InvalidData.into();
```
Registering dynamic bundles was not possible for the user yet.
It is alone not very useful though as there are no methods to clone,
move or remove components via a `BundleId`. This could be a follow-up
work if this PR is approved and such a third (besides `T: Bundle` and
`ComponentId`(s)) API for structural operation is desired. I certainly
would use a hypothetical `EntityClonerBuilder::allow_by_bundle_id`.
I personally still would like this register method because I have a
`Bundles`-like custom data structure and I would like to not reinvent
the wheel. Then instead of having boxed `ComponentId` slices in my
collection I could look up explicit and required components there.
For reference scroll up to the typed version right above the new one.
# Objective
I was setting up an asset loader that passes settings through to
`ImageLoader`, and i have to clone the settings to achieve this.
## Solution
Derive `Clone` for `ImageLoaderSettings` and `ImageFormatSetting`.
## Testing
Full CI passed.
I mistakenly thought that with the wgpu upgrade we'd have
`PARTIALLY_BOUND_BINDING_ARRAY` everywhere. Unfortunately this is not
the case. This PR adds a workaround back in.
Closes#18098.
Fix https://github.com/bevyengine/bevy/issues/17763.
Attachment info needs to be created outside of the command encoding
task, as it needs to be part of the serial node runners in order to get
the ordering correct.
Less data accessed and compared gives better batching performance.
# Objective
- Use a smaller id to represent the lightmap in batch data to enable a
faster implementation of draw streams.
- Improve batching performance for 3D sorted render phases.
## Solution
- 3D batching can use `LightmapSlabIndex` (a `NonMaxU32` which is 4
bytes) instead of the lightmap `AssetId<Image>` (an enum where the
largest variant is a 16-byte UUID) to discern the ability to batch.
## Testing
Tested main (yellow) vs this PR (red) on an M4 Max using the
`many_cubes` example with `WGPU_SETTINGS_PRIO=webgl2` to avoid
GPU-preprocessing, and modifying the materials in `many_cubes` to have
`AlphaMode::Blend` so that they would rely on the less efficient sorted
render phase batching.
<img width="1500" alt="Screenshot_2025-03-15_at_12 17 21"
src="https://github.com/user-attachments/assets/14709bd3-6d06-40fb-aa51-e1d2d606ebe3"
/>
A 44.75us or 7.5% reduction in median execution time of the batch and
prepare sorted render phase system for the `Transparent3d` phase
(handling 160k cubes).
---
## Migration Guide
- Changed: `RenderLightmap::new()` no longer takes an `AssetId<Image>`
argument for the asset id of the lightmap image.
# Objective
Installment of the #16547 series.
The vast majority of uses for these types will be the `Entity` case, so
it makes sense for it to be the default.
## Solution
`UniqueEntityVec`, `UniqueEntitySlice`, `UniqueEntityArray` and their
helper iterator aliases now have `Entity` as a default.
Unfortunately, this means the the `T` parameter for `UniqueEntityArray`
now has to be ordered after the `N` constant, which breaks the
consistency to `[T; N]`.
Same with about a dozen iterator aliases that take some `P`/`F`
predicate/function parameter.
This should however be an ergonomic improvement in most cases, so we'll
just have to live with this inconsistency.
## Migration Guide
Switch type parameter order for the relevant wrapper types/aliases.
# Objective
#13432 added proper reflection-based cloning. This is a better method
than cloning via `clone_value` for reasons detailed in the description
of that PR. However, it may not be immediately apparent to users why one
should be used over the other, and what the gotchas of `clone_value`
are.
## Solution
This PR marks `PartialReflect::clone_value` as deprecated, with the
deprecation notice pointing users to `PartialReflect::reflect_clone`.
However, it also suggests using a new method introduced in this PR:
`PartialReflect::to_dynamic`.
`PartialReflect::to_dynamic` is essentially a renaming of
`PartialReflect::clone_value`. By naming it `to_dynamic`, we make it
very obvious that what's returned is a dynamic type. The one caveat to
this is that opaque types still use `reflect_clone` as they have no
corresponding dynamic type.
Along with changing the name, the method is now optional, and comes with
a default implementation that calls out to the respective reflection
subtrait method. This was done because there was really no reason to
require manual implementors provide a method that almost always calls
out to a known set of methods.
Lastly, to make this default implementation work, this PR also did a
similar thing with the `clone_dynamic ` methods on the reflection
subtraits. For example, `Struct::clone_dynamic` has been marked
deprecated and is superseded by `Struct::to_dynamic_struct`. This was
necessary to avoid the "multiple names in scope" issue.
### Open Questions
This PR maintains the original signature of `clone_value` on
`to_dynamic`. That is, it takes `&self` and returns `Box<dyn
PartialReflect>`.
However, in order for this to work, it introduces a panic if the value
is opaque and doesn't override the default `reflect_clone`
implementation.
One thing we could do to avoid the panic would be to make the conversion
fallible, either returning `Option<Box<dyn PartialReflect>>` or
`Result<Box<dyn PartialReflect>, ReflectCloneError>`.
This makes using the method a little more involved (i.e. users have to
either unwrap or handle the rare possibility of an error), but it would
set us up for a world where opaque types don't strictly need to be
`Clone`. Right now this bound is sort of implied by the fact that
`clone_value` is a required trait method, and the default behavior of
the macro is to use `Clone` for opaque types.
Alternatively, we could keep the signature but make the method required.
This maintains that implied bound where manual implementors must provide
some way of cloning the value (or YOLO it and just panic), but also
makes the API simpler to use.
Finally, we could just leave it with the panic. It's unlikely this would
occur in practice since our macro still requires `Clone` for opaque
types, and thus this would only ever be an issue if someone were to
manually implement `PartialReflect` without a valid `to_dynamic` or
`reflect_clone` method.
## Testing
You can test locally using the following command:
```
cargo test --package bevy_reflect --all-features
```
---
## Migration Guide
`PartialReflect::clone_value` is being deprecated. Instead, use
`PartialReflect::to_dynamic` if wanting to create a new dynamic instance
of the reflected value. Alternatively, use
`PartialReflect::reflect_clone` to attempt to create a true clone of the
underlying value.
Similarly, the following methods have been deprecated and should be
replaced with these alternatives:
- `Array::clone_dynamic` → `Array::to_dynamic_array`
- `Enum::clone_dynamic` → `Enum::to_dynamic_enum`
- `List::clone_dynamic` → `List::to_dynamic_list`
- `Map::clone_dynamic` → `Map::to_dynamic_map`
- `Set::clone_dynamic` → `Set::to_dynamic_set`
- `Struct::clone_dynamic` → `Struct::to_dynamic_struct`
- `Tuple::clone_dynamic` → `Tuple::to_dynamic_tuple`
- `TupleStruct::clone_dynamic` → `TupleStruct::to_dynamic_tuple_struct`
# Objective
- Prevents #18291.
- Previously, attempting to direct-nested-load a subasset would return
the root of the nested-loaded asset. This is most problematic when doing
direct-nested-**untyped**-loads of subassets, where you may not even
realize you're dealing with the entirely wrong asset (at least with
typed loads, *most of the time* the root asset has a different type from
the subasset, and so at least you'd get an error that the types don't
match).
## Solution
- We now return an error when doing these kinds of loads.
Note an alternative would be to "solve" this problem, by just looking up
the appropriate subasset after doing the nested load. However there's
two problems: 1) we don't know which subassets of the root asset are
necessary for the subasset we are looking up (so any handles in that
subasset may never get registered), 2) a solution will likely hamper
attempts to resolve#18010. AFAICT, no one has complained about this
issue, so it doesn't seem critical to fix this for now.
## Testing
- Added a test to ensure this returns an error. I also checked that the
error before this was just a mismatched type error, meaning it was
trying to pass off the root asset type `CoolText` as the subasset type
`SubText` (which would have worked had I not been using typed loads).
# Objective
While poking at https://github.com/bevyengine/bevy/issues/17272, I
noticed a few small things to clean up.
## Solution
- Improve the docs
- ~~move `SystemErrorContext` out of the `handler.rs` module: it's not
an error handler~~
# Objective
Probably just because of an oversight, bounding primitives like `Aabb3d`
did not implement `Serialize`/`Deserialize` with the `serialize` feature
enabled, so the goal of this PR is to fill the gap.
## Solution
Derive it conditionally, just like we do for everything else. Also added
in `PartialEq`, just because I touched the files.
## Testing
Compiled with different feature combinations.
# Objective
When reviewing #18263, I noticed that `BevyManifest` internally stores a
`DocumentMut`, a mutable TOML document, instead of an `ImDocument`, an
immutable one. The process of creating a `DocumentMut` first involves
creating a `ImDocument` and then cloning all the referenced spans of
text into their own allocations (internally referred to as `despan` in
`toml_edit`). As such, using a `DocumentMut` without mutation is
strictly additional overhead.
In addition, I noticed that the filesystem operations associated with
reading a manifest and parsing it were written to be completed _while_ a
write-lock was held on `MANIFESTS`. This likely doesn't translate into a
performance or deadlock issue as the manifest files are generally small
and can be read quickly, but it is generally considered a bad practice.
## Solution
- Switched to `ImDocument<Box<str>>` instead of `DocumentMut`
- Re-ordered operations in `BevyManifest::shared` to minimise time spent
holding open the write-lock on `MANIFESTS`
## Testing
- CI
---
## Notes
I wasn't able to measure a meaningful performance difference with this
PR, so this is purely a code quality change and not one for performance.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Upgrade to `cosmic-text` 0.13
https://github.com/pop-os/cosmic-text/releases
This should include some performance improvements for layout and system
font loading.
## Solution
Bump version, fix the one changed API.
## Testing
Tested some examples locally, will invoke the example runner.
## Layout Perf
||main fps|cosmic-13 fps|
|-|-|-|
|many_buttons --recompute-text --no-borders|6.79|9.42 🟩 +38.7%|
|many_text2d --no-frustum-culling --recompute|3.19|4.28 🟩 +34.0%|
|many_glyphs --recompute-text|7.09|11.17 🟩 +57.6%|
|text_pipeline |140.15|139.90 ⬜ -0.2%|
## System Font Loading Perf
I tested on macOS somewhat lazily by adding the following system to the
`system_fonts` example from #16365.
<details>
<summary>Expand code</summary>
```rust
fn exit_on_load(
mut reader: EventReader<bevy::text::SystemFontsAvailable>,
mut writer: EventWriter<AppExit>,
) {
for _evt in reader.read() {
writer.write(AppExit::Success);
}
}
```
</details>
And running `hyperfine 'cargo run --release --example system_fonts
--features=system_font'`.
The results were nearly identical with and without this PR cherry-picked
there.
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The sort key for the transparent UI phase is a (float32, u32) pair
consisting of the stack index and the render entity's index.
I guess the render entity index was intended to break ties but it's not
needed as the sort is stable. It also assumes the indices of the render
entities are generated sequentially, which isn't guaranteed.
Fixes the issues with the text wrap example seen in #18266
## Solution
Change the sort key to just use the stack index alone.
# Objective
Fixes#18103#17330 introduced a significant compile time performance regression
(affects normal builds, clippy, and Rust Analyzer). While it did fix the
type-resolution bug (and the general approach there is still our best
known solution to the problem that doesn't involve [significant
maintenance
overhead](https://github.com/bevyengine/bevy/issues/18103#issuecomment-2702724676)),
the changes had a couple of issues:
1. It used a Mutex, which poses a significant threat to parallelization.
2. It externalized existing, relatively simple, performance critical
Bevy code to a crate outside of our control. I am not comfortable doing
that for cases like this. Going forward @bevyengine/maintainer-team
should be much stricter about this.
3. There were a number of other areas that introduced complexity and
overhead that I consider unnecessary for our use case. On a case by case
basis, if we encounter a need for more capabilities we can add them (and
weigh them against the cost of doing so).
## Solution
1. I moved us back to our original code as a baseline
2. I selectively ported over the minimal changes required to fix the
type resolution bug
3. I swapped `Mutex<BTreeMap<PathBuf, &'static Mutex<CargoManifest>>>`
for `RwLock<BTreeMap<PathBuf, CargoManifest>>`. Note that I used the
`parking_lot` RwLock because it has a mapping API that enables us to
return mapped guards.
# Objective
Prevents duplicate implementation between IntoSystemConfigs and
IntoSystemSetConfigs using a generic, adds a NodeType trait for more
config flexibility (opening the door to implement
https://github.com/bevyengine/bevy/issues/14195?).
## Solution
Followed writeup by @ItsDoot:
https://hackmd.io/@doot/rJeefFHc1x
Removes IntoSystemConfigs and IntoSystemSetConfigs, instead using
IntoNodeConfigs with generics.
## Testing
Pending
---
## Showcase
N/A
## Migration Guide
SystemSetConfigs -> NodeConfigs<InternedSystemSet>
SystemConfigs -> NodeConfigs<ScheduleSystem>
IntoSystemSetConfigs -> IntoNodeConfigs<InternedSystemSet, M>
IntoSystemConfigs -> IntoNodeConfigs<ScheduleSystem, M>
---------
Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
In updating examples to use the Improved Spawning API I got tripped up
on being able to spawn children with a Vec. I eventually figured out
that I could use `Children::spawn(SpawnIter(my_vec.into_iter()))` but
thought there might be a more ergonomic way to approach it. After
tinkering with it for a while I came up with the implementation here. It
allows authors to use `Children::spawn(my_vec)` as an equivalent
implementation.
## Solution
- Implements `<R: Relationship, B: Bundle SpawnableList<R> for Vec<B>`
- uses `alloc::vec::Vec` for compatibility with `no_std` (`std::Vec`
also inherits implementations against the `alloc::vec::Vec` because std
is a re-export of the alloc struct, thanks @bushrat011899 for the info
on this!)
## Testing
- Did you test these changes? If so, how?
- Opened the examples before and after and verified the same behavior
was observed. I did this on Ubuntu 24.04.2 LTS using `--features
wayland`.
- Are there any parts that need more testing?
- Other OS's and features can't hurt, but this is such a small change it
shouldn't be a problem.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run the examples yourself with and without these changes.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- see above
## Showcase
n/a
## Migration Guide
- Optional: you may use the new API to spawn `Vec`s of `Bundle` instead
of using the `SpawnIter` approach.
# Objective
Add `#[derive(Clone, PartialEq, Debug, Reflect)]` to DragEntry so it
matches the other picking events.
## Solution
Copy/paste (RIP Larry Tesler)
## Testing
Just ran cargo check. I don't believe this should break anything because
I did not remove any derives it had before.
---
# Objective
- Prevent usage of `println!`, `eprintln!` and the like because they
require `std`
- Fixes#17446
## Solution
- Enable the `print_stdout` and `print_stderr` clippy lints
- Replace all `println!` and `eprintln!` occurrences with `log::*` where
applicable or alternatively ignore the warnings
## Testing
- Run `cargo clippy --workspace` to ensure that there are no warnings
relating to printing to `stdout` or `stderr`
# Objective
Using `Reflect::clone_value` can be somewhat confusing to those
unfamiliar with how Bevy's reflection crate works. For example take the
following code:
```rust
let value: usize = 123;
let clone: Box<dyn Reflect> = value.clone_value();
```
What can we expect to be the underlying type of `clone`? If you guessed
`usize`, then you're correct! Let's try another:
```rust
#[derive(Reflect, Clone)]
struct Foo(usize);
let value: Foo = Foo(123);
let clone: Box<dyn Reflect> = value.clone_value();
```
What about this code? What is the underlying type of `clone`? If you
guessed `Foo`, unfortunately you'd be wrong. It's actually
`DynamicStruct`.
It's not obvious that the generated `Reflect` impl actually calls
`Struct::clone_dynamic` under the hood, which always returns
`DynamicStruct`.
There are already some efforts to make this a bit more apparent to the
end-user: #7207 changes the signature of `Reflect::clone_value` to
instead return `Box<dyn PartialReflect>`, signaling that we're
potentially returning a dynamic type.
But why _can't_ we return `Foo`?
`Foo` can obviously be cloned— in fact, we already derived `Clone` on
it. But even without the derive, this seems like something `Reflect`
should be able to handle. Almost all types that implement `Reflect`
either contain no data (trivially clonable), they contain a
`#[reflect_value]` type (which, by definition, must implement `Clone`),
or they contain another `Reflect` type (which recursively fall into one
of these three categories).
This PR aims to enable true reflection-based cloning where you get back
exactly the type that you think you do.
## Solution
Add a `Reflect::reflect_clone` method which returns `Result<Box<dyn
Reflect>, ReflectCloneError>`, where the `Box<dyn Reflect>` is
guaranteed to be the same type as `Self`.
```rust
#[derive(Reflect)]
struct Foo(usize);
let value: Foo = Foo(123);
let clone: Box<dyn Reflect> = value.reflect_clone().unwrap();
assert!(clone.is::<Foo>());
```
Notice that we didn't even need to derive `Clone` for this to work: it's
entirely powered via reflection!
Under the hood, the macro generates something like this:
```rust
fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> {
Ok(Box::new(Self {
// The `reflect_clone` impl for `usize` just makes use of its `Clone` impl
0: Reflect::reflect_clone(&self.0)?.take().map_err(/* ... */)?,
}))
}
```
If we did derive `Clone`, we can tell `Reflect` to rely on that instead:
```rust
#[derive(Reflect, Clone)]
#[reflect(Clone)]
struct Foo(usize);
```
<details>
<summary>Generated Code</summary>
```rust
fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> {
Ok(Box::new(Clone::clone(self)))
}
```
</details>
Or, we can specify our own cloning function:
```rust
#[derive(Reflect)]
#[reflect(Clone(incremental_clone))]
struct Foo(usize);
fn incremental_clone(value: &usize) -> usize {
*value + 1
}
```
<details>
<summary>Generated Code</summary>
```rust
fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> {
Ok(Box::new(incremental_clone(self)))
}
```
</details>
Similarly, we can specify how fields should be cloned. This is important
for fields that are `#[reflect(ignore)]`'d as we otherwise have no way
to know how they should be cloned.
```rust
#[derive(Reflect)]
struct Foo {
#[reflect(ignore, clone)]
bar: usize,
#[reflect(ignore, clone = "incremental_clone")]
baz: usize,
}
fn incremental_clone(value: &usize) -> usize {
*value + 1
}
```
<details>
<summary>Generated Code</summary>
```rust
fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> {
Ok(Box::new(Self {
bar: Clone::clone(&self.bar),
baz: incremental_clone(&self.baz),
}))
}
```
</details>
If we don't supply a `clone` attribute for an ignored field, then the
method will automatically return
`Err(ReflectCloneError::FieldNotClonable {/* ... */})`.
`Err` values "bubble up" to the caller. So if `Foo` contains `Bar` and
the `reflect_clone` method for `Bar` returns `Err`, then the
`reflect_clone` method for `Foo` also returns `Err`.
### Attribute Syntax
You might have noticed the differing syntax between the container
attribute and the field attribute.
This was purely done for consistency with the current attributes. There
are PRs aimed at improving this. #7317 aims at making the
"special-cased" attributes more in line with the field attributes
syntactically. And #9323 aims at moving away from the stringified paths
in favor of just raw function paths.
### Compatibility with Unique Reflect
This PR was designed with Unique Reflect (#7207) in mind. This method
actually wouldn't change that much (if at all) under Unique Reflect. It
would still exist on `Reflect` and it would still `Option<Box<dyn
Reflect>>`. In fact, Unique Reflect would only _improve_ the user's
understanding of what this method returns.
We may consider moving what's currently `Reflect::clone_value` to
`PartialReflect` and possibly renaming it to `partial_reflect_clone` or
`clone_dynamic` to better indicate how it differs from `reflect_clone`.
## Testing
You can test locally by running the following command:
```
cargo test --package bevy_reflect
```
---
## Changelog
- Added `Reflect::reflect_clone` method
- Added `ReflectCloneError` error enum
- Added `#[reflect(Clone)]` container attribute
- Added `#[reflect(clone)]` field attribute
# Objective
Part of the #16547 series.
The entity wrapper types often have some associated types an aliases
with them that cannot be re-exported into an outer module together.
Some helper types are best used with part of their path:
`bevy::ecs::entity::index_set::Slice` as `index_set::Slice`.
This has already been done for `entity::hash_set` and
`entity::hash_map`.
## Solution
Publicize the `index_set`, `index_map`, `unique_vec`, `unique_slice`,
and `unique_array` modules.
## Migration Guide
Any mention or import of types in the affected modules have to add the
respective module name to the import path.
F.e.:
`bevy::ecs::entity::EntityIndexSet` ->
`bevy::ecs::entity::index_set::EntityIndexSet`
# Objective
- #16883
- Improve the default behaviour of the exclusive fullscreen API.
## Solution
This PR changes the exclusive fullscreen window mode to require the type
`WindowMode::Fullscreen(MonitorSelection, VideoModeSelection)` and
removes `WindowMode::SizedFullscreen`. This API somewhat intentionally
more closely resembles Winit 0.31's upcoming fullscreen and video mode
API.
The new VideoModeSelection enum is specified as follows:
```rust
pub enum VideoModeSelection {
/// Uses the video mode that the monitor is already in.
Current,
/// Uses a given [`crate::monitor::VideoMode`]. A list of video modes supported by the monitor
/// is supplied by [`crate::monitor::Monitor::video_modes`].
Specific(VideoMode),
}
```
### Changing default behaviour
This might be contentious because it removes the previous behaviour of
`WindowMode::Fullscreen` which selected the highest resolution possible.
While the previous behaviour would be quite easy to re-implement as
additional options, or as an impl method on Monitor, I would argue that
this isn't an implementation that should be encouraged.
From the perspective of a Windows user, I prefer what the majority of
modern games do when entering fullscreen which is to preserve the OS's
current resolution settings, which allows exclusive fullscreen to be
entered faster, and to only have it change if I manually select it in
either the options of the game or the OS. The highest resolution
available is not necessarily what the user prefers.
I am open to changing this if I have just missed a good use case for it.
Likewise, the only functionality that `WindowMode::SizedFullscreen`
provided was that it selected the resolution closest to the current size
of the window so it was removed since this behaviour can be replicated
via the new `VideoModeSelection::Specific` if necessary.
## Out of scope
WindowResolution and scale factor act strangely in exclusive fullscreen,
this PR doesn't address it or regress it.
## Testing
- Tested on Windows 11 and macOS 12.7
- Linux untested
## Migration Guide
`WindowMode::SizedFullscreen(MonitorSelection)` and
`WindowMode::Fullscreen(MonitorSelection)` has become
`WindowMode::Fullscreen(MonitorSelection, VideoModeSelection)`.
Previously, the VideoMode was selected based on the closest resolution
to the current window size for SizedFullscreen and the largest
resolution for Fullscreen. It is possible to replicate that behaviour by
searching `Monitor::video_modes` and selecting it with
`VideoModeSelection::Specific(VideoMode)` but it is recommended to use
`VideoModeSelection::Current` as the default video mode when entering
fullscreen.
# Objective
While redoing #18058 I needed `RelationshipSourceCollection` (henceforth
referred to as the **Trait**) to implement `clear` so I added it.
## Solution
Add the `clear` method to the **Trait**.
Also make `add` and `remove` report if they succeeded.
## Testing
Eyeballs
---
## Showcase
The `RelationshipSourceCollection` trait now reports if adding or
removing an entity from it was successful.
It also not contains the `clear` method so you can easily clear the
collection in generic contexts.
## Changes
EDITED by Alice: We should get this into 0.16, so no migration guide
needed.
The `RelationshipSourceCollection` methods `add` and `remove` now need
to return a boolean indicating if they were successful (adding a entity
to a set that already contains it counts as failure). Additionally the
`clear` method has been added to support clearing the collection in
generic contexts.
_Note from BD103: this PR was adopted from #16148. The majority of this
PR's description is copied from the original._
# Objective
Adds tests to cover various mesh picking cases and removes sources of
panics.
It should prevent users being able to trigger panics in `bevy_picking`
code via bad mesh data such as #15891, and is a follow up to my comments
in [#15800
(review)](https://github.com/bevyengine/bevy/pull/15800#pullrequestreview-2361694213).
This is motivated by #15979
## Testing
Adds 8 new tests to cover `ray_mesh_intersection` code.
## Changes from original PR
I reverted the changes to the benchmarks, since that was the largest
factor blocking it merging. I'll open a follow-up issue so that those
benchmark changes can be implemented.
---------
Co-authored-by: Trent <2771466+tbillington@users.noreply.github.com>
# Objective
- Allow for convenient access and mutation of color saturation providing
following the `Hue`, `Luminance` traits.
- `with_saturation()` builder method
- `saturation()` to get the saturation of a `Color`
- `set_saturation()` to set the saturation of a mutable `Color`
## Solution
- Defined `Saturation` trait in `color_ops.rs`
- Implemented `Saturation` on `Hsla` and `Hsva`
- Implemented `Saturation` on `Color` which proxies to other color space
impls.
- In the case of colorspaces which don't have native saturation
components
the color is converted to 'Hsla` internally
## Testing
- Empirically tested
---
## Showcase
```rust
fn next_golden(&mut self) -> Color {
self.current
.rotate_hue((1.0 / GOLDEN_RATIO) * 360.0)
.with_saturation(self.rand_saturation())
.with_luminance(self.rand_luminance())
.into()
}
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
I was recently exploreing `Entities` and stumbled on something strange.
`Entities::len` (the field) has the comment `Stores the number of free
entities for [`len`](Entities::len)`, refering to the method. But that
method says `The count of currently allocated entities.` Looking at the
code, the field's comment is wrong, and the public `len()` is correct.
Phew!
## Solution
So, I was just going to fix the comment, so it didn't confuse anyone
else, but as it turns out, we can just remove the field entirely. As a
bonus, this saves some book keeping work too. We can just calculate it
on the fly.
Also, add additional length methods and documentation for completeness.
These new length methods might be useful debug tools in the future.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
Make component registration faster. This is a tinny, almost petty PR,
but it led to roughly 10% faster registration, according to my
benchmarks in #17871.
Up to y'all if we do this or not. It is completely unnecessary, but its
such low hanging fruit that I wanted to put it out there.
## Solution
Instead of cloning a `HashSet`, collect it into a `SmallVec`. Since this
is empty for many components, this saves a lot of allocation and hashing
work.
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
This is an alternative to #17871 and #17701 for tracking issue #18155.
This thanks to @maniwani for help with this design.
The goal is to enable component ids to be reserved from multiple threads
concurrently and with only `&World`. This contributes to assets as
entities, read-only query and system parameter initialization, etc.
## What's wrong with #17871 ?
In #17871, I used my proposed staging utilities to allow *fully*
registering components from any thread concurrently with only
`&Components`. However, if we want to pursue components as entities
(which is desirable for a great many reasons. See
[here](https://discord.com/channels/691052431525675048/692572690833473578/1346499196655505534)
on discord), this staging isn't going to work. After all, if registering
a component requires spawning an entity, and spawning an entity requires
`&mut World`, it is impossible to register a component fully with only
`&World`.
## Solution
But what if we don't have to register it all the way? What if it's
enough to just know the `ComponentId` it will have once it is registered
and to queue it to be registered at a later time? Spoiler alert: That is
all we need for these features.
Here's the basic design:
Queue a registration:
1. Check if it has already been registered.
2. Check if it has already been queued.
3. Reserve a `ComponentId`.
4. Queue the registration at that id.
Direct (normal) registration:
1. Check if this registration has been queued.
2. If it has, use the queued registration instead.
3. Otherwise, proceed like normal.
Appllying the queue:
1. Pop queued items off one by one.
2. Register them directly.
One other change:
The whole point of this design over #17871 is to facilitate coupling
component registration with the World. To ensure that this would fully
work with that, I went ahead and moved the `ComponentId` generator onto
the world itself. That stemmed a couple of minor organizational changes
(see migration guide). As we do components as entities, we will replace
this generator with `Entities`, which lives on `World` too. Doing this
move early let me verify the design and will reduce migration headaches
in the future. If components as entities is as close as I think it is, I
don't think splitting this up into different PRs is worth it. If it is
not as close as it is, it might make sense to still do #17871 in the
meantime (see the risks section). I'll leave it up to y'all what we end
up doing though.
## Risks and Testing
The biggest downside of this compared to #17871 is that now we have to
deal with correct but invalid `ComponentId`s. They are invalid because
the component still isn't registered, but they are correct because, once
registered, the component will have exactly that id.
However, the only time this becomes a problem is if some code violates
safety rules by queuing a registration and using the returned id as if
it was valid. As this is a new feature though, nothing in Bevy does
this, so no new tests were added for it. When we do use it, I left
detailed docs to help mitigate issues here, and we can test those
usages. Ex: we will want some tests on using queries initialized from
queued registrations.
## Migration Guide
Component registration can now be queued with only `&World`. To
facilitate this, a few APIs needed to be moved around.
The following functions have moved from `Components` to
`ComponentsRegistrator`:
- `register_component`
- `register_component_with_descriptor`
- `register_resource_with_descriptor`
- `register_non_send`
- `register_resource`
- `register_required_components_manual`
Accordingly, functions in `Bundle` and `Component` now take
`ComponentsRegistrator` instead of `Components`.
You can obtain `ComponentsRegistrator` from the new
`World::components_registrator`.
You can obtain `ComponentsQueuedRegistrator` from the new
`World::components_queue`, and use it to stage component registration if
desired.
# Open Question
Can we verify that it is enough to queue registration with `&World`? I
don't think it would be too difficult to package this up into a
`Arc<MyComponentsManager>` type thing if we need to, but keeping this on
`&World` certainly simplifies things. If we do need the `Arc`, we'll
need to look into partitioning `Entities` for components as entities, so
we can keep most of the allocation fast on `World` and only keep a
smaller partition in the `Arc`. I'd love an SME on assets as entities to
shed some light on this.
---------
Co-authored-by: andriyDev <andriydzikh@gmail.com>
PR #17965 mistakenly made the `AsBindGroup` macro no longer emit a bind
group layout entry and a resource descriptor for buffers. This commit
adds that functionality back, fixing the `shader_material_bindless`
example.
Closes#18124.
# Objective
Fixes#18030
## Solution
When running a one-shot system, requeue the system's command queue onto
the world's command queue, then execute the later.
If running the entire command queue of the world is undesired, I could
add a new method to `RawCommandQueue` to only apply part of it.
## Testing
See the new test.
---
## Showcase
```rust
#[derive(Resource)]
pub struct Test {
id: SystemId,
counter: u32,
}
let mut world = World::new();
let id = world.register_system(|mut commands: Commands, mut test: ResMut<Test>| {
print!("{:?} ", test.counter);
test.counter -= 1;
if test.counter > 0 {
commands.run_system(test.id);
}
});
world.insert_resource(Test { id, counter: 5 });
world.run_system(id).unwrap();
```
```
5 4 3 2 1
```
# Objective
I found a bug while working on #17871. When required components are
registered, ones that are more specific (smaller inheritance depth) are
preferred to others. So, if a ComponentA is already required, but it is
registered as required again, it will be updated if and only if the new
requirement has a smaller inheritance depth (is more specific). However,
this logic was not reflected in merging `RequriedComponents`s together.
Hence, for complicated requirement trees, the wrong initializer could be
used.
## Solution
Re-write merging to work by extending the collection via
`require_dynamic` instead of blindly combining the inner storage.
## Testing
I created this test to ensure this bug doesn't creep back in. This test
fails on main, but passes on this branch.
```rs
#[test]
fn required_components_inheritance_depth_bias() {
#[derive(Component, PartialEq, Eq, Clone, Copy, Debug)]
struct MyRequired(bool);
#[derive(Component, Default)]
#[require(MyRequired(|| MyRequired(false)))]
struct MiddleMan;
#[derive(Component, Default)]
#[require(MiddleMan)]
struct ConflictingRequire;
#[derive(Component, Default)]
#[require(MyRequired(|| MyRequired(true)))]
struct MyComponent;
let mut world = World::new();
let order_a = world
.spawn((ConflictingRequire, MyComponent))
.get::<MyRequired>()
.cloned();
let order_b = world
.spawn((MyComponent, ConflictingRequire))
.get::<MyRequired>()
.cloned();
assert_eq!(order_a, Some(MyRequired(true)));
assert_eq!(order_b, Some(MyRequired(true)));
}
```
Note that when the inheritance depth is 0 (Like if there were no middle
man above), the order of the components in the bundle still matters.
## Migration Guide
`RequiredComponents::register_dynamic` has been changed to
`RequiredComponents::register_dynamic_with`.
Old:
```rust
required_components.register_dynamic(
component_id,
component_constructor.clone(),
requirement_inheritance_depth,
);
```
New:
```rust
required_components.register_dynamic_with(
component_id,
requirement_inheritance_depth,
|| component_constructor.clone(),
);
```
This can prevent unnecessary cloning.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
Fix unsound lifetimes in `Query::join` and `Query::join_filtered`.
The joined query allowed access from either input query, but it only
took the `'world` lifetime from `self`, not from `other`. This meant
that after the borrow of `other` ended, the joined query would unsoundly
alias `other`.
## Solution
Change the lifetimes on `join` and `join_filtered` to require mutable
borrows of the *same* lifetime for the input queries. This ensures both
input queries are borrowed for the full lifetime of the joined query.
Change `join_inner` to take `other` by value instead of reference so
that the returned query is still usable without needing to borrow from a
local variable.
## Testing
Added a compile-fail test.
# Objective
`extract_text_shadows` was still using `UiTargetCamera` and
`DefaultUiCamera` for UI camera resolution, which no longer always
selects the right camera.
To see this modify the last lines of the `multiple_windows` example
from:
```rust
commands.spawn((
Text::new("First window"),
node.clone(),
// Since we are using multiple cameras, we need to specify which camera UI should be rendered to
UiTargetCamera(first_window_camera),
));
commands.spawn((
Text::new("Second window"),
node,
UiTargetCamera(second_window_camera),
));
```
to:
```rust
commands
.spawn((
node.clone(),
// Since we are using multiple cameras, we need to specify which camera UI should be rendered to
UiTargetCamera(first_window_camera),
))
.with_child((Text::new("First window"), TextShadow::default()));
commands
.spawn((node, UiTargetCamera(second_window_camera)))
.with_child((Text::new("Second window"), TextShadow::default()));
```
which results in the shadow that is meant to be displayed for the
"Second Window" label instead being written over the first:
<img width="800" alt="first_window_label"
src="https://github.com/user-attachments/assets/2eebccba-5749-4064-bb1c-e4f25ff0baf7">
## Solution
Remove the `UiTargetCamera` query and the `default_camera` parameter
from `extract_text_shadows` and use `UiCameraMap` with
`ComputedNodeTarget` instead.
## Testing
The `multiple_windows` example for this PR has been updated to add text
shadow to the window labels. You should see that it displays the "Second
Window" label's shadow correctly now.
# Objective
- In `Camera::viewport_to_world_2d`, `Camera::viewport_to_world`,
`Camera::world_to_viewport` and `Camera::world_to_viewport_with_depth`,
the results were incorrect when the `Camera::viewport` field was
configured with a viewport position that was non-zero. This PR attempts
to correct that.
- Fixes#16200
## Solution
- This PR now takes the viewport position into account in the functions
mentioned above.
- Extended `2d_viewport_to_world` example to test the functions with a
dynamic viewport position and size, camera positions and zoom levels. It
is probably worth discussing whether to change the example, add a new
one or just completely skip touching the examples.
## Testing
Used the modified example to test the functions with dynamic camera
transform as well as dynamic viewport size and position.
# Objective
This PR enables `bevy_gizmos` to be used without `bevy_pbr`, for user
who want to create their custom mesh rendering logic.
It can also be useful for user who just want to use bevy for drawing
lines (why not).
This work is part of a bigger effort to make the bevy rendering pipeline
more modular. I would like to contribute an exemple to render custom
meshes without `bevy_pbr`. Something like
[this](https://github.com/rambip/plant-mesh/blob/main/src/shader/mod.rs)
## Solution
Now, `bevy_pbr` is an optional dependency, and used only to debug
lights.
I query the `ViewUniforms` manually, instead of using `bevy_pbr` to get
the heavy `MeshViewLayout`
## Testing
I'm not used to testing with bevy at all, but I was able to use
successfully in my project.
It might break for some different mesh pipelines, but I don't think so.
---
## Showcase

So nice ...
## Migration Guide
I don't think there is any breaking change
# Remaining work
Before merging it, it would be useful to:
- rewrite the `pipeline_2d.rs` logic to remove the `bevy_sprite`
depedency too
- move `view.rs` to `bevy_render`, so that it can be used in a more
modular way.
~~- include the most recent changes from 0.16~~
---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
Make `bevy_error_panic_hook` threadsafe. As it relies on a global
variable, it fails when multiple threads panic.
## Solution
Switch from a global variable for storing whether an error message was
printed to a thread-local one.
`thread_local` is in `std`; the `backtrace` already relies on `std`
APIs. It didn't depend on the `std` feature though, so I've added that.
I've also put `bevy_error_panic_hook` behind the `backtrace` feature,
since it relies on the thread local variable, which fixes#18231.
## Testing
The following now loops instead of crashing:
```rust
std:🧵:scope(|s| {
use bevy_ecs::error::*;
#[derive(Debug)]
struct E;
impl std::fmt::Display for E {
fn fmt(&self, _: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
todo!()
}
}
impl std::error::Error for E {}
std::panic::set_hook(Box::new(bevy_error_panic_hook(|_| {
unreachable!();
})));
for _ in 0..2 {
s.spawn(|| {
loop {
let _ = std::panic::catch_unwind(|| {
panic!("{:?}", BevyError::from(E));
});
}
});
}
});
```
# Objective
Defocusing a window while a key is held (such as when Alt+tabbing), will
currently send a key release on X11 and Windows. This is likely the
behavior that most people expect.
However it's synthetic events from winit are unimplemented for WASM and
some other platforms. (See
https://github.com/rust-windowing/winit/issues/1272).
While we can implement it upstream, there is also some doubt about the
synthetic events API as a whole
(https://github.com/rust-windowing/winit/issues/3543), so I propose to
do it in bevy directly for now.
## Solution
This PR implements key tracking in bevy directly so we can synthesize
our own key release events across all platforms.
Note regarding X11 specifically:
- On `main`, pressing a keyboard shortcut to unfocus the window (`Ctrl +
Super + ArrowRight` in my case) will yield the following events:
```
Pressed Control
Pressed Super
Released Control
Released ArrowRight
Released Super
```
- On this branch, it will yield the following sequence:
```
Pressed Control
Pressed Super
Released Control
Released Super
```
To me the behavior of this branch is more expected than `main`, because
`main` produces an `ArrowRight` release without producing a press first.
## Testing
Tested in WASM and X11 with
```rust
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Update, |mut keys: EventReader<KeyboardInput>| {
for ev in keys.read() {
error!("received {ev:?}");
}
})
.run();
```
# Objective
Because `prepare_assets::<T>` had a mutable reference to the
`RenderAssetBytesPerFrame` resource, no render asset preparation could
happen in parallel. This PR fixes this by using an `AtomicUsize` to
count bytes written (if there's a limit in place), so that the system
doesn't need mutable access.
- Related: https://github.com/bevyengine/bevy/pull/12622
**Before**
<img width="1049" alt="Screenshot 2025-02-17 at 11 40 53 AM"
src="https://github.com/user-attachments/assets/040e6184-1192-4368-9597-5ceda4b8251b"
/>
**After**
<img width="836" alt="Screenshot 2025-02-17 at 1 38 37 PM"
src="https://github.com/user-attachments/assets/95488796-3323-425c-b0a6-4cf17753512e"
/>
## Testing
- Tested on a local project (with and without limiting enabled)
- Someone with more knowledge of wgpu/underlying driver guts should
confirm that this doesn't actually bite us by introducing contention
(i.e. if buffer writing really *should be* serial).
# Objective
As pointed out in #18177 this line in the doc comment for
`UiTargetCamera`:
```
/// Optional if there is only one camera in the world. Required otherwise.
```
Is incorrect, `UiTargetCamera` component is only needed when you want to
display UI nodes using a camera other than the default camera.
## Solution
Change it to:
```
/// Root node's without an explicit [`UiTargetCamera`] will be rendered to the default UI camera,
/// which is either a single camera with the [`IsDefaultUiCamera`] marker component or the highest
/// order camera targeting the primary window.
```
# Objective
- Allow bevy and wgpu developers to test newer versions of wgpu without
having to update naga_oil.
## Solution
- Currently bevy feeds wgsl through naga_oil to get a naga::Module that
it passes to wgpu.
- Added a way to pass wgsl through naga_oil, and then serialize the
naga::Module back into a wgsl string to feed to wgpu, allowing wgpu to
parse it using it's internal version of naga (and not the version of
naga bevy_render/naga_oil is using).
## Testing
1. Run 3d_scene (it works)
2. Run 3d_scene with `--features bevy_render/decoupled_naga` (it still
works)
3. Add the following patch to bevy/Cargo.toml, run cargo update, and
compile again (it will fail)
```toml
[patch.crates-io]
wgpu = { git = "https://github.com/gfx-rs/wgpu", rev = "2764e7a39920e23928d300e8856a672f1952da63" }
wgpu-core = { git = "https://github.com/gfx-rs/wgpu", rev = "2764e7a39920e23928d300e8856a672f1952da63" }
wgpu-hal = { git = "https://github.com/gfx-rs/wgpu", rev = "2764e7a39920e23928d300e8856a672f1952da63" }
wgpu-types = { git = "https://github.com/gfx-rs/wgpu", rev = "2764e7a39920e23928d300e8856a672f1952da63" }
```
4. Fix errors and compile again (it will work, and you didn't have to
touch naga_oil)
# Objective
#17404 reworked the `Segment2d` and `Segment3d` types to be defined by
two endpoints rather than a direction and half-length. However, the API
is still very minimal and limited, and documentation is inconsistent and
outdated.
## Solution
Add the following helper methods for `Segment2d` and `Segment3d`:
- `from_scaled_direction`
- `from_ray_and_length`
- `length_squared`
- `direction`
- `try_direction`
- `scaled_direction`
- `transformed`
- `reversed`
`Segment2d` has a few 2D-specific methods:
- `left_normal`
- `try_left_normal`
- `scaled_left_normal`
- `right_normal`
- `try_right_normal`
- `scaled_right_normal`
There are now also `From` implementations for converting `[Vec2; 2]` and
`(Vec2, Vec2)` to a `Segment2d`, and similarly for 3D.
I have also updated documentation to be more accurate and consistent,
and simplified a few methods.
---
## Prior Art
Parry's
[`Segment`](https://docs.rs/parry2d/latest/parry2d/shape/struct.Segment.html)
type has a lot of similar methods, though my implementation is a bit
more comprehensive. A lot of these methods can be useful for various
geometry algorithms.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Greeble <166992735+greeble-dev@users.noreply.github.com>
# Overview
Fixes https://github.com/bevyengine/bevy/issues/17869.
# Summary
`WGPU_SETTINGS_PRIO` changes various limits on `RenderDevice`. This is
useful to simulate platforms with lower limits.
However, some plugins only check the limits on `RenderAdapter` (the
actual GPU) - these limits are not affected by `WGPU_SETTINGS_PRIO`. So
the plugins try to use features that are unavailable and wgpu says "oh
no". See https://github.com/bevyengine/bevy/issues/17869 for details.
The PR adds various checks on `RenderDevice` limits. This is enough to
get most examples working, but some are not fixed (see below).
# Testing
- Tested native, with and without "WGPU_SETTINGS=webgl2".
Win10/Vulkan/Nvidia".
- Also WebGL. Win10/Chrome/Nvidia.
```
$env:WGPU_SETTINGS_PRIO = "webgl2"
cargo run --example testbed_3d
cargo run --example testbed_2d
cargo run --example testbed_ui
cargo run --example deferred_rendering
cargo run --example many_lights
cargo run --example order_independent_transparency # Still broken, see below.
cargo run --example occlusion_culling # Still broken, see below.
```
# Not Fixed
While testing I found a few other cases of limits being broken.
"Compatibility" settings (WebGPU minimums) breaks native in various
examples.
```
$env:WGPU_SETTINGS_PRIO = "compatibility"
cargo run --example testbed_3d
In Device::create_bind_group_layout, label = 'build mesh uniforms GPU early occlusion culling bind group layout'
Too many bindings of type StorageBuffers in Stage ShaderStages(COMPUTE), limit is 8, count was 9. Check the limit `max_storage_buffers_per_shader_stage` passed to `Adapter::request_device`
```
`occlusion_culling` breaks fake webgl.
```
$env:WGPU_SETTINGS_PRIO = "webgl2"
cargo run --example occlusion_culling
thread '<unnamed>' panicked at C:\Projects\bevy\crates\bevy_render\src\render_resource\pipeline_cache.rs:555:28:
index out of bounds: the len is 0 but the index is 2
Encountered a panic in system `bevy_render::renderer::render_system`!
```
`occlusion_culling` breaks real webgl.
```
cargo run --example occlusion_culling --target wasm32-unknown-unknown
ERROR app: panicked at C:\Users\T\.cargo\registry\src\index.crates.io-1949cf8c6b5b557f\glow-0.16.0\src\web_sys.rs:4223:9:
Tex storage 2D multisample is not supported
```
OIT breaks fake webgl.
```
$env:WGPU_SETTINGS_PRIO = "webgl2"
cargo run --example order_independent_transparency
In Device::create_bind_group, label = 'mesh_view_bind_group'
Number of bindings in bind group descriptor (28) does not match the number of bindings defined in the bind group layout (25)
```
OIT breaks real webgl
```
cargo run --example order_independent_transparency --target wasm32-unknown-unknown
In Device::create_render_pipeline, label = 'pbr_oit_mesh_pipeline'
Error matching ShaderStages(FRAGMENT) shader requirements against the pipeline
Shader global ResourceBinding { group: 0, binding: 34 } is not available in the pipeline layout
Binding is missing from the pipeline layout
```
# Objective
- Allow `Query` methods such as `Query::get` to have their error
short-circuited using `?` in systems using Bevy's `Error` type
## Solution
- Removed `UnsafeWorldCell<'w>` from `QueryEntityError` and instead
store `ArchetypeId` (the information the error formatter was extracting
anyway).
- Replaced trait implementations with derives now that the type is
plain-old-data.
## Testing
- CI
---
## Migration Guide
- `QueryEntityError::QueryDoesNotMatch.1` is of type `ArchetypeId`
instead of `UnsafeWorldCell`. It is up to the caller to obtain an
`UnsafeWorldCell` now.
- `QueryEntityError` no longer has a lifetime parameter, remove it from
type signatures where required.
## Notes
This was discussed on Discord and accepted by Cart as the desirable path
forward in [this
message](https://discord.com/channels/691052431525675048/749335865876021248/1346611950527713310).
Scroll up from this point for context.
---------
Co-authored-by: SpecificProtagonist <30270112+SpecificProtagonist@users.noreply.github.com>
# Objective
- Optimize static scene performance by marking unchanged subtrees.
## Solution
- Mark hierarchy subtrees with dirty bits to avoid transform propagation
where not needed
- This causes a performance regression when spawning many entities, or
when the scene is entirely dynamic.
- This results in massive speedups for largely static scenes.
- In the future we could allow the user to change this behavior, or add
some threshold based on how dynamic the scene is?
## Testing
- Caldera Hotel scene
# Objective
WESL's pre-MVP `0.1.0` has been
[released](https://docs.rs/wesl/latest/wesl/)!
Add support for WESL shader source so that we can begin playing and
testing WESL, as well as aiding in their development.
## Solution
Adds a `ShaderSource::WESL` that can be used to load `.wesl` shaders.
Right now, we don't support mixing `naga-oil`. Additionally, WESL
shaders currently need to pass through the naga frontend, which the WESL
team is aware isn't great for performance (they're working on compiling
into naga modules). Also, since our shaders are managed using the asset
system, we don't currently support using file based imports like `super`
or package scoped imports. Further work will be needed to asses how we
want to support this.
---
## Showcase
See the `shader_material_wesl` example. Be sure to press space to
activate party mode (trigger conditional compilation)!
https://github.com/user-attachments/assets/ec6ad19f-b6e4-4e9d-a00f-6f09336b08a4
# Objective
- Fixes#18200
## Solution
- Ensure `bevy_utils` is included with `bevy_transform/std`
## Testing
- `cargo build --no-default-features --features std`
## Notes
Compilation failure was caused by `bevy_transform`'s new parallel
propagation system requiring `bevy_utils/std` when `bevy_transform/std`
was active, but it was left optional. Additionally,
`bevy_transform/async_executor` wasn't being enabled by
`bevy/async_executor`.
# Objective
Adds information about the byte length and index of a glyph to
`PositionedGlyph`. Useful for text picking, allows for picking with
multi-byte characters. Also adds a `line` field that helps with
converting back and forth from cosmic's `Cursor`.
## Solution
Retrieve the relevant data from cosmic and add it to the glyph in the
text pipeline.
## Testing
`cargo r -p ci`
---
## Migration Guide
`PositionedGlyph::new()` has been removed as there is no longer an
unused field. Create new `PositionedGlyph`s directly.
also updates Relationship docs terminology
# Objective
- Contributes to #18111
## Solution
Updates Component docs with a new section linking to Relationship. Also
updates some Relationship terminology as I understand it.
## Testing
- Did you test these changes? If so, how?
- opened Docs, verified link
- Are there any parts that need more testing?
- I don't think so
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- run `cargo doc --open` and check out Component and Relationship docs,
verify their correctness
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- I think this is n/a but I ran the doc command on Ubuntu 24.04.2 LTS
---
## Showcase

## Migration Guide
n/a
# Objective
- Contributes to #15460
- Supersedes #8520
- Fixes#4906
## Solution
- Added a new `web` feature to `bevy`, and several of its crates.
- Enabled new `web` feature automatically within crates without `no_std`
support.
## Testing
- `cargo build --no-default-features --target wasm32v1-none`
---
## Migration Guide
When using Bevy crates which _don't_ automatically enable the `web`
feature, please enable it when building for the browser.
## Notes
- I added [`cfg_if`](https://crates.io/crates/cfg-if) to help manage
some of the feature gate gore that this extra feature introduces. It's
still pretty ugly, but I think much easier to read.
- Certain `wasm` targets (e.g.,
[wasm32-wasip1](https://doc.rust-lang.org/nightly/rustc/platform-support/wasm32-wasip1.html#wasm32-wasip1))
provide an incomplete implementation for `std`. I have not tested these
platforms, but I suspect Bevy's liberal use of usually unsupported
features (e.g., threading) will cause these targets to fail. As such,
consider `wasm32-unknown-unknown` as the only `wasm` platform with
support from Bevy for `std`. All others likely will need to be treated
as `no_std` platforms.
Fixes#17170
# Objective
Tangents are not currently transformed as described in #17170. I came
across this while working on #17989 and it seemed like low hanging
fruit.
# Objective
- Fixes#15460 (will open new issues for further `no_std` efforts)
- Supersedes #17715
## Solution
- Threaded in new features as required
- Made certain crates optional but default enabled
- Removed `compile-check-no-std` from internal `ci` tool since GitHub CI
can now simply check `bevy` itself now
- Added CI task to check `bevy` on `thumbv6m-none-eabi` to ensure
`portable-atomic` support is still valid [^1]
[^1]: This may be controversial, since it could be interpreted as
implying Bevy will maintain support for `thumbv6m-none-eabi` going
forward. In reality, just like `x86_64-unknown-none`, this is a
[canary](https://en.wiktionary.org/wiki/canary_in_a_coal_mine) target to
make it clear when `portable-atomic` no longer works as intended (fixing
atomic support on atomically challenged platforms). If a PR comes
through and makes supporting this class of platforms impossible, then
this CI task can be removed. I however wager this won't be a problem.
## Testing
- CI
---
## Release Notes
Bevy now has support for `no_std` directly from the `bevy` crate.
Users can disable default features and enable a new `default_no_std`
feature instead, allowing `bevy` to be used in `no_std` applications and
libraries.
```toml
# Bevy for `no_std` platforms
bevy = { version = "0.16", default-features = false, features = ["default_no_std"] }
```
`default_no_std` enables certain required features, such as `libm` and
`critical-section`, and as many optional crates as possible (currently
just `bevy_state`). For atomically-challenged platforms such as the
Raspberry Pi Pico, `portable-atomic` will be used automatically.
For library authors, we recommend depending on `bevy` with
`default-features = false` to allow `std` and `no_std` users to both
depend on your crate. Here are some recommended features a library crate
may want to expose:
```toml
[features]
# Most users will be on a platform which has `std` and can use the more-powerful `async_executor`.
default = ["std", "async_executor"]
# Features for typical platforms.
std = ["bevy/std"]
async_executor = ["bevy/async_executor"]
# Features for `no_std` platforms.
libm = ["bevy/libm"]
critical-section = ["bevy/critical-section"]
[dependencies]
# We disable default features to ensure we don't accidentally enable `std` on `no_std` targets, for example.
bevy = { version = "0.16", default-features = false }
```
While this is verbose, it gives the maximum control to end-users to
decide how they wish to use Bevy on their platform.
We encourage library authors to experiment with `no_std` support. For
libraries relying exclusively on `bevy` and no other dependencies, it
may be as simple as adding `#![no_std]` to your `lib.rs` and exposing
features as above! Bevy can also provide many `std` types, such as
`HashMap`, `Mutex`, and `Instant` on all platforms. See
`bevy::platform_support` for details on what's available out of the box!
## Migration Guide
- If you were previously relying on `bevy` with default features
disabled, you may need to enable the `std` and `async_executor`
features.
- `bevy_reflect` has had its `bevy` feature removed. If you were relying
on this feature, simply enable `smallvec` and `smol_str` instead.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Alternative to and closes#18120.
Sibling to #18082, see that PR for broader reasoning.
Folks weren't sold on the name `many` (get_many is clearer, and this is
rare), and that PR is much more complex.
## Solution
- Simply deprecate `Query::many` and `Query::many_mut`
- Clean up internal usages
Mentions of this in the docs can wait until it's fully removed in the
0.17 cycle IMO: it's much easier to catch the problems when doing that.
## Testing
CI!
## Migration Guide
`Query::many` and `Query::many_mut` have been deprecated to reduce
panics and API duplication. Use `Query::get_many` and
`Query::get_many_mut` instead, and handle the `Result`.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
simplify some code and improve Event macro
Closes https://github.com/bevyengine/bevy/issues/14336,
# Showcase
you can now write derive Events like so
```rust
#[derive(event)]
#[event(auto_propagate, traversal = MyType)]
struct MyEvent;
```
# Objective
I'm building a bloxel game in which I (currently) use a texture atlas to
render the blocks the world is made of. While I was coding it, I was
using the `TextureAtlas...` types to build the terrain's texture atlas
at runtime as shown in the
[example](https://github.com/bevyengine/bevy/blob/latest/examples/2d/texture_atlas.rs).
But when I was using it to build a 3D mesh out of the blocks, I found
that there was no easy way get the texture rect in UV coordinates, only
in pixels via `texture_rect()`. I had to resort to writing code like
this:
```rs
let size = layout.size.as_vec2();
if let Some(rect) = sources.texture_rect(layout, texture) {
let rect = rect.as_rect();
let uvs = Rect::from_corners(rect.min / size, rect.max / size);
// use the UVs here, such as to build vertex buffer
}
```
That is, until I wrote a helper function that's practically identical to
the one in this PR.
## Solution
Add a `uv_rect` function to `TextureAtlasSources` that will return a
`Rect` with coordinates in the range of 0.0 to 1.0 – that is, UV
coordinates – which can then be used directly to build `Vec2` UV values
to put into a buffer and send to the GPU.
I'm a little unsure about the wording of the `texture_rect`
documentation but I kept it intact and based mine on it. If you think
this could be improved and have some advice, I'd love to include that in
this PR.
## Testing
I've not done any testing with the updated bevy branch, other than
seeing that the original helper function (identical in functionality)
worked in my currently very small project, and making sure `cargo build`
doesn't error, but I'm new to making changes to Bevy so unsure if this
is sufficient.
## Showcase

## Objective
Fixes#18092
Bevy's current error type is a simple type alias for `Box<dyn Error +
Send + Sync + 'static>`. This largely works as a catch-all error, but it
is missing a critical feature: the ability to capture a backtrace at the
point that the error occurs. The best way to do this is `anyhow`-style
error handling: a new error type that takes advantage of the fact that
the `?` `From` conversion happens "inline" to capture the backtrace at
the point of the error.
## Solution
This PR adds a new `BevyError` type (replacing our old
`std::error::Error` type alias), which uses the "from conversion
backtrace capture" approach:
```rust
fn oh_no() -> Result<(), BevyError> {
// this fails with Rust's built in ParseIntError, which
// is converted into the catch-all BevyError type
let number: usize = "hi".parse()?;
println!("parsed {number}");
Ok(())
}
```
This also updates our exported `Result` type alias to default to
`BevyError`, meaning you can write this instead:
```rust
fn oh_no() -> Result {
let number: usize = "hi".parse()?;
println!("parsed {number}");
Ok(())
}
```
When a BevyError is encountered in a system, it will use Bevy's default
system error handler (which panics by default). BevyError does custom
"backtrace filtering" by default, meaning we can cut out the _massive_
amount of "rust internals", "async executor internals", and "bevy system
scheduler internals" that show up in backtraces. It also trims out the
first generally-unnecssary `From` conversion backtrace lines that make
it harder to locate the real error location. The result is a blissfully
simple backtrace by default:

The full backtrace can be shown by setting the `BEVY_BACKTRACE=full`
environment variable. Non-BevyError panics still use the default Rust
backtrace behavior.
One issue that prevented the truly noise-free backtrace during panics
that you see above is that Rust's default panic handler will print the
unfiltered (and largely unhelpful real-panic-point) backtrace by
default, in _addition_ to our filtered BevyError backtrace (with the
helpful backtrace origin) that we capture and print. To resolve this, I
have extended Bevy's existing PanicHandlerPlugin to wrap the default
panic handler. If we panic from the result of a BevyError, we will skip
the default "print full backtrace" panic handler. This behavior can be
enabled and disabled using the new `error_panic_hook` cargo feature in
`bevy_app` (which is enabled by default).
One downside to _not_ using `Box<dyn Error>` directly is that we can no
longer take advantage of the built-in `Into` impl for strings to errors.
To resolve this, I have added the following:
```rust
// Before
Err("some error")?
// After
Err(BevyError::message("some error"))?
```
We can discuss adding shorthand methods or macros for this (similar to
anyhow's `anyhow!("some error")` macro), but I'd prefer to discuss that
later.
I have also added the following extension method:
```rust
// Before
some_option.ok_or("some error")?;
// After
some_option.ok_or_message("some error")?;
```
I've also moved all of our existing error infrastructure from
`bevy_ecs::result` to `bevy_ecs::error`, as I think that is the better
home for it
## Why not anyhow (or eyre)?
The biggest reason is that `anyhow` needs to be a "generically useful
error type", whereas Bevy is a much narrower scope. By using our own
error, we can be significantly more opinionated. For example, anyhow
doesn't do the extensive (and invasive) backtrace filtering that
BevyError does because it can't operate on Bevy-specific context, and
needs to be generically useful.
Bevy also has a lot of operational context (ex: system info) that could
be useful to attach to errors. If we have control over the error type,
we can add whatever context we want to in a structured way. This could
be increasingly useful as we add more visual / interactive error
handling tools and editor integrations.
Additionally, the core approach used is simple and requires almost no
code. anyhow clocks in at ~2500 lines of code, but the impl here uses
160. We are able to boil this down to exactly what we need, and by doing
so we improve our compile times and the understandability of our code.
# Objective
The fix in #18105 includes a check for running headless, but this allows
for an extra world update during shutdown.
This commit checks if the `AppExit` event has been recorded and prevents
the additional world update.
### Before
```
2025-03-06T03:11:59.999679Z INFO bevy_window::system: No windows are open, exiting
2025-03-06T03:12:00.001942Z INFO bevy_winit::system: Closing window 0v1
2025-03-06T03:12:00.012691Z INFO bevy_window::system: No windows are open, exiting
```
### After
```
2025-03-06T03:18:45.552243Z INFO bevy_window::system: No windows are open, exiting
2025-03-06T03:18:45.554119Z INFO bevy_winit::system: Closing window 0v1
```
## Testing
Ran `window` examples
- `monitor_info` continues to run after all windows are closed (it has
`ExitCondition::DontExit`)
- `window_settings` invisible window creation works as expected
- `multiple_windows` exits after both windows are closed with a single
exit message
# Objective
- Today, enabling asset processing can generate many meta files. This
makes it a painful transition for users as they get a "mega commit"
containing tons of meta files.
## Solution
- Stop automatically generating meta files! Users can just leave the
meta files defaulted.
- Add a function `AssetServer::write_default_meta_file_for_path`
## Testing
- Tested this manually on the asset_processing example (by removing the
meta files for the assets that had default meta files).
- I did not add a unit test for the `write_default_meta_file_for_path`
since we don't have an in-memory asset writer. Writing one could be
useful in the future.
---
## Showcase
Asset processing no longer automatically generates meta files! This
makes it much easier to transition to using asset processing since you
don't suddenly get many meta files when turning it on.
You can still manually generate meta files using the new
`AssetServer::write_default_meta_file_for_path` function.
# Objective
Based on #18054, this PR builds on #18035 to deprecate:
- `Commands::insert_or_spawn_batch`
- `Entities::alloc_at_without_replacement`
- `Entities::alloc_at`
- `World::insert_or_spawn_batch`
- `World::insert_or_spawn_batch_with_caller`
## Testing
Just deprecation, so no new tests. Note that as of writing #18035 is
still under testing and review.
## Open Questions
- [x] Should `entity::AllocAtWithoutReplacement` be deprecated? It is
internal and only used in `Entities::alloc_at_without_replacement`.
**EDIT:** Now deprecated.
## Migration Guide
The following functions have been deprecated:
- `Commands::insert_or_spawn_batch`
- `World::insert_or_spawn_batch`
- `World::insert_or_spawn_batch_with_caller`
These functions, when used incorrectly, can cause major performance
problems and are generally viewed as anti-patterns and foot guns. These
are planned to be removed altogether in 0.17.
Instead of these functions consider doing one of the following:
Option A) Instead of despawing entities and re-spawning them at a
particular id, insert the new `Disabled` component without despawning
the entity, and use `try_insert_batch` or `insert_batch` and remove
`Disabled` instead of re-spawning it.
Option B) Instead of giving special meaning to an entity id, simply use
`spawn_batch` and ensure entity references are valid when despawning.
---------
Co-authored-by: JaySpruce <jsprucebruce@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
In 0.11 you could easily access the inverse model matrix inside a WGSL
shader with `transpose(mesh.inverse_transpose_model)`. This was changed
in 0.12 when `inverse_transpose_model` was removed and it's now not as
straightfoward. I wrote a helper function for my own code and thought
I'd submit a pull request in case it would be helpful to others.
# Objective
This PR adds:
- function call hook attributes `#[component(on_add = func(42))]`
- main feature of this commit
- closure hook attributes `#[component(on_add = |w, ctx| { /* ... */
})]`
- maybe too verbose
- but was easy to add
- was suggested on discord
This allows to reuse common functionality without replicating a lot of
boilerplate. A small example is a hook which just adds different default
sprites. The sprite loading code would be the same for every component.
Unfortunately we can't use the required components feature, since we
need at least an `AssetServer` or other `Resource`s or `Component`s to
load the sprite.
```rs
fn load_sprite(path: &str) -> impl Fn(DeferredWorld, HookContext) {
|mut world, ctx| {
// ... use world to load sprite
}
}
#[derive(Component)]
#[component(on_add = load_sprite("knight.png"))]
struct Knight;
#[derive(Component)]
#[component(on_add = load_sprite("monster.png"))]
struct Monster;
```
---
The commit also reorders the logic of the derive macro a bit. It's
probably a bit less lazy now, but the functionality shouldn't be
performance critical and is executed at compile time anyways.
## Solution
- Introduce `HookKind` enum in the component proc macro module
- extend parsing to allow more cases of expressions
## Testing
I have some code laying around. I'm not sure where to put it yet though.
Also is there a way to check compilation failures? Anyways, here it is:
```rs
use bevy::prelude::*;
#[derive(Component)]
#[component(
on_add = fooing_and_baring,
on_insert = fooing_and_baring,
on_replace = fooing_and_baring,
on_despawn = fooing_and_baring,
on_remove = fooing_and_baring
)]
pub struct FooPath;
fn fooing_and_baring(
world: bevy::ecs::world::DeferredWorld,
ctx: bevy::ecs::component::HookContext,
) {
}
#[derive(Component)]
#[component(
on_add = baring_and_bazzing("foo"),
on_insert = baring_and_bazzing("foo"),
on_replace = baring_and_bazzing("foo"),
on_despawn = baring_and_bazzing("foo"),
on_remove = baring_and_bazzing("foo")
)]
pub struct FooCall;
fn baring_and_bazzing(
path: &str,
) -> impl Fn(bevy::ecs::world::DeferredWorld, bevy::ecs::component::HookContext) {
|world, ctx| {}
}
#[derive(Component)]
#[component(
on_add = |w,ctx| {},
on_insert = |w,ctx| {},
on_replace = |w,ctx| {},
on_despawn = |w,ctx| {},
on_remove = |w,ctx| {}
)]
pub struct FooClosure;
#[derive(Component, Debug)]
#[relationship(relationship_target = FooTargets)]
#[component(
on_add = baring_and_bazzing("foo"),
// on_insert = baring_and_bazzing("foo"),
// on_replace = baring_and_bazzing("foo"),
on_despawn = baring_and_bazzing("foo"),
on_remove = baring_and_bazzing("foo")
)]
pub struct FooTargetOf(Entity);
#[derive(Component, Debug)]
#[relationship_target(relationship = FooTargetOf)]
#[component(
on_add = |w,ctx| {},
on_insert = |w,ctx| {},
// on_replace = |w,ctx| {},
// on_despawn = |w,ctx| {},
on_remove = |w,ctx| {}
)]
pub struct FooTargets(Vec<Entity>);
// MSG: mismatched types expected fn pointer `for<'w> fn(bevy::bevy_ecs::world::DeferredWorld<'w>, bevy::bevy_ecs::component::HookContext)` found struct `Bar`
//
// pub struct Bar;
// #[derive(Component)]
// #[component(
// on_add = Bar,
// )]
// pub struct FooWrongPath;
// MSG: this function takes 1 argument but 2 arguements were supplied
//
// #[derive(Component)]
// #[component(
// on_add = wrong_bazzing("foo"),
// )]
// pub struct FooWrongCall;
//
// fn wrong_bazzing(path: &str) -> impl Fn(bevy::ecs::world::DeferredWorld) {
// |world| {}
// }
// MSG: expected 1 argument, found 2
//
// #[derive(Component)]
// #[component(
// on_add = |w| {},
// )]
// pub struct FooWrongCall;
```
---
## Showcase
I'll try to continue to work on this to have a small section in the
release notes.
## Objective
`insert_or_spawn_batch` is due to be deprecated eventually (#15704), and
removing uses internally will make that easier.
## Solution
Replaced internal uses of `insert_or_spawn_batch` with
`try_insert_batch` (non-panicking variant because
`insert_or_spawn_batch` didn't panic).
All of the internal uses are in rendering code. Since retained rendering
was meant to get rid non-opaque entity IDs, I assume the code was just
using `insert_or_spawn_batch` because `insert_batch` didn't exist and
not because it actually wanted to spawn something. However, I am *not*
confident in my ability to judge rendering code.
# Objective
Component `require()` IDE integration is fully broken, as of #16575.
## Solution
This reverts us back to the previous "put the docs on Component trait"
impl. This _does_ reduce the accessibility of the required components in
rust docs, but the complete erasure of "required component IDE
experience" is not worth the price of slightly increased prominence of
requires in docs.
Additionally, Rust Analyzer has recently started including derive
attributes in suggestions, so we aren't losing that benefit of the
proc_macro attribute impl.
This reverts commit 0b5302d96a.
# Objective
- Fixes#18158
- #17482 introduced rendering changes and was merged a bit too fast
## Solution
- Revert #17482 so that it can be redone and rendering changes discussed
before being merged. This will make it easier to compare changes with
main in the known "valid" state
This is not an issue with the work done in #17482 that is still
interesting
Fixes#17720
## Objective
Spawning RelationshipTargets from scenes currently fails to preserve
RelationshipTarget ordering (ex: `Children` has an arbitrary order).
This is because it uses the normal hook flow to set up the collection,
which means we are pushing onto the collection in _spawn order_ (which
is currently in archetype order, which will often produce mismatched
orderings).
We need to preserve the ordering in the original RelationshipTarget
collection. Ideally without expensive checking / fixups.
## Solution
One solution would be to spawn in hierarchy-order. However this gets
complicated as there can be multiple hierarchies, and it also means we
can't spawn in more cache-friendly orders (ex: the current per-archetype
spawning, or future even-smarter per-table spawning). Additionally,
same-world cloning has _slightly_ more nuanced needs (ex: recursively
clone linked relationships, while maintaining _original_ relationships
outside of the tree via normal hooks).
The preferred approach is to directly spawn the remapped
RelationshipTarget collection, as this trivially preserves the ordering.
Unfortunately we can't _just_ do that, as when we spawn the children
with their Relationships (ex: `ChildOf`), that will insert a duplicate.
We could "fixup" the collection retroactively by just removing the back
half of duplicates, but this requires another pass / more lookups /
allocating twice as much space. Additionally, it becomes complicated
because observers could insert additional children, making it harder
(aka more expensive) to determine which children are dupes and which are
not.
The path I chose is to support "opting out" of the relationship target
hook in the contexts that need that, as this allows us to just cheaply
clone the mapped collection. The relationship hook can look for this
configuration when it runs and skip its logic when that happens. A
"simple" / small-amount-of-code way to do this would be to add a "skip
relationship spawn" flag to World. Sadly, any hook / observer that runs
_as the result of an insert_ would also read this flag. We really need a
way to scope this setting to a _specific_ insert.
Therefore I opted to add a new `RelationshipInsertHookMode` enum and an
`entity.insert_with_relationship_insert_hook_mode` variant. Obviously
this is verbose and ugly. And nobody wants _more_ insert variants. But
sadly this was the best I could come up with from a performance and
capability perspective. If you have alternatives let me know!
There are three variants:
1. `RelationshipInsertHookMode::Run`: always run relationship insert
hooks (this is the default)
2. `RelationshipInsertHookMode::Skip`: do not run any relationship
insert hooks for this insert (this is used by spawner code)
3. `RelationshipInsertHookMode::RunIfNotLinked`: only run hooks for
_unlinked_ relationships (this is used in same-world recursive entity
cloning to preserve relationships outside of the deep-cloned tree)
Note that I have intentionally only added "insert with relationship hook
mode" variants to the cases we absolutely need (everything else uses the
default `Run` mode), just to keep the code size in check. I do not think
we should add more without real _very necessary_ use cases.
I also made some other minor tweaks:
1. I split out `SourceComponent` from `ComponentCloneCtx`. Reading the
source component no longer needlessly blocks mutable access to
`ComponentCloneCtx`.
2. Thanks to (1), I've removed the `RefCell` wrapper over the cloned
component queue.
3. (1) also allowed me to write to the EntityMapper while queuing up
clones, meaning we can reserve entities during the component clone and
write them to the mapper _before_ inserting the component, meaning
cloned collections can be mapped on insert.
4. I've removed the closure from `write_target_component_ptr` to
simplify the API / make it compatible with the split `SourceComponent`
approach.
5. I've renamed `EntityCloner::recursive` to
`EntityCloner::linked_cloning` to connect that feature more directly
with `RelationshipTarget::LINKED_SPAWN`
6. I've removed `EntityCloneBehavior::RelationshipTarget`. This was
always intended to be temporary, and this new behavior removes the need
for it.
---------
Co-authored-by: Viktor Gustavsson <villor94@gmail.com>
# Objective
Fix unsound query transmutes on queries obtained from
`Query::as_readonly()`.
The following compiles, and the call to `transmute_lens()` should panic,
but does not:
```rust
fn bad_system(query: Query<&mut A>) {
let mut readonly = query.as_readonly();
let mut lens: QueryLens<&mut A> = readonly.transmute_lens();
let other_readonly: Query<&A> = query.as_readonly();
// `lens` and `other_readonly` alias, and are both alive here!
}
```
To make `Query::as_readonly()` zero-cost, we pointer-cast
`&QueryState<D, F>` to `&QueryState<D::ReadOnly, F>`. This means that
the `component_access` for a read-only query's state may include
accesses for the original mutable version, but the `Query` does not have
exclusive access to those components! `transmute` and `join` use that
access to ensure that a join is valid, and will incorrectly allow a
transmute that includes mutable access.
As a bonus, allow `Query::join`s that output `FilteredEntityRef` or
`FilteredEntityMut` to receive access from the `other` query. Currently
they only receive access from `self`.
## Solution
When transmuting or joining from a read-only query, remove any writes
before performing checking that the transmute is valid. For joins, be
sure to handle the case where one input query was the result of
`as_readonly()` but the other has valid mutable access.
This requires identifying read-only queries, so add a
`QueryData::IS_READ_ONLY` associated constant. Note that we only call
`QueryState::as_transmuted_state()` with `NewD: ReadOnlyQueryData`, so
checking for read-only queries is sufficient to check for
`as_transmuted_state()`.
Removing writes requires allocating a new `FilteredAccess`, so only do
so if the query is read-only and the state has writes. Otherwise, the
existing access is correct and we can continue using a reference to it.
Use the new read-only state to call `NewD::set_access`, so that
transmuting to a `FilteredAccessMut` results in a read-only
`FilteredAccessMut`. Otherwise, it would take the original write access,
and then the transmute would panic because it had too much access.
Note that `join` was previously passing `self.component_access` to
`NewD::set_access`. Switching it to `joined_component_access` also
allows a join that outputs `FilteredEntity(Ref|Mut)` to receive access
from `other`. The fact that it didn't do that before seems like an
oversight, so I didn't try to prevent that change.
## Testing
Added unit tests with the unsound transmute and join.
# Objective
Many systems like `Schedule` rely on the fact that every structural ECS
changes are deferred until an exclusive system flushes the `World`
itself. This gives us the benefits of being able to run systems in
parallel without worrying about dangling references caused by memory
(re)allocations, which will in turn lead to **Undefined Behavior**.
However, this isn't explicitly documented in `SystemParam`; currently it
only vaguely hints that in `init_state`, based on the fact that
structural ECS changes require mutable access to the _whole_ `World`.
## Solution
Document this behavior explicitly in `SystemParam`'s type-level
documentations.
# Objective
- Fixes#16339
## Solution
- Replaced `component_reads_and_writes` and `component_writes` with
`try_iter_component_access`.
## Testing
- Ran `dynamic` example to confirm behaviour is unchanged.
- CI
---
## Migration Guide
The following methods (some removed in previous PRs) are now replaced by
`Access::try_iter_component_access`:
* `Access::component_reads_and_writes`
* `Access::component_reads`
* `Access::component_writes`
As `try_iter_component_access` returns a `Result`, you'll now need to
handle the failing case (e.g., `unwrap()`). There is currently a single
failure mode, `UnboundedAccess`, which occurs when the `Access` is for
all `Components` _except_ certain exclusions. Since this list is
infinite, there is no meaningful way for `Access` to provide an
iterator. Instead, get a list of components (e.g., from the `Components`
structure) and iterate over that instead, filtering using
`Access::has_component_read`, `Access::has_component_write`, etc.
Additionally, you'll need to `filter_map` the accesses based on which
method you're attempting to replace:
* `Access::component_reads_and_writes` -> `Exclusive(_) | Shared(_)`
* `Access::component_reads` -> `Shared(_)`
* `Access::component_writes` -> `Exclusive(_)`
To ease migration, please consider the below extension trait which you
can include in your project:
```rust
pub trait AccessCompatibilityExt {
/// Returns the indices of the components this has access to.
fn component_reads_and_writes(&self) -> impl Iterator<Item = T> + '_;
/// Returns the indices of the components this has non-exclusive access to.
fn component_reads(&self) -> impl Iterator<Item = T> + '_;
/// Returns the indices of the components this has exclusive access to.
fn component_writes(&self) -> impl Iterator<Item = T> + '_;
}
impl<T: SparseSetIndex> AccessCompatibilityExt for Access<T> {
fn component_reads_and_writes(&self) -> impl Iterator<Item = T> + '_ {
self
.try_iter_component_access()
.expect("Access is unbounded. Please refactor the usage of this method to directly use try_iter_component_access")
.filter_map(|component_access| {
let index = component_access.index().sparse_set_index();
match component_access {
ComponentAccessKind::Archetypal(_) => None,
ComponentAccessKind::Shared(_) => Some(index),
ComponentAccessKind::Exclusive(_) => Some(index),
}
})
}
fn component_reads(&self) -> impl Iterator<Item = T> + '_ {
self
.try_iter_component_access()
.expect("Access is unbounded. Please refactor the usage of this method to directly use try_iter_component_access")
.filter_map(|component_access| {
let index = component_access.index().sparse_set_index();
match component_access {
ComponentAccessKind::Archetypal(_) => None,
ComponentAccessKind::Shared(_) => Some(index),
ComponentAccessKind::Exclusive(_) => None,
}
})
}
fn component_writes(&self) -> impl Iterator<Item = T> + '_ {
self
.try_iter_component_access()
.expect("Access is unbounded. Please refactor the usage of this method to directly use try_iter_component_access")
.filter_map(|component_access| {
let index = component_access.index().sparse_set_index();
match component_access {
ComponentAccessKind::Archetypal(_) => None,
ComponentAccessKind::Shared(_) => None,
ComponentAccessKind::Exclusive(_) => Some(index),
}
})
}
}
```
Please take note of the use of `expect(...)` in these methods. You
should consider using these as a starting point for a more appropriate
migration based on your specific needs.
## Notes
- This new method is fallible based on whether the `Access` is bounded
or unbounded (unbounded occurring with inverted component sets). If
bounded, will return an iterator of every item and its access level. I
believe this makes sense without exposing implementation details around
`Access`.
- The access level is defined by an `enum` `ComponentAccessKind<T>`,
either `Archetypical`, `Shared`, or `Exclusive`. As a convenience, this
`enum` has a method `index` to get the inner `T` value without a match
statement. It does add more code, but the API is clearer.
- Within `QueryBuilder` this new method simplifies several pieces of
logic without changing behaviour.
- Within `QueryState` the logic is simplified and the amount of
iteration is reduced, potentially improving performance.
- Within the `dynamic` example it has identical behaviour, with the
inversion footgun explicitly highlighted by an `unwrap`.
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
Co-authored-by: Mike <2180432+hymm@users.noreply.github.com>
# Objective
The doc comment for `BorderRadius::resolve_single_corner` returns a
value in physical pixels but the doc comments implies it returns a
logical value.
# Objective
Minimal implementation of directed one-to-one relationships via
implementing `RelationshipSourceCollection` for `Entity`.
Now you can do
```rust
#[derive(Component)]
#[relationship(relationship_target = Below)]
pub struct Above(Entity);
#[derive(Component)]
#[relationship_target(relationship = Above)]
pub struct Below(Entity);
```
## Future Work
It would be nice if the relationships could be fully symmetrical in the
future - in the example above, since `Above` is the source of truth you
can't add `Below` to an entity and have `Above` added automatically.
## Testing
Wrote unit tests for new relationship sources and and verified
adding/removing relationships maintains connection as expected.
# Objective
Work for issue #17682
What's in this PR:
* Removal of some `!Send` resources that Bevy uses internally
* Replaces `!Send` resources with `thread_local!` static
What this PR does not cover:
* The ability to create `!Send` resources still exists
* Tests that test `!Send` resources are present (and should not be
removed until the ability to create `!Send` resources is removed)
* The example `log_layers_ecs` still uses a `!Send` resource. In this
example, removing the `!Send` resource results in the system that uses
it running on a thread other than the main thread, which doesn't work
with lazily initialized `thread_local!` static data. Removing this
`!Send` resource will need to be deferred until the System API is
extended to support configuring which thread the System runs on. Once an
issue for this work is created, it will be mentioned in #17667
Once the System API is extended to allow control of which thread the
System runs on, the rest of the `!Send` resources can be removed in a
different PR.
# Objective
Transparently uses simple `EnvironmentMapLight`s to mimic
`AmbientLight`s. Implements the first part of #17468, but I can
implement hemispherical lights in this PR too if needed.
## Solution
- A function `EnvironmentMapLight::solid_color(&mut Assets<Image>,
Color)` is provided to make an environment light with a solid color.
- A new system is added to `SimulationLightSystems` that maps
`AmbientLight`s on views or the world to a corresponding
`EnvironmentMapLight`.
I have never worked with (or on) Bevy before, so nitpicky comments on
how I did things are appreciated :).
## Testing
Testing was done on a modified version of the `3d/lighting` example,
where I removed all lights except the ambient light. I have not included
the example, but can if required.
## Migration
`bevy_pbr::AmbientLight` has been deprecated, so all usages of it should
be replaced by a `bevy_pbr::EnvironmentMapLight` created with
`EnvironmentMapLight::solid_color` placed on the camera. There is no
alternative to ambient lights as resources.
# Objective
- Fixes the issue described in this comment:
https://github.com/bevyengine/bevy/issues/16680#issuecomment-2522764239.
## Solution
- Cache one-shot systems by `S: IntoSystem` (which is const-asserted to
be a ZST) rather than `S::System`.
## Testing
Added a new unit test named `cached_system_into_same_system_type` to
`system_registry.rs`.
---
## Migration Guide
The `CachedSystemId` resource has been changed:
```rust
// Before:
let cached_id = CachedSystemId::<S::System>(id);
assert!(id == cached_id.0);
// After:
let cached_id = CachedSystemId::<S>::new(id);
assert!(id == SystemId::from_entity(cached_id.entity));
```
This commit makes the
`mark_meshes_as_changed_if_their_materials_changed` system use the new
`AssetChanged<MeshMaterial3d>` query filter in addition to
`Changed<MeshMaterial3d>`. This ensures that we update the
`MeshInputUniform`, which contains the bindless material slot. Updating
the `MeshInputUniform` fixes problems that occurred when the
`MeshBindGroupAllocator` reallocated meshes in such a way as to change
their bindless slot.
Closes#18102.
The test case `query_iter_sorts` was doing lots of comparisons to ensure
that various query arrays were sorted, but the arrays were all empty.
This PR spawns some entities so that the entity lists to compare not
empty, and sorting can actually be tested for correctness.
# Objective
Fixes https://github.com/bevyengine/bevy/issues/17590.
## Solution
`prepare_volumetric_fog_uniforms` adds a uniform for each combination of
fog volume and view. But it only allocated enough uniforms for one fog
volume per view.
## Testing
Ran the `volumetric_fog` example with 1/2/3/4 fog volumes. Also checked
the `fog_volumes` and `scrolling_fog` examples (without multiple
volumes). Win10/Vulkan/Nvidia.
To test multiple views I tried adding fog volumes to the `split_screen`
example. This doesn't quite work - the fog should be centred on the fox,
but instead it's centred on the window. Same result with and without the
PR, so I'm assuming it's a separate bug.

# Objective
As discussed in #14275, Bevy is currently too prone to panic, and makes
the easy / beginner-friendly way to do a large number of operations just
to panic on failure.
This is seriously frustrating in library code, but also slows down
development, as many of the `Query::single` panics can actually safely
be an early return (these panics are often due to a small ordering issue
or a change in game state.
More critically, in most "finished" products, panics are unacceptable:
any unexpected failures should be handled elsewhere. That's where the
new
With the advent of good system error handling, we can now remove this.
Note: I was instrumental in a) introducing this idea in the first place
and b) pushing to make the panicking variant the default. The
introduction of both `let else` statements in Rust and the fancy system
error handling work in 0.16 have changed my mind on the right balance
here.
## Solution
1. Make `Query::single` and `Query::single_mut` (and other random
related methods) return a `Result`.
2. Handle all of Bevy's internal usage of these APIs.
3. Deprecate `Query::get_single` and friends, since we've moved their
functionality to the nice names.
4. Add detailed advice on how to best handle these errors.
Generally I like the diff here, although `get_single().unwrap()` in
tests is a bit of a downgrade.
## Testing
I've done a global search for `.single` to track down any missed
deprecated usages.
As to whether or not all the migrations were successful, that's what CI
is for :)
## Future work
~~Rename `Query::get_single` and friends to `Query::single`!~~
~~I've opted not to do this in this PR, and smear it across two releases
in order to ease the migration. Successive deprecations are much easier
to manage than the semantics and types shifting under your feet.~~
Cart has convinced me to change my mind on this; see
https://github.com/bevyengine/bevy/pull/18082#discussion_r1974536085.
## Migration guide
`Query::single`, `Query::single_mut` and their `QueryState` equivalents
now return a `Result`. Generally, you'll want to:
1. Use Bevy 0.16's system error handling to return a `Result` using the
`?` operator.
2. Use a `let else Ok(data)` block to early return if it's an expected
failure.
3. Use `unwrap()` or `Ok` destructuring inside of tests.
The old `Query::get_single` (etc) methods which did this have been
deprecated.
# Objective
Documentation correction.
# Reasoning
The `GamepadAxis::RightZ` and `LeftZ` do not map to the trigger buttons
on a gamepad. They are in fact for the twisting/yaw of a flight Joystick
and throttle lever respectively. I confirmed this with two gamepads that
has analog triggers (Logitech F710, 8bitdo ultimate BT controller) and a
HOTAS joystick (Saitek X52).
# Objective
Fixes#18022
## Solution
Canonicalize asset paths
## Testing
I ran the examples `sprite`, `desk_toy` and `game_menu` with the feature
`file_watcher` enabled. All correctly updated an asset when the source
file was altered.
Co-authored-by: Threadzless <threadzless@gmail.com>
# Objective
Fixes#18027
## Solution
Run `redraw_requested` logic in `about_to_wait` on Windows during
initial application startup and when in headless mode
## Testing
- Ran `cargo run --example window_settings` to demonstrate invisible
window creation worked again and fixes#18027
- Ran `cargo run --example eased_motion` to demonstrate no regression
with the fix for #17488
Ran all additional `window` examples.
Notes:
- The `transparent_window` was not transparent but this appears to have
been broken prior to #18004. See: #7544
I noticed this while working on #18017 . Some of the `stderr`
compile_fail tests were updated while I generated the output for the new
tests I introduced in the mentioned PR.
I'm on rust 1.85.0
## Objective
`EntityCommands::trigger` internally uses `Commands::trigger_targets`,
which means it gets queued using `Commands::queue` rather
`EntityCommands::queue`. This previously wouldn't have made much
difference, but now entity commands check whether the entity exists, and
that check never happens in this case.
## Solution
- Add `entity_command::trigger`, which calls the same function as before
(`World::trigger_targets_with_caller`) but through the `EntityWorldMut`
passed to entity commands.
- Change `EntityCommands::trigger` to queue the new entity command
normally.
https://github.com/bevyengine/bevy/pull/17905 replaced `ChildOf(entity)`
with `ChildOf { parent: entity }`, but some deprecation advice was
overlooked. Also corrected formatting in documentation.
## Testing
Added a `set_parent` to a random example. Confirmed that the deprecation
warning shows and the advice can be pasted in.
# Objective
Fixes#17988
## Solution
Added two Debug impls to the `impl_ptr` macro - one for Aligned and one
for Unaligned.
## Testing
No tests have been added. Would a test guaranteeing debug layout be
appropriate?
---
## Showcase
The debug representation of a `Ptr<'_, Aligned>` follows. `PtrMut` and
`OwningPtr` are similar.
`Ptr<Aligned>(0x0123456789ab)`
# Objective
There are currently three ways to access the parent stored on a ChildOf
relationship:
1. `child_of.parent` (field accessor)
2. `child_of.get()` (get function)
3. `**child_of` (Deref impl)
I will assert that we should only have one (the field accessor), and
that the existence of the other implementations causes confusion and
legibility issues. The deref approach is heinous, and `child_of.get()`
is significantly less clear than `child_of.parent`.
## Solution
Remove `impl Deref for ChildOf` and `ChildOf::get`.
The one "downside" I'm seeing is that:
```rust
entity.get::<ChildOf>().map(ChildOf::get)
```
Becomes this:
```rust
entity.get::<ChildOf>().map(|c| c.parent)
```
I strongly believe that this is worth the increased clarity and
consistency. I'm also not really a huge fan of the "pass function
pointer to map" syntax. I think most people don't think this way about
maps. They think in terms of a function that takes the item in the
Option and returns the result of some action on it.
## Migration Guide
```rust
// Before
**child_of
// After
child_of.parent
// Before
child_of.get()
// After
child_of.parent
// Before
entity.get::<ChildOf>().map(ChildOf::get)
// After
entity.get::<ChildOf>().map(|c| c.parent)
```
## Objective
Alternative to #18001.
- Now that systems can handle the `?` operator, `get_entity` returning
`Result` would be more useful than `Option`.
- With `get_entity` being more flexible, combined with entity commands
now checking the entity's existence automatically, the panic in `entity`
isn't really necessary.
## Solution
- Changed `Commands::get_entity` to return `Result<EntityCommands,
EntityDoesNotExistError>`.
- Removed panic from `Commands::entity`.
# Objective
fixes#17896
## Solution
Change ChildOf ( Entity ) to ChildOf { parent: Entity }
by doing this we also allow users to use named structs for relationship
derives, When you have more than 1 field in a struct with named fields
the macro will look for a field with the attribute #[relationship] and
all of the other fields should implement the Default trait. Unnamed
fields are still supported.
When u have a unnamed struct with more than one field the macro will
fail.
Do we want to support something like this ?
```rust
#[derive(Component)]
#[relationship_target(relationship = ChildOf)]
pub struct Children (#[relationship] Entity, u8);
```
I could add this, it but doesn't seem nice.
## Testing
crates/bevy_ecs - cargo test
## Showcase
```rust
use bevy_ecs::component::Component;
use bevy_ecs::entity::Entity;
#[derive(Component)]
#[relationship(relationship_target = Children)]
pub struct ChildOf {
#[relationship]
pub parent: Entity,
internal: u8,
};
#[derive(Component)]
#[relationship_target(relationship = ChildOf)]
pub struct Children {
children: Vec<Entity>
};
```
---------
Co-authored-by: Tim Overbeek <oorbecktim@Tims-MacBook-Pro.local>
Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-042.client.nl.eduvpn.org>
Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-059.client.nl.eduvpn.org>
Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-054.client.nl.eduvpn.org>
Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-027.client.nl.eduvpn.org>
## Objective
`insert_by_id` is unsafe, but I forgot to add that to the
manually-queueable version in `entity_command`.
It also can only insert using `InsertMode::Replace`, when it could
easily be configurable by threading an `InsertMode` parameter to the
final `BundleInserter::insert` call.
## Solution
- Add `unsafe` and safety comment.
- Add `InsertMode` parameter to `entity_command::insert_by_id`,
`EntityWorldMut::insert_by_id_with_caller`, and
`EntityWorldMut::insert_dynamic_bundle`.
- Add `InsertMode` parameter to `entity_command::insert` and remove
`entity_command::insert_if_new`, for consistency with the other
manually-queued insertion commands.
# Objective
Fixes#17828
This fixes two bugs:
1. Exclusive systems should see the effect of all commands queued to
that point. That does not happen when the system is configured with
`*_ignore_deferred` which may lead to surprising situations. These
configurations should not behave like that.
2. If `*_ignore_deferred` is used, no sync point may be added at all
**after** the config. Currently this can happen if the last nodes in
that config have no deferred parameters themselves. Instead, sync points
should always be added after such a config, so long systems have
deferred parameters.
## Solution
1. When adding sync points on edges, do not consider
`AutoInsertApplyDeferredPass::no_sync_edges` if the target is an
exclusive system.
2. when going through the nodes in a directed way, store the information
that `AutoInsertApplyDeferredPass::no_sync_edges` suppressed adding a
sync point at the target node. Then, when the target node is evaluated
later by the iteration and that prior suppression was the case, the
target node will behave like it has deferred parameters even if the
system itself does not.
## Testing
I added a test for each bug, please let me know if more are wanted and
if yes, which cases you would want to see.
These tests also can be read as examples how the current code would
fail.
# Objective
- Fixes#17642
## Solution
- Implemented method `new_bezier(points: [P; 4]) -> Self` for
`CubicSegment<P>`
- Old implementation of `new_bezier` is now `new_bezier_easing(p1: impl
Into<Vec2>, p2: impl Into<Vec2>) -> Self` (**breaking change**)
- ~~added method `new_bezier_with_anchor`, which can make a bezier curve
between two points with one control anchor~~
- added methods `iter_positions`, `iter_velocities`,
`iter_accelerations`, the same as in `CubicCurve` (**copied code,
potentially can be reduced)**
- bezier creation logic is moved from `CubicCurve` to `CubicSegment`,
removing the unneeded allocation
## Testing
- Did you test these changes? If so, how?
- Run tests inside `crates/bevy_math/`
- Tested the functionality in my project
- Are there any parts that need more testing?
- Did not run `cargo test` on the whole bevy directory because of OOM
- Performance improvements are expected when creating `CubicCurve` with
`new_bezier` and `new_bezier_easing`, but not tested
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Use in any code that works created `CubicCurve::new_bezier`
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- I don't think relevant
---
## Showcase
```rust
// Imagine a car goes towards a local target
// Create a simple `CubicSegment`, without using heap
let planned_path = CubicSegment::new_bezier([
car_pos,
car_pos + car_dir * turn_radius,
target_point - target_dir * turn_radius,
target_point,
]);
// Check if the planned path itersect other entities
for pos in planned_path.iter_positions(8) {
// do some collision checks
}
```
## Migration Guide
> This section is optional. If there are no breaking changes, you can
delete this section.
- Replace `CubicCurve::new_bezier` with `CubicCurve::new_bezier_easing`
# Objective
`QueryIter::sort_by()` is unsound. It passes the lens items with the
full `'w` lifetime, and a malicious user could smuggle them out of the
closure where they could alias with the query results.
## Solution
Make the sort closures generic in the lifetime parameter of the lens
item. This ensures the lens items cannot outlive the call to the
closure.
## Testing
Added a compile-fail test that demonstrates the unsound pattern.
## Migration Guide
The `sort` family of methods on `QueryIter` unsoundly gave access
`L::Item<'w>` with the full `'w` lifetime. It has been shortened to
`L::Item<'w>` so that items cannot escape the comparer. If you get
lifetime errors using these methods, you will need to make the comparer
generic in the new lifetime. Often this can be done by replacing named
`'w` with `'_`, or by replacing the use of a function item with a
closure.
```rust
// Before: Now fails with "error: implementation of `FnMut` is not general enough"
query.iter().sort_by::<&C>(Ord::cmp);
// After: Wrap in a closure
query.iter().sort_by::<&C>(|l, r| Ord::cmp(l, r));
query.iter().sort_by::<&C>(comparer);
// Before: Uses specific `'w` lifetime from some outer scope
// now fails with "error: implementation of `FnMut` is not general enough"
fn comparer(left: &&'w C, right: &&'w C) -> Ordering { /* ... */ }
// After: Accepts any lifetime using inferred lifetime parameter
fn comparer(left: &&C, right: &&C) -> Ordering { /* ... */ }
# Objective
So far, built-in BRP methods allow users to interact with entities'
components, but global resources have remained beyond its reach. The
goal of this PR is to take the first steps in rectifying this shortfall.
## Solution
Added five new default methods to BRP:
- `bevy/get_resource`: Extracts the value of a given resource from the
world.
- `bevy/insert_resource`: Serializes an input value to a given resource
type and inserts it into the world.
- `bevy/remove_resource`: Removes the given resource from the world.
- `bevy/mutate_resource`: Replaces the value of a field in a given
resource with the result of serializing a given input value.
- `bevy/list_resources`: Lists all resources in the type registry with
an available `ReflectResource`.
## Testing
Added a test resource to the `server` example scene that you can use to
mess around with the new BRP methods.
## Showcase
Resources can now be retrieved and manipulated remotely using a handful
of new BRP methods. For example, a resource that looks like this:
```rust
#[derive(Resource, Reflect, Serialize, Deserialize)]
#[reflect(Resource, Serialize, Deserialize)]
pub struct PlayerSpawnSettings {
pub location: Vec2,
pub lives: u8,
}
```
can be manipulated remotely as follows.
Retrieving the value of the resource:
```json
{
"jsonrpc": "2.0",
"id": 1,
"method": "bevy/get_resource",
"params": {
"resource": "path::to::my::module::PlayerSpawnSettings"
}
}
```
Inserting a resource value into the world:
```json
{
"jsonrpc": "2.0",
"id": 2,
"method": "bevy/insert_resource",
"params": {
"resource": "path::to::my::module::PlayerSpawnSettings",
"value": {
"location": [
2.5,
2.5
],
"lives": 25
}
}
}
```
Removing the resource from the world:
```json
{
"jsonrpc": "2.0",
"id": 3,
"method": "bevy/remove_resource",
"params": {
"resource": "path::to::my::module::PlayerSpawnSettings"
}
}
```
Mutating a field of the resource specified by a path:
```json
{
"jsonrpc": "2.0",
"id": 4,
"method": "bevy/mutate_resource",
"params": {
"resource": "path::to::my::module::PlayerSpawnSettings",
"path": ".location.x",
"value": -3.0
}
}
```
Listing all manipulable resources in the type registry:
```json
{
"jsonrpc": "2.0",
"id": 5,
"method": "bevy/list_resources"
}
```
# Objective
Refactor `bevy_gltf`, the criteria for the split is kind of arbitrary
but at least it is not a 2.6k line file.
## Solution
Move methods and structs found in `bevy_gltf/loader.rs` into multiple
new modules.
## Testing
`cargo run -p ci`
# Objective
- Systems that use the task pool, either explicitly or implicitly using
parallel queries, will often end up executing tasks from different
systems.
- This can cause random tasks to block the main or render schedule at
random, adding frame variance and increasing frame times when CPU bound.
- This profile is a common occurrence on `main`.
`propagate_parent_transforms` takes more than twice as long as it
should, blocking the main schedule for that time, because it uses `task
pool.scope`, which has decided to execute tasks from the render schedule
on the main schedule.

## Solution
- In task pool scope execution, prefer to check if the current task is
complete instead of ticking the executor to find new work.
## Testing
- Ran the scene viewer with tracy to look for images like the one in the
objective section.
- Things look much, much better, and I could not find any occurrences:


# Objective
- Fixes#16416
## Solution
- Add a intermediate temporary mutable `RequiredComponents` to get avoid
of the borrowing issues.
## Testing
- I have run `cargo test --package bevy_ecs -- --exact --show-output`
and past all the tests.
## Objective
The closure argument for
`EntityClonerBuilder::without_required_components` has `Send + Sync +
'static` bounds, but the closure immediately gets called and never needs
to be sent anywhere. (This was my fault :P )
## Solution
Remove the bounds so that users aren't unnecessarily restricted.
I also took the opportunity to expand the tests a little.
# Objective
This prevents overflowing the `last_trigger_id` property that leads to a
panic in debug mode.
```bash
panicked at C:\XXX\.cargo\registry\src\index.crates.io-6f17d22bba15001f\bevy_ecs-0.15.2\src\world\unsafe_world_cell.rs:630:18:
attempt to add with overflow
Encountered a panic when applying buffers for system `bevy_sprite::calculate_bounds_2d`!
Encountered a panic in system `bevy_ecs::schedule::executor::apply_deferred`!
```
## Solution
As this value is only used for detecting a change, we can wrap when it
reaches max value.
## Testing
This can be verified by running `cargo run --example observers`
# Objective
Closes#17572
## Solution
Add the `add_one_related` methods to `EntityCommands` and
`EntityWorldMut`.
## Testing
Clippy
---
## Showcase
The `EntityWorldMut` and `FilteredResourcesMut` now include the
`add_one_related` method if you just want to relate 2 entities.
Currently, we reload a glTF skin each time we encounter a node that
references it. By checking for duplicates, PR #18013 turned this into a
fatal error. But this was always wasteful. This commit fixes the issue
by caching each skin by its index as we load it.
The Maya babylon.js export plugin likes to emit glTFs with multiple
nodes that reference the same skin, so this effectively unbreaks Maya
rigs.
# Objective
* Fixes https://github.com/bevyengine/bevy/issues/14074
* Applies CI fixes for #16326
It is currently not possible to issues a trigger that targets a specific
list of components AND a specific list of entities
## Solution
We can now use `((A, B), (entity_1, entity_2))` as a trigger target, as
well as the reverse
## Testing
Added a unit test.
The triggering rules for observers are quite confusing:
Triggers once per entity target
For each entity target, an observer system triggers if any of its
components matches the trigger target components (but it triggers at
most once, since we use an internal counter to make sure that an
observer can run at most once per entity target)
(copied from #14563)
(copied from #16326)
## Notes
All credit to @BenjaminBrienen and @cBournhonesque! Just applying a
small fix to this PR so it can be merged.
---------
Co-authored-by: Benjamin Brienen <Benjamin.Brienen@outlook.com>
Co-authored-by: Christian Hughes <xdotdash@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Makes #18010 more easily debuggable. This doesn't solve that issue,
but protects us from it in the future.
## Solution
- Make `LoadContext::add_labeled_asset` and friends return an error if
it finds a duplicate asset.
## Testing
- Added a test - it fails before the fix.
---
## Migration Guide
- `AssetLoader`s must now handle the case of a duplicate subasset label
when using `LoadContext::add_labeled_asset` and its variants. If you
know your subasset labels are unique by construction (e.g., they include
an index number), you can simply unwrap this result.
Even though opaque deferred entities aren't placed into the `Opaque3d`
bin, we still want to cache them as though they were, so that we don't
have to re-queue them every frame. This commit implements that logic,
reducing the time of `queue_material_meshes` to near-zero on Caldera.
Currently, the structure-level `#[uniform]` attribute of `AsBindGroup`
creates a binding array of individual buffers, each of which contains
data for a single material. A more efficient approach would be to
provide a single buffer with an array containing all of the data for all
materials in the bind group. Because `StandardMaterial` uses
`#[uniform]`, this can be notably inefficient with large numbers of
materials.
This patch introduces a new attribute on `AsBindGroup`, `#[data]`, which
works identically to `#[uniform]` except that it concatenates all the
data into a single buffer that the material bind group allocator itself
manages. It also converts `StandardMaterial` to use this new
functionality. This effectively provides the "material data in arrays"
feature.
# Objective
Continuation of #17589 and #16547.
`get_many` is last of the `many` methods with a missing `unique`
counterpart.
It both takes and returns arrays, thus necessitates a matching
`UniqueEntityArray` type!
Plus, some slice methods involve returning arrays, which are currently
missing from `UniqueEntitySlice`.
## Solution
Add the type, the related methods and trait impls.
Note that for this PR, we abstain from some methods/trait impls that
create `&mut UniqueEntityArray`, because it can be successfully
mem-swapped. This can potentially invalidate a larger slice, which is
the same reason we punted on some mutable slice methods in #17589. We
can follow-up on all of these together in a following PR.
The new `unique_array` module is not glob-exported, because the trait
alias `unique_array::IntoIter` would conflict with
`unique_vec::IntoIter`.
The solution for this is to make the various `unique_*` modules public,
which I intend to do in yet another PR.
# Objective
Fixes#17945
## Solution
Check if the view being extracted has OIT enabled and incorporate the
associated bit into the mesh pipeline key.
I basically have no idea what's going on in the renderer, so let me know
if I missed something, which is extraordinarily possible.
## Testing
I modified the `order_independent_transparency` example to put
everything on the default render layer and render a gizmo at the origin.
Previously, this would cause the application to panic.
# Objective
- Fixes#17897.
## Solution
- When removing components, we filter the list of components in the
removed bundle based on whether they are actually in the archetype.
## Testing
- Added a test.
# Objective
Allow prepass to run without ATTRIBUTE_NORMAL.
This is needed for custom materials with non-standard vertex attributes.
For example a voxel material with manually packed vertex data.
Fixes#13054.
This PR covers the first part of the **stale** PR #13569 to only focus
on fixing #13054.
## Solution
- Only push normals `vertex_attributes` when the layout contains
`Mesh::ATTRIBUTE_NORMAL`
## Testing
- Did you test these changes? If so, how?
**Tested the fix on my own project with a mesh without normal
attribute.**
- Are there any parts that need more testing?
**I don't think so.**
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
**Prepass should not be blocked on a mesh without normal attributes
(with or without custom material).**
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
**Probably irrelevant, but Windows/Vulkan.**
# Objective
Implements and closes#17515
## Solution
Add `uv_transform` to `ColorMaterial`
## Testing
Create a example similar to `repeated_texture` but for `Mesh2d` and
`MeshMaterial2d<ColorMaterial>`
## Showcase

## Migration Guide
Add `uv_transform` field to constructors of `ColorMaterial`
# Objective
Fix https://github.com/bevyengine/bevy/issues/17108
See
https://github.com/bevyengine/bevy/issues/17108#issuecomment-2653020889
## Solution
- Make the query match `&Pickable` instead `Option<&Pickable>`
## Testing
- Run the `sprite_picking` example and everything still work
## Migration Guide
- Sprite picking are now opt-in, make sure you insert `Pickable`
component when using sprite picking.
```diff
-commands.spawn(Sprite { .. } );
+commands.spawn((Sprite { .. }, Pickable::default());
```
# Objective
Fixes#17761
## Solution
- Added core error to InvalidDirectionError
## Testing
- Did you test these changes? If so, how?
- An added test that pulls in anyhow as a dev dependency to ensure the
conversion is accounted for in creation via From
- Are there any parts that need more testing?
- I'm unsure but probably not due to being a trivial change
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- I did not try a fully built version of Bevy. Relied purely on tests.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- Only windows
---------
Co-authored-by: Chanceler Shaffer <cshaffer2@lululemon.com>
Co-authored-by: Chanceler Shaffer <chancelershaffer@lululemon.com>
# Objective
A `TransparentUI` phase's items all target the same camera so there is
no need to store the current camera entity in `UiBatch` and ending the
current `UiBatch` on camera changes is pointless as the camera doesn't
change.
## Solution
Remove the `camera` fields from `UiBatch`, `UiShadowsBatch` and
`UiTextureSliceBatch`.
Remove the camera changed check from `prepare_uinodes`.
## Testing
The `multiple_windows` and `split_screen` examples both render UI
elements to multiple cameras and can be used to test these changes.
The UI material plugin already didn't store the camera entity per batch
and worked fine without it.
# Objective
- Contributes to #15460
- Reduce quantity and complexity of feature gates across Bevy
## Solution
- Used `target_has_atomic` configuration variable to automatically
detect impartial atomic support and automatically switch to
`portable-atomic` over the standard library on an as-required basis.
## Testing
- CI
## Notes
To explain the technique employed here, consider getting `Arc` either
from `alloc::sync` _or_ `portable-atomic-util`. First, we can inspect
the `alloc` crate to see that you only have access to `Arc` _if_
`target_has_atomic = "ptr"`. We add a target dependency for this
particular configuration _inverted_:
```toml
[target.'cfg(not(target_has_atomic = "ptr"))'.dependencies]
portable-atomic-util = { version = "0.2.4", default-features = false }
```
This ensures we only have the dependency when it is needed, and it is
entirely excluded from the dependency graph when it is not. Next, we
adjust our configuration flags to instead of checking for `feature =
"portable-atomic"` to instead check for `target_has_atomic = "ptr"`:
```rust
// `alloc` feature flag hidden for brevity
#[cfg(not(target_has_atomic = "ptr"))]
use portable_atomic_util as arc;
#[cfg(target_has_atomic = "ptr")]
use alloc::sync as arc;
pub use arc::{Arc, Weak};
```
The benefits of this technique are three-fold:
1. For platforms without full atomic support, the functionality is
enabled automatically.
2. For platforms with atomic support, the dependency is never included,
even if a feature was enabled using `--all-features` (for example)
3. The `portable-atomic` feature no longer needs to virally spread to
all user-facing crates, it's instead something handled within
`bevy_platform_support` (with some extras where other dependencies also
need their features enabled).
# Objective
- The previous implementation of automatically inserting sync points did
not consider explicitly added sync points. This created additional sync
points. For example:
```
A-B
C-D-E
```
If `A` and `B` needed a sync point, and `D` was an `ApplyDeferred`, an
additional sync point would be generated between `A` and `B`.
```
A-D2-B
C-D -E
```
This can result in the following system ordering:
```
A-D2-(B-C)-D-E
```
Where only `B` and `C` run in parallel. If we could reuse `D` as the
sync point, we would get the following ordering:
```
(A-C)-D-(B-E)
```
Now we have two more opportunities for parallelism!
## Solution
- In the first pass, we:
- Compute the number of sync points before each node
- This was already happening but now we consider `ApplyDeferred` nodes
as creating a sync point.
- Pick an arbitrary explicit `ApplyDeferred` node for each "sync point
index" that we can (some required sync points may be missing!)
- In the second pass, we:
- For each edge, if two nodes have a different number of sync points
before them then there must be a sync point between them.
- Look for an explicit `ApplyDeferred`. If one exists, use it as the
sync point.
- Otherwise, generate a new sync point.
I believe this should also gracefully handle changes to the
`ScheduleGraph`. Since automatically inserted sync points are inserted
as systems, they won't look any different to explicit sync points, so
they are also candidates for "reusing" sync points.
One thing this solution does not handle is "deduping" sync points. If
you add 10 sync points explicitly, there will be at least 10 sync
points. You could keep track of all the sync points at the same
"distance" and then hack apart the graph to dedup those, but that could
be a follow-up step (and it's more complicated since you have to worry
about transferring edges between nodes).
## Testing
- Added a test to test the feature.
- The existing tests from all our crates still pass.
## Showcase
- Automatically inserted sync points can now reuse explicitly inserted
`ApplyDeferred` systems! Previously, Bevy would add new sync points
between systems, ignoring the explicitly added sync points. This would
reduce parallelism of systems in some situations. Now, the parallelism
has been improved!
# Objective
- Closes#12944.
## Solution
- Load `R8G8B8` textures by transcoding to an rgba format since `wgpu`
does not support texture formats with 3 channels.
- Switch to erroring out instead of panicking on an invalid dds file.
---
## Changelog
### Added
- DDS Textures with the `R8G8B8` format are now supported. They require
an additional conversion step, so using `R8G8B8A8` or a similar format
is preferable for texture loading performance.
# Objective
- Fixes#17960
## Solution
- Followed the [edition upgrade
guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html)
## Testing
- CI
---
## Summary of Changes
### Documentation Indentation
When using lists in documentation, proper indentation is now linted for.
This means subsequent lines within the same list item must start at the
same indentation level as the item.
```rust
/* Valid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
/* Invalid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
```
### Implicit `!` to `()` Conversion
`!` (the never return type, returned by `panic!`, etc.) no longer
implicitly converts to `()`. This is particularly painful for systems
with `todo!` or `panic!` statements, as they will no longer be functions
returning `()` (or `Result<()>`), making them invalid systems for
functions like `add_systems`. The ideal fix would be to accept functions
returning `!` (or rather, _not_ returning), but this is blocked on the
[stabilisation of the `!` type
itself](https://doc.rust-lang.org/std/primitive.never.html), which is
not done.
The "simple" fix would be to add an explicit `-> ()` to system
signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`).
However, this is _also_ banned, as there is an existing lint which (IMO,
incorrectly) marks this as an unnecessary annotation.
So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ...
}` closuers into variables and give the variable an explicit type (e.g.,
`fn()`).
```rust
// Valid
let system: fn() = || todo!("Not implemented yet!");
app.add_systems(..., system);
// Invalid
app.add_systems(..., || todo!("Not implemented yet!"));
```
### Temporary Variable Lifetimes
The order in which temporary variables are dropped has changed. The
simple fix here is _usually_ to just assign temporaries to a named
variable before use.
### `gen` is a keyword
We can no longer use the name `gen` as it is reserved for a future
generator syntax. This involved replacing uses of the name `gen` with
`r#gen` (the raw-identifier syntax).
### Formatting has changed
Use statements have had the order of imports changed, causing a
substantial +/-3,000 diff when applied. For now, I have opted-out of
this change by amending `rustfmt.toml`
```toml
style_edition = "2021"
```
This preserves the original formatting for now, reducing the size of
this PR. It would be a simple followup to update this to 2024 and run
`cargo fmt`.
### New `use<>` Opt-Out Syntax
Lifetimes are now implicitly included in RPIT types. There was a handful
of instances where it needed to be added to satisfy the borrow checker,
but there may be more cases where it _should_ be added to avoid
breakages in user code.
### `MyUnitStruct { .. }` is an invalid pattern
Previously, you could match against unit structs (and unit enum
variants) with a `{ .. }` destructuring. This is no longer valid.
### Pretty much every use of `ref` and `mut` are gone
Pattern binding has changed to the point where these terms are largely
unused now. They still serve a purpose, but it is far more niche now.
### `iter::repeat(...).take(...)` is bad
New lint recommends using the more explicit `iter::repeat_n(..., ...)`
instead.
## Migration Guide
The lifetimes of functions using return-position impl-trait (RPIT) are
likely _more_ conservative than they had been previously. If you
encounter lifetime issues with such a function, please create an issue
to investigate the addition of `+ use<...>`.
## Notes
- Check the individual commits for a clearer breakdown for what
_actually_ changed.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
`Eq`/`PartialEq` are currently implemented for `MeshMaterial{2|3}d` only
through the derive macro. Since we don't have perfect derive yet, the
impls are only present for `M: Eq` and `M: PartialEq`. On the other
hand, I want to be able to compare material components for my toy
reactivity project.
## Solution
Switch to manual `Eq`/`PartialEq` impl.
## Testing
Boy I hope this didn't break anything!
# Objective
Fixes#17488
## Solution
The world update logic happened in the the `about_to_wait` winit window
callback, but this is is not correct as (1) the winit documentation
states that the callback should not be used for that purpose and (2) the
callback is not fired when the window is resized or being dragged.
However, that callback was used in #11245 to fix an iOS bug (which
caused the regression). The solution presented here is a workaround
until the event loop code can be re-written.
## Testing
I confirmed that the `eased_motion` example continued to be animated
when dragging or resizing the window.
https://github.com/user-attachments/assets/ffaf0abf-4cd7-479b-83e9-e1850aaf3513
- Remove references to the short-lived `CommandError` type.
- Add a sentence to the explanation of error handlers.
- Clean up spacing/linebreaks.
- Use `where` notation for command-related trait `impl`s to make the big
ones easier to parse.
Fixes#17856.
## Migration Guide
- `EventWriter::send` has been renamed to `EventWriter::write`.
- `EventWriter::send_batch` has been renamed to
`EventWriter::write_batch`.
- `EventWriter::send_default` has been renamed to
`EventWriter::write_default`.
---------
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
- Make transform propagation faster.
## Solution
- Work sharing worker threads
- Parallel tree traversal excluding leaves
- Second cache friendly wide pass over all leaves
- 3-10x faster than main
## Testing
- Tracy
- Caldera hotel is showing 3-7x faster on my M4 Max. Timing for bevy's
existing transform system shifts wildly run to run, so I don't know that
I would advertise a particular number. But this implementation is faster
in a... statistically significant way.

---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
PR #17898 regressed this, causing much of #17970. This commit fixes the
issue by freeing and reallocating materials in the
`MaterialBindGroupAllocator` on change. Note that more efficiency is
possible, but I opted for the simple approach because (1) we should fix
this bug ASAP; (2) I'd like #17965 to land first, because that unlocks
the biggest potential optimization, which is not recreating the bind
group if it isn't necessary to do so.
We might not be able to prepare a material on the first frame we
encounter a mesh using it for various reasons, including that the
material hasn't been loaded yet or that preparing the material is
exceeding the per-frame cap on number of bytes to load. When this
happens, we currently try to find the material in the
`MaterialBindGroupAllocator`, fail, and then fall back to group 0, slot
0, the default `MaterialBindGroupId`, which is obviously incorrect.
Worse, we then fail to dirty the mesh and reextract it when we *do*
finish preparing the material, so the mesh will continue to be rendered
with an incorrect material.
This patch fixes both problems. In `collect_meshes_for_gpu_building`, if
we fail to find a mesh's material in the `MeshBindGroupAllocator`, then
we detect that case, bail out, and add it to a list,
`MeshesToReextractNextFrame`. On subsequent frames, we process all the
meshes in `MeshesToReextractNextFrame` as though they were changed. This
ensures both that we don't render a mesh if its material hasn't been
loaded and that we start rendering the mesh once its material does load.
This was first noticed in the intermittent Pixel Eagle failures in the
`testbed_3d` patch in #17898, although the problem has actually existed
for some time. I believe it just so happened that the changes to the
allocator in that PR caused the problem to appear more commonly than it
did before.
This patch fixes two bugs in the new non-bindless material allocator
that landed in PR #17898:
1. A debug assertion to prevent double frees had been flipped: we
checked to see whether the slot was empty before freeing, while we
should have checked to see whether the slot was full.
2. The non-bindless allocator returned `None` when querying a slab that
hadn't been prepared yet instead of returning a handle to that slab.
This resulted in a 1-frame delay when modifying materials. In the
`animated_material` example, this resulted in the meshes never showing
up at all, because that example changes every material every frame.
Together with #17979, this patch locally fixes the problems with
`animated_material` on macOS that were reported in #17970.
# Objective
Fixes#8615
## Solution
Bevy currently interprets 1x1 dds textures as 1-dimensional. I think it
might be more common for game engines to assume two dimensions in this
ambiguous case. [citation needed]
I reworked the dimension choosing logic to only use 1d if there's a
dimension > 1, and assume 2d otherwise. I kept the assumption that
compressed textures are probably 2d.
## Testing
Modified `sprite.rs` to use `Tex_0012_0.dds` from the linked issue.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fix#17924
## Solution
Use fully qualified syntax (`usize::from` rather than `.into()`).
## Testing
Ran a build for the platform specified in the issue.
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
Fixes#17883
# Objective + Solution
When doing normal scene root entity despawns (which are notably now
recursive), do not despawn instanced entities that are no longer in the
hierarchy.
(I would not classify this as a bug, but rather a behavior change)
## Migration Guide
If you previously relied on scene entities no longer in the hierarchy
being despawned when the scene root is despawned , use
`SceneSpawner::despawn_instance()` instead.
# Objective
Calling `define_label!` in a `no_std` 3rd party crate currently requires
the user to import `Box` themselves due to a non-fully-specified
reference to `Box`.
## Solution
Add a fully specified path for `Box` in the one location necessary, to
match all of the other cases.
Two-phase occlusion culling can be helpful for shadow maps just as it
can for a prepass, in order to reduce vertex and alpha mask fragment
shading overhead. This patch implements occlusion culling for shadow
maps from directional lights, when the `OcclusionCulling` component is
present on the entities containing the lights. Shadow maps from point
lights are deferred to a follow-up patch. Much of this patch involves
expanding the hierarchical Z-buffer to cover shadow maps in addition to
standard view depth buffers.
The `scene_viewer` example has been updated to add `OcclusionCulling` to
the directional light that it creates.
This improved the performance of the rend3 sci-fi test scene when
enabling shadows.
Currently, Bevy's implementation of bindless resources is rather
unusual: every binding in an object that implements `AsBindGroup` (most
commonly, a material) becomes its own separate binding array in the
shader. This is inefficient for two reasons:
1. If multiple materials reference the same texture or other resource,
the reference to that resource will be duplicated many times. This
increases `wgpu` validation overhead.
2. It creates many unused binding array slots. This increases `wgpu` and
driver overhead and makes it easier to hit limits on APIs that `wgpu`
currently imposes tight resource limits on, like Metal.
This PR fixes these issues by switching Bevy to use the standard
approach in GPU-driven renderers, in which resources are de-duplicated
and passed as global arrays, one for each type of resource.
Along the way, this patch introduces per-platform resource limits and
bumps them from 16 resources per binding array to 64 resources per bind
group on Metal and 2048 resources per bind group on other platforms.
(Note that the number of resources per *binding array* isn't the same as
the number of resources per *bind group*; as it currently stands, if all
the PBR features are turned on, Bevy could pack as many as 496 resources
into a single slab.) The limits have been increased because `wgpu` now
has universal support for partially-bound binding arrays, which mean
that we no longer need to fill the binding arrays with fallback
resources on Direct3D 12. The `#[bindless(LIMIT)]` declaration when
deriving `AsBindGroup` can now simply be written `#[bindless]` in order
to have Bevy choose a default limit size for the current platform.
Custom limits are still available with the new
`#[bindless(limit(LIMIT))]` syntax: e.g. `#[bindless(limit(8))]`.
The material bind group allocator has been completely rewritten. Now
there are two allocators: one for bindless materials and one for
non-bindless materials. The new non-bindless material allocator simply
maintains a 1:1 mapping from material to bind group. The new bindless
material allocator maintains a list of slabs and allocates materials
into slabs on a first-fit basis. This unfortunately makes its
performance O(number of resources per object * number of slabs), but the
number of slabs is likely to be low, and it's planned to become even
lower in the future with `wgpu` improvements. Resources are
de-duplicated with in a slab and reference counted. So, for instance, if
multiple materials refer to the same texture, that texture will exist
only once in the appropriate binding array.
To support these new features, this patch adds the concept of a
*bindless descriptor* to the `AsBindGroup` trait. The bindless
descriptor allows the material bind group allocator to probe the layout
of the material, now that an array of `BindGroupLayoutEntry` records is
insufficient to describe the group. The `#[derive(AsBindGroup)]` has
been heavily modified to support the new features. The most important
user-facing change to that macro is that the struct-level `uniform`
attribute, `#[uniform(BINDING_NUMBER, StandardMaterial)]`, now reads
`#[uniform(BINDLESS_INDEX, MATERIAL_UNIFORM_TYPE,
binding_array(BINDING_NUMBER)]`, allowing the material to specify the
binding number for the binding array that holds the uniform data.
To make this patch simpler, I removed support for bindless
`ExtendedMaterial`s, as well as field-level bindless uniform and storage
buffers. I intend to add back support for these as a follow-up. Because
they aren't in any released Bevy version yet, I figured this was OK.
Finally, this patch updates `StandardMaterial` for the new bindless
changes. Generally, code throughout the PBR shaders that looked like
`base_color_texture[slot]` now looks like
`bindless_2d_textures[material_indices[slot].base_color_texture]`.
This patch fixes a system hang that I experienced on the [Caldera test]
when running with `caldera --random-materials --texture-count 100`. The
time per frame is around 19.75 ms, down from 154.2 ms in Bevy 0.14: a
7.8× speedup.
[Caldera test]: https://github.com/DGriffin91/bevy_caldera_scene
Deferred rendering currently doesn't support occlusion culling. This PR
implements it in a straightforward way, mirroring what we already do for
the non-deferred pipeline.
On the rend3 sci-fi base test scene, this resulted in roughly a 2×
speedup when applied on top of my other patches. For that scene, it was
useful to add another option, `--add-light`, which forces the addition
of a shadow-casting light, to the scene viewer, which I included in this
patch.
This commit restructures the multidrawable batch set builder for better
performance in various ways:
* The bin traversal is optimized to make the best use of the CPU cache.
* The inner loop that iterates over the bins, which is the hottest part
of `batch_and_prepare_binned_render_phase`, has been shrunk as small as
possible.
* Where possible, multiple elements are added to or reserved from GPU
buffers as a batch instead of one at a time.
* Methods that LLVM wasn't inlining have been marked `#[inline]` where
doing so would unlock optimizations.
This code has also been refactored to avoid duplication between the
logic for indexed and non-indexed meshes via the introduction of a
`MultidrawableBatchSetPreparer` object.
Together, this improved the `batch_and_prepare_binned_render_phase` time
on Caldera by approximately 2×.
Eventually, we should optimize the batchable-but-not-multidrawable and
unbatchable logic as well, but these meshes are much rarer, so in the
interests of keeping this patch relatively small I opted to leave those
to a follow-up.
# Objective
Fix incorrect mesh culling where objects (particularly directional
shadows) were being incorrectly culled during the early preprocessing
phase. The issue manifested specifically on Apple M1 GPUs but not on
newer devices like the M4. The bug was in the
`view_frustum_intersects_obb` function, where including the w component
(plane distance) in the dot product calculations led to false positive
culling results. This caused objects to be incorrectly culled before
shadow casting could begin.
## Issue Details
The problem of missing shadows is reproducible on Apple M1 GPUs as of
this commit (bisected):
```
00722b8d0 Make indirect drawing opt-out instead of opt-in, enabling multidraw by default. (#16757)
```
and as recent as this commit:
```
c818c9214 Add option to animate materials in many_cubes (#17927)
```
- The frustum culling calculation incorrectly included the w component
(plane distance) when transforming basis vectors
- The relative radius calculation should only consider directional
transformation (xyz), not positional information (w)
- This caused false positive culling specifically on M1 devices likely
due to different device-specific floating-point behavior
- When objects were incorrectly culled, `early_instance_count` never
incremented, leading to missing geometry in the shadow pass
## Testing
- Tested on M1 and M4 devices to verify the fix
- Verified shadows and geometry render correctly on both platforms
- Confirmed the solution matches the existing Rust implementation's
behavior for calculating the relative radius:
c818c92143/crates/bevy_render/src/primitives/mod.rs (L77-L87)
- The fix resolves a mathematical error in the frustum culling
calculation while maintaining correct culling behavior across all
platforms.
---
## Showcase
`c818c9214`
<img width="1284" alt="c818c9214"
src="https://github.com/user-attachments/assets/fe1c7ea9-b13d-422e-b12d-f1cd74475213"
/>
`mate-h/frustum-cull-fix`
<img width="1283" alt="frustum-cull-fix"
src="https://github.com/user-attachments/assets/8a9ccb2a-64b6-4d5e-a17d-ac4798da5b51"
/>
# Objective
Make checked vs unchecked shaders configurable
Fixes#17786
## Solution
Added `ValidateShaders` enum to `Shader` and added
`create_and_validate_shader_module` to `RenderDevice`
## Testing
I tested the shader examples locally and they all worked. I'd like to
write a few tests to verify but am unsure how to start.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
The `check_visibility` system currently follows this algorithm:
1. Store all meshes that were visible last frame in the
`PreviousVisibleMeshes` set.
2. Determine which meshes are visible. For each such visible mesh,
remove it from `PreviousVisibleMeshes`.
3. Mark all meshes that remain in `PreviousVisibleMeshes` as invisible.
This algorithm would be correct if the `check_visibility` were the only
system that marked meshes visible. However, it's not: the shadow-related
systems `check_dir_light_mesh_visibility` and
`check_point_light_mesh_visibility` can as well. This results in the
following sequence of events for meshes that are in a shadow map but
*not* visible from a camera:
A. `check_visibility` runs, finds that no camera contains these meshes,
and marks them hidden, which sets the changed flag.
B. `check_dir_light_mesh_visibility` and/or
`check_point_light_mesh_visibility` run, discover that these meshes
are visible in the shadow map, and marks them as visible, again
setting the `ViewVisibility` changed flag.
C. During the extraction phase, the mesh extraction system sees that
`ViewVisibility` is changed and re-extracts the mesh.
This is inefficient and results in needless work during rendering.
This patch fixes the issue in two ways:
* The `check_dir_light_mesh_visibility` and
`check_point_light_mesh_visibility` systems now remove meshes that they
discover from `PreviousVisibleMeshes`.
* Step (3) above has been moved from `check_visibility` to a separate
system, `mark_newly_hidden_entities_invisible`. This system runs after
all visibility-determining systems, ensuring that
`PreviousVisibleMeshes` contains only those meshes that truly became
invisible on this frame.
This fix dramatically improves the performance of [the Caldera
benchmark], when combined with several other patches I've submitted.
[the Caldera benchmark]:
https://github.com/DGriffin91/bevy_caldera_scene
PR #17688 broke motion vector computation, and therefore motion blur,
because it enabled retention of `MeshInputUniform`s, and
`MeshInputUniform`s contain the indices of the previous frame's
transform and the previous frame's skinned mesh joint matrices. On frame
N, if a `MeshInputUniform` is retained on GPU from the previous frame,
the `previous_input_index` and `previous_skin_index` would refer to the
indices for frame N - 2, not the index for frame N - 1.
This patch fixes the problems. It solves these issues in two different
ways, one for transforms and one for skins:
1. To fix transforms, this patch supplies the *frame index* to the
shader as part of the view uniforms, and specifies which frame index
each mesh's previous transform refers to. So, in the situation described
above, the frame index would be N, the previous frame index would be N -
1, and the `previous_input_frame_number` would be N - 2. The shader can
now detect this situation and infer that the mesh has been retained, and
can therefore conclude that the mesh's transform hasn't changed.
2. To fix skins, this patch replaces the explicit `previous_skin_index`
with an invariant that the index of the joints for the current frame and
the index of the joints for the previous frame are the same. This means
that the `MeshInputUniform` never has to be updated even if the skin is
animated. The downside is that we have to copy joint matrices from the
previous frame's buffer to the current frame's buffer in
`extract_skins`.
The rationale behind (2) is that we currently have no mechanism to
detect when joints that affect a skin have been updated, short of
comparing all the transforms and setting a flag for
`extract_meshes_for_gpu_building` to consume, which would regress
performance as we want `extract_skins` and
`extract_meshes_for_gpu_building` to be able to run in parallel.
To test this change, use `cargo run --example motion_blur`.
Currently, the specialized pipeline cache maps a (view entity, mesh
entity) tuple to the retained pipeline for that entity. This causes two
problems:
1. Using the view entity is incorrect, because the view entity isn't
stable from frame to frame.
2. Switching the view entity to a `RetainedViewEntity`, which is
necessary for correctness, significantly regresses performance of
`specialize_material_meshes` and `specialize_shadows` because of the
loss of the fast `EntityHash`.
This patch fixes both problems by switching to a *two-level* hash table.
The outer level of the table maps each `RetainedViewEntity` to an inner
table, which maps each `MainEntity` to its pipeline ID and change tick.
Because we loop over views first and, within that loop, loop over
entities visible from that view, we hoist the slow lookup of the view
entity out of the inner entity loop.
Additionally, this patch fixes a bug whereby pipeline IDs were leaked
when removing the view. We still have a problem with leaking pipeline
IDs for deleted entities, but that won't be fixed until the specialized
pipeline cache is retained.
This patch improves performance of the [Caldera benchmark] from 7.8×
faster than 0.14 to 9.0× faster than 0.14, when applied on top of the
global binding arrays PR, #17898.
[Caldera benchmark]: https://github.com/DGriffin91/bevy_caldera_scene
Currently, Bevy rebuilds the buffer containing all the transforms for
joints every frame, during the extraction phase. This is inefficient in
cases in which many skins are present in the scene and their joints
don't move, such as the Caldera test scene.
To address this problem, this commit switches skin extraction to use a
set of retained GPU buffers with allocations managed by the offset
allocator. I use fine-grained change detection in order to determine
which skins need updating. Note that the granularity is on the level of
an entire skin, not individual joints. Using the change detection at
that level would yield poor performance in common cases in which an
entire skin is animated at once. Also, this patch yields additional
performance from the fact that changing joint transforms no longer
requires the skinned mesh to be re-extracted.
Note that this optimization can be a double-edged sword. In
`many_foxes`, fine-grained change detection regressed the performance of
`extract_skins` by 3.4x. This is because every joint is updated every
frame in that example, so change detection is pointless and is pure
overhead. Because the `many_foxes` workload is actually representative
of animated scenes, this patch includes a heuristic that disables
fine-grained change detection if the number of transformed entities in
the frame exceeds a certain fraction of the total number of joints.
Currently, this threshold is set to 25%. Note that this is a crude
heuristic, because it doesn't distinguish between the number of
transformed *joints* and the number of transformed *entities*; however,
it should be good enough to yield the optimum code path most of the
time.
Finally, this patch fixes a bug whereby skinned meshes are actually
being incorrectly retained if the buffer offsets of the joints of those
skinned meshes changes from frame to frame. To fix this without
retaining skins, we would have to re-extract every skinned mesh every
frame. Doing this was a significant regression on Caldera. With this PR,
by contrast, mesh joints stay at the same buffer offset, so we don't
have to update the `MeshInputUniform` containing the buffer offset every
frame. This also makes PR #17717 easier to implement, because that PR
uses the buffer offset from the previous frame, and the logic for
calculating that is simplified if the previous frame's buffer offset is
guaranteed to be identical to that of the current frame.
On Caldera, this patch reduces the time spent in `extract_skins` from
1.79 ms to near zero. On `many_foxes`, this patch regresses the
performance of `extract_skins` by approximately 10%-25%, depending on
the number of foxes. This has only a small impact on frame rate.
The GPU can fill out many of the fields in `IndirectParametersMetadata`
using information it already has:
* `early_instance_count` and `late_instance_count` are always
initialized to zero.
* `mesh_index` is already present in the work item buffer as the
`input_index` of the first work item in each batch.
This patch moves these fields to a separate buffer, the *GPU indirect
parameters metadata* buffer. That way, it avoids having to write them on
CPU during `batch_and_prepare_binned_render_phase`. This effectively
reduces the number of bits that that function must write per mesh from
160 to 64 (in addition to the 64 bits per mesh *instance*).
Additionally, this PR refactors `UntypedPhaseIndirectParametersBuffers`
to add another layer, `MeshClassIndirectParametersBuffers`, which allows
abstracting over the buffers corresponding indexed and non-indexed
meshes. This patch doesn't make much use of this abstraction, but
forthcoming patches will, and it's overall a cleaner approach.
This didn't seem to have much of an effect by itself on
`batch_and_prepare_binned_render_phase` time, but subsequent PRs
dependent on this PR yield roughly a 2× speedup.
# Objective
- #17787 removed sweeping of binned render phases from 2D by accident
due to them not using the `BinnedRenderPhasePlugin`.
- Fixes#17885
## Solution
- Schedule `sweep_old_entities` in `QueueSweep` like
`BinnedRenderPhasePlugin` does, but for 2D where that plugin is not
used.
## Testing
Tested with the modified `shader_defs` example in #17885 .
Fixes#17290.
<details>
<summary>Compilation errors before fix</summary>
`cargo clippy --tests --all-features --package bevy_image`:
```rust
error[E0061]: this function takes 7 arguments but 6 arguments were supplied
--> crates/bevy_core_pipeline/src/tonemapping/mod.rs:451:5
|
451 | Image::from_buffer(
| ^^^^^^^^^^^^^^^^^^
...
454 | bytes,
| ----- argument #1 of type `std::string::String` is missing
|
note: associated function defined here
--> /Users/josiahnelson/Desktop/Programming/Rust/bevy/crates/bevy_image/src/image.rs:930:12
|
930 | pub fn from_buffer(
| ^^^^^^^^^^^
help: provide the argument
|
451 | Image::from_buffer(/* std::string::String */, bytes, image_type, CompressedImageFormats::NONE, false, image_sampler, RenderAssetUsages::RENDER_WORLD)
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
`cargo clippy --tests --all-features --package bevy_gltf`:
```rust
error[E0560]: struct `bevy_pbr::StandardMaterial` has no field named `specular_channel`
--> crates/bevy_gltf/src/loader.rs:1343:13
|
1343 | specular_channel: specular.specular_channel,
| ^^^^^^^^^^^^^^^^ `bevy_pbr::StandardMaterial` does not have this field
|
= note: available fields are: `emissive_exposure_weight`, `diffuse_transmission`, `diffuse_transmission_channel`, `diffuse_transmission_texture`, `flip_normal_map_y` ... and 9 others
error[E0560]: struct `bevy_pbr::StandardMaterial` has no field named `specular_texture`
--> crates/bevy_gltf/src/loader.rs:1345:13
|
1345 | specular_texture: specular.specular_texture,
| ^^^^^^^^^^^^^^^^ `bevy_pbr::StandardMaterial` does not have this field
|
= note: available fields are: `emissive_exposure_weight`, `diffuse_transmission`, `diffuse_transmission_channel`, `diffuse_transmission_texture`, `flip_normal_map_y` ... and 9 others
error[E0560]: struct `bevy_pbr::StandardMaterial` has no field named `specular_tint_channel`
--> crates/bevy_gltf/src/loader.rs:1351:13
|
1351 | specular_tint_channel: specular.specular_color_channel,
| ^^^^^^^^^^^^^^^^^^^^^ `bevy_pbr::StandardMaterial` does not have this field
|
= note: available fields are: `emissive_exposure_weight`, `diffuse_transmission`, `diffuse_transmission_channel`, `diffuse_transmission_texture`, `flip_normal_map_y` ... and 9 others
error[E0560]: struct `bevy_pbr::StandardMaterial` has no field named `specular_tint_texture`
--> crates/bevy_gltf/src/loader.rs:1353:13
|
1353 | specular_tint_texture: specular.specular_color_texture,
| ^^^^^^^^^^^^^^^^^^^^^ `bevy_pbr::StandardMaterial` does not have this field
|
= note: available fields are: `emissive_exposure_weight`, `diffuse_transmission`, `diffuse_transmission_channel`, `diffuse_transmission_texture`, `flip_normal_map_y` ... and 9 others
```
</details>
# Objective
Fixes#17022
## Solution
Only enable `bevy_gltf/dds` if `bevy_gltf` is already enabled.
## Testing
Tested with empty project
```toml
[dependencies]
bevy = { version = "0.16.0-dev", path = "../bevy", default-features = false, features = [
"dds",
] }
```
### Before
```
cargo tree --depth 1 -i bevy_gltf
bevy_gltf v0.16.0-dev (/Users/robparrett/src/bevy/crates/bevy_gltf)
└── bevy_internal v0.16.0-dev (/Users/robparrett/src/bevy/crates/bevy_internal)
```
### After
```
cargo tree --depth 1 -i bevy_gltf
warning: nothing to print.
To find dependencies that require specific target platforms, try to use option `--target all` first, and then narrow your search scope accordingly.
```
# Context
Renaming `Parent` to `ChildOf` in #17247 has been contentious. While
those users concerns are valid (especially around legibility of code
IMO!), @cart [has
decided](https://discord.com/channels/691052431525675048/749335865876021248/1340434322833932430)
to stick with the new name.
> In general this conversation is unsurprising to me, as it played out
essentially the same way when I asked for opinions in my PR. There are
strong opinions on both sides. Everyone is right in their own way.
>
> I chose ChildOf for the following reasons:
>
> 1. I think it derives naturally from the system we have built, the
concepts we have chosen, and how we generally name the types that
implement a trait in Rust. This is the name of the type implementing
Relationship. We are adding that Relationship component to a given
entity (whether it "is" the relationship or "has" the relationship is
kind of immaterial ... we are naming the relationship that it "is" or
"has"). What is the name of the relationship that a child has to its
parent? It is a "child" of the parent of course!
> 2. In general the non-parent/child relationships I've seen in the wild
generally benefit from (or need to) use the naming convention in (1)
(aka calling the Relationship the name of the relationship the entity
has). Many relationships don't have an equivalent to the Parent/Child
name concept.
> 3. I do think we could get away with using (1) for pretty much
everything else and special casing Parent/Children. But by embracing the
naming convention, we help establish that this is in fact a pattern, and
we help prime people to think about these things in a consistent way.
Consistency and predictability is a generally desirable property. And
for something as divisive and polarizing as relationship naming, I think
drawing a hard line in the sand is to the benefit of the community as a
whole.
> 4. I believe the fact that we dont see as much of the XOf naming style
elsewhere is to our benefit. When people see things in that style, they
are primed to think of them as relationships (after some exposure to
Bevy and the ecosystem). I consider this a useful hint.
> 5. Most of the practical confusion from using ChildOf seems to be from
calling the value of the target field we read from the relationship
child_of. The name of the target field should be parent (we could even
consider renaming child_of.0 to child_of.parent for clarity). I suspect
that existing Bevy users renaming their existing code will feel the most
friction here, as this requires a reframing. Imo it is natural and
expected to receive pushback from these users hitting this case.
## Objective
The new documentation doesn't do a particularly good job at quickly
explaining the meaning of each component or how to work with them;
making a tricky migration more painful and slowing down new users as
they learn about some of the most fundamental types in Bevy.
## Solution
1. Clearly explain what each component does in the very first line,
assuming no background knowledge. This is the first relationships that
99% of users will encounter, so explaining that they are relationships
is unhelpful as an introduction.
2. Add doc aliases for the rejected `IsParent`/`IsChild`/`Parent` names,
to improve autocomplete and doc searching.
3. Do some assorted docs cleanup while we're here.
---------
Co-authored-by: Eagster <79881080+ElliottjPierce@users.noreply.github.com>
## Objective
There's no general error for when an entity doesn't exist, and some
methods are going to need one when they get Resultified. The closest
thing is `EntityFetchError`, but that error has a slightly more specific
purpose.
## Solution
- Added `EntityDoesNotExistError`.
- Contains `Entity` and `EntityDoesNotExistDetails`.
- Changed `EntityFetchError` and `QueryEntityError`:
- Changed `NoSuchEntity` variant to wrap `EntityDoesNotExistError` and
renamed the variant to `EntityDoesNotExist`.
- Renamed `EntityFetchError` to `EntityMutableFetchError` to make its
purpose clearer.
- Renamed `TryDespawnError` to `EntityDespawnError` to make it more
general.
- Changed `World::inspect_entity` to return `Result<[ok],
EntityDoesNotExistError>` instead of panicking.
- Changed `World::get_entity` and `WorldEntityFetch::fetch_ref` to
return `Result<[ok], EntityDoesNotExistError>` instead of `Result<[ok],
Entity>`.
- Changed `UnsafeWorldCell::get_entity` to return
`Result<UnsafeEntityCell, EntityDoesNotExistError>` instead of
`Option<UnsafeEntityCell>`.
## Migration Guide
- `World::inspect_entity` now returns `Result<impl Iterator<Item =
&ComponentInfo>, EntityDoesNotExistError>` instead of `impl
Iterator<Item = &ComponentInfo>`.
- `World::get_entity` now returns `EntityDoesNotExistError` as an error
instead of `Entity`. You can still access the entity's ID through the
error's `entity` field.
- `UnsafeWorldCell::get_entity` now returns `Result<UnsafeEntityCell,
EntityDoesNotExistError>` instead of `Option<UnsafeEntityCell>`.
Appending to these vectors is performance-critical in
`batch_and_prepare_binned_render_phase`, so `RawBufferVec`, which
doesn't have the overhead of `encase`, is more appropriate.
The `collect_buffers_for_phase` system tries to reuse these buffers, but
its efforts are stymied by the fact that
`clear_batched_gpu_instance_buffers` clears the containing hash table
and therefore frees the buffers. This patch makes
`clear_batched_gpu_instance_buffers` stop doing that so that the
allocations can be reused.
# Objective
Simplify the API surface by removing duplicated functionality between
`Query` and `QueryState`.
Reduce the amount of `unsafe` code required in `QueryState`.
This is a follow-up to #15858.
## Solution
Move implementations of `Query` methods from `QueryState` to `Query`.
Instead of the original methods being on `QueryState`, with `Query`
methods calling them by passing the individual parameters, the original
methods are now on `Query`, with `QueryState` methods calling them by
constructing a `Query`.
This also adds two `_inner` methods that were missed in #15858:
`iter_many_unique_inner` and `single_inner`.
One goal here is to be able to deprecate and eventually remove many of
the methods on `QueryState`, reducing the overall API surface. (I
expected to do that in this PR, but this change was large enough on its
own!) Now that the `QueryState` methods each consist of a simple
expression like `self.query(world).get_inner(entity)`, a future PR can
deprecate some or all of them with simple migration instructions.
The other goal is to reduce the amount of `unsafe` code. The current
implementation of a read-only method like `QueryState::get` directly
calls the `unsafe fn get_unchecked_manual` and needs to repeat the proof
that `&World` has enough access. With this change, `QueryState::get` is
entirely safe code, with the proof that `&World` has enough access done
by the `query()` method and shared across all read-only operations.
## Future Work
The next step will be to mark the `QueryState` methods as
`#[deprecated]` and migrate callers to the methods on `Query`.
# Objective
Support accessing resources using reflection when using
`FilteredResources` in a dynamic system. This is similar to how
components can be queried using reflection when using
`FilteredEntityRef|Mut`.
## Solution
Change `ReflectResource` from taking `&World` and `&mut World` to taking
`impl Into<FilteredResources>` and `impl Into<FilteredResourcesMut>`,
similar to how `ReflectComponent` takes `impl Into<FilteredEntityRef>`
and `impl Into<FilteredEntityMut>`. There are `From` impls that ensure
code passing `&World` and `&mut World` continues to work as before.
## Migration Guide
If you are manually creating a `ReflectComponentFns` struct, the
`reflect` function now takes `FilteredResources` instead `&World`, and
there is a new `reflect_mut` function that takes `FilteredResourcesMut`.
# Objective
Add reference to reported position space in picking backend docs.
Fixes#17844
## Solution
Add explanatory docs to the implementation notes of each picking
backend.
## Testing
`cargo r -p ci -- doc-check` & `cargo r -p ci -- lints`
# Objective
It is impossible to register a type with `TypeRegistry::register` if the
type is unnameable (in the current scope).
## Solution
Add `TypeRegistry::register_by_val` which mirrors std's `size_of_val`
and friends.
## Testing
There's a doc test (unrelated but there seem to be some pre-existing
broken doc links in `bevy_reflect`).
There was nonsense code in `batch_and_prepare_sorted_render_phase` that
created temporary buffers to add objects to instead of using the correct
ones. I think this was debug code. This commit removes that code in
favor of writing to the actual buffers.
Closes#17846.
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
`bevy_assets` has long been unapproachable for contributors and users.
More and better documentation would help that.
We're gradually moving towards globally denying missing docs (#3492)!
However, writing all of the hundreds of missing doc strings in a single
go will be miserable to review.
## Solution
Remove the allow for missing docs temporarily, and then pick some easy
missing doc warnings largely at random to tackle.
Stop when the change set is starting to feel intimidating.
The `output_index` field is only used in direct mode, and the
`indirect_parameters_index` field is only used in indirect mode.
Consequently, we can combine them into a single field, reducing the size
of `PreprocessWorkItem`, which
`batch_and_prepare_{binned,sorted}_render_phase` must construct every
frame for every mesh instance, from 96 bits to 64 bits.
# Objective
Continuation of #16547.
We do not yet have parallel versions of `par_iter_many` and
`par_iter_many_unique`. It is currently very painful to try and use
parallel iteration over entity lists. Even if a list is not long, each
operation might still be very expensive, and worth parallelizing.
Plus, it has been requested several times!
## Solution
Once again, we implement what we lack!
These parallel iterators collect their input entity list into a
`Vec`/`UniqueEntityVec`, then chunk that over the available threads,
inspired by the original `par_iter`.
Since no order guarantee is given to the caller, we could sort the input
list according to `EntityLocation`, but that would likely only be worth
it for very large entity lists.
There is some duplication which could likely be improved, but I'd like
to leave that for a follow-up.
## Testing
The doc tests on `for_each_init` of `QueryParManyIter` and
`QueryParManyUniqueIter`.
# Objective
While surveying the state of documentation for bevy_assets, I noticed a
few minor issues.
## Solution
Revise the docs to focus on clear explanations of core ideas and
cross-linking related objects.
# Objective
Update typos, fix new typos.
1.29.6 was just released to fix an
[issue](https://github.com/crate-ci/typos/issues/1228) where January's
corrections were not included in the binaries for the last release.
Reminder: typos can be tossed in the monthly [non-critical corrections
issue](https://github.com/crate-ci/typos/issues/1221).
## Solution
I chose to allow `implementors`, because a good argument seems to be
being made [here](https://github.com/crate-ci/typos/issues/1226) and
there is now a PR to address that.
## Discussion
Should I exclude `bevy_mikktspace`?
At one point I think we had an informal policy of "don't mess with
mikktspace until https://github.com/bevyengine/bevy/pull/9050 is merged"
but it doesn't seem like that is likely to be merged any time soon.
I think these particular corrections in mikktspace are fine because
- The same typo mistake seems to have been fixed in that PR
- The entire file containing these corrections was deleted in that PR
## Typo of the Month
correspindong -> corresponding
# Objective
Updates the now inaccurate position docs
Fixes#17832
## Solution
From
`The position of the intersection in the world, if the data is available
from the backend.`
To
`The position reported by the backend, if the data is available.
Position data may be in any space (e.g. World space, Screen space, Local
space), specified by the backend providing it.`
## Testing
uhh reading :)
Currently, invocations of `batch_and_prepare_binned_render_phase` and
`batch_and_prepare_sorted_render_phase` can't run in parallel because
they write to scene-global GPU buffers. After PR #17698,
`batch_and_prepare_binned_render_phase` started accounting for the
lion's share of the CPU time, causing us to be strongly CPU bound on
scenes like Caldera when occlusion culling was on (because of the
overhead of batching for the Z-prepass). Although I eventually plan to
optimize `batch_and_prepare_binned_render_phase`, we can obtain
significant wins now by parallelizing that system across phases.
This commit splits all GPU buffers that
`batch_and_prepare_binned_render_phase` and
`batch_and_prepare_sorted_render_phase` touches into separate buffers
for each phase so that the scheduler will run those phases in parallel.
At the end of batch preparation, we gather the render phases up into a
single resource with a new *collection* phase. Because we already run
mesh preprocessing separately for each phase in order to make occlusion
culling work, this is actually a cleaner separation. For example, mesh
output indices (the unique ID that identifies each mesh instance on GPU)
are now guaranteed to be sequential starting from 0, which will simplify
the forthcoming work to remove them in favor of the compute dispatch ID.
On Caldera, this brings the frame time down to approximately 9.1 ms with
occlusion culling on.

# Objective
Fix unsoundness introduced by #15858. `QueryLens::query()` would hand
out a `Query` with the full `'w` lifetime, and the new `_inner` methods
would let the results outlive the `Query`. This could be used to create
aliasing mutable references, like
```rust
fn bad<'w>(mut lens: QueryLens<'w, EntityMut>, entity: Entity) {
let one: EntityMut<'w> = lens.query().get_inner(entity).unwrap();
let two: EntityMut<'w> = lens.query().get_inner(entity).unwrap();
assert!(one.entity() == two.entity());
}
```
Fixes#17693
## Solution
Restrict the `'world` lifetime in the `Query` returned by
`QueryLens::query()` to `'_`, the lifetime of the borrow of the
`QueryLens`.
The model here is that `Query<'w, 's, D, F>` and `QueryLens<'w, D, F>`
have permission to access their components for the lifetime `'w`. So
going from `&'a mut QueryLens<'w>` to `Query<'w, 'a>` would borrow the
permission only for the `'a` lifetime, but incorrectly give it out for
the full `'w` lifetime.
To handle any cases where users were calling `get_inner()` or
`iter_inner()` on the `Query` and expecting the full `'w` lifetime, we
introduce a new `QueryLens::query_inner()` method. This is only valid
for `ReadOnlyQueryData`, so it may safely hand out a copy of the
permission for the full `'w` lifetime. Since `get_inner()` and
`iter_inner()` were only valid on `ReadOnlyQueryData` prior to #15858,
that should cover any uses that relied on the longer lifetime.
## Migration Guide
Users of `QueryLens::query()` who were calling `get_inner()` or
`iter_inner()` will need to replace the call with
`QueryLens::query_inner()`.
Conceptually, bins are ordered hash maps. We currently implement these
as a list of keys with an associated hash map. But we already have a
data type that implements ordered hash maps directly: `IndexMap`. This
patch switches Bevy to use `IndexMap`s for bins. Because we're memory
bound, this doesn't affect performance much, but it is cleaner.
# Objective
Related to #17784. The ticket is actually about just getting rid of
`Entity{Ref,Mut}Except` in favor of `FilteredEntity{Ref,Mut}`, but I got
told the unification of Entity types is a bigger endeavor that has been
going on for a while now (as the "Pointing Fingers" working group) and I
should just add the functions I actually need in the meantime.
## Solution
This PR adds all of the functions necessary to access components by
TypeId or ComponentId instead of static types.
## Testing
> Did you test these changes? If so, how?
Haven't tested it yet, but the changes are mostly copy/paste from other
implementations in the same file, since there is a lot of duplicated
functionality there.
## Not a Migration Guide
There shouldn't be any breaking changes, it's just a few new functions
on existing types.
I had to shuffle around the lifetimes in `From<&EntityMutExcept<'a, B>>
for EntityRefExcept<'a, B>` (originally it was `From<&'a
EntityMutExcept<'_, B>> for EntityRefExcept<'_, B>`) to make the borrow
checker happy, but I don't think that this should have an impact on user
code (correct me if I'm wrong).
* Use texture atomics rather than buffer atomics for the visbuffer
(haven't tested perf on a raster-heavy scene yet)
* Unfortunately to clear the visbuffer we now need a compute pass to
clear it. Using wgpu's clear_texture function internally uses a buffer
-> image copy that's insanely expensive. Ideally it should be using
vkCmdClearColorImage, which I've opened an issue for
https://github.com/gfx-rs/wgpu/issues/7090. For now we'll have to stick
with a custom compute pass and all the extra code that brings.
* Faster resolve depth pass by discarding 0 depth pixels instead of
redundantly writing zero (2x faster for big depth textures like shadow
views)
# Objective
- Wgpu has some expensive code it injects into shaders to avoid the
possibility of things like infinite loops. Generally our shaders are
written by users who won't do this, so it just makes our shaders perform
worse.
## Solution
- Turn off the checks.
- We could try to conditionally keep them, but that complicates the code
and 99.9% of users won't want this.
## Migration Guide
- Bevy no longer turns on wgpu's runtime safety checks
https://docs.rs/wgpu/latest/wgpu/struct.ShaderRuntimeChecks.html. If you
were using Bevy with untrusted shaders, please file an issue.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Continuation of #17589 and #16547.
Slices have several methods that return iterators which themselves yield
slices, which we have not yet implemented.
An example use is `par_iter_many` style logic.
## Solution
Their implementation is rather straightforward, we simply delegate all
impls to `[T]`.
The resulting iterator types need their own wrappers in the form of
`UniqueEntitySliceIter` and `UniqueEntitySliceIterMut`.
We also add three free functions that cast slices of entity slices to
slices of `UniqueEntitySlice`.
These three should be sufficient, though infinite nesting is achievable
with a trait (like `TrustedEntityBorrow` works over infinite reference
nesting), should the need ever arise.
## Objective
Get rid of a redundant Cargo feature flag.
## Solution
Use the built-in `target_abi = "sim"` instead of a custom Cargo feature
flag, which is set for the iOS (and visionOS and tvOS) simulator. This
has been stable since Rust 1.78.
In the future, some of this may become redundant if Wgpu implements
proper supper for the iOS Simulator:
https://github.com/gfx-rs/wgpu/issues/7057
CC @mockersf who implemented [the original
fix](https://github.com/bevyengine/bevy/pull/10178).
## Testing
- Open mobile example in Xcode.
- Launch the simulator.
- See that no errors are emitted.
- Remove the code cfg-guarded behind `target_abi = "sim"`.
- See that an error now happens.
(I haven't actually performed these steps on the latest `main`, because
I'm hitting an unrelated error (EDIT: It was
https://github.com/bevyengine/bevy/pull/17637). But tested it on
0.15.0).
---
## Migration Guide
> If you're using a project that builds upon the mobile example, remove
the `ios_simulator` feature from your `Cargo.toml` (Bevy now handles
this internally).
Currently, we look up each `MeshInputUniform` index in a hash table that
maps the main entity ID to the index every frame. This is inefficient,
cache unfriendly, and unnecessary, as the `MeshInputUniform` index for
an entity remains the same from frame to frame (even if the input
uniform changes). This commit changes the `IndexSet` in the `RenderBin`
to an `IndexMap` that maps the `MainEntity` to `MeshInputUniformIndex`
(a new type that this patch adds for more type safety).
On Caldera with parallel `batch_and_prepare_binned_render_phase`, this
patch improves that function from 3.18 ms to 2.42 ms, a 31% speedup.
Currently, when a mesh slab overflows, we recreate the allocator and
reinsert all the meshes that were in it in an arbitrary order. This can
result in the meshes moving around. Before `MeshInputUniform`s were
retained, this was slow but harmless, because the `MeshInputUniform`
that contained the positions of the vertex and index data in the slab
would be recreated every frame. However, with mesh retention, there's no
guarantee that the `MeshInputUniform`, which could be cached from the
previous frame, will reflect the new position of the mesh data within
the buffer if that buffer happened to grow. This manifested itself as
seeming mesh data corruption when adding many meshes dynamically to the
scene.
There are three possible ways that I could have fixed this that I can
see:
1. Invalidate and rebuild all the `MeshInputUniform`s belonging to all
meshes in a slab when that mesh grows.
2. Introduce a second layer of indirection so that the
`MeshInputUniform` points to a *mesh allocation table* that contains the
current locations of the data of each mesh.
3. Avoid moving meshes when reallocating the buffer.
To be efficient, option (1) would require scanning meshes to see if
their positions changed, a la
`mark_meshes_as_changed_if_their_materials_changed`. Option (2) would
add more runtime indirection and would require additional bookkeeping on
the part of the allocator.
Therefore, this PR chooses option (3), which was remarkably simple to
implement. The key is that the offset allocator happens to allocate
addresses from low addresses to high addresses. So all we have to do is
to *conceptually* allocate the full 512 MiB mesh slab as far as the
offset allocator is concerned, and grow the underlying backing store
from 1 MiB to 512 MiB as needed. In other words, the allocator now
allocates *virtual* GPU memory, and the actual backing slab resizes to
fit the virtual memory. This ensures that the location of mesh data
remains constant for the lifetime of the mesh asset, and we can remove
the code that reinserts meshes one by one when the slab grows in favor
of a single buffer copy.
Closes#17766.
# Objective
- Fixes#17797
## Solution
- `mesh` in `bevy_pbr::mesh_bindings` is behind a `ifndef
MESHLET_MESH_MATERIAL_PASS`. also gate `get_tag` which uses this `mesh`
## Testing
- Run the meshlet example
# Objective
- In #17743, attention was raised to the fact that we supported an
unusual kind of step easing function. The author of the fix kindly
provided some links to standards used in CSS. It would be desirable to
support generally agreed upon standards so this PR here tries to
implement an extra configuration option of the step easing function
- Resolve#17744
## Solution
- Introduce `StepConfig`
- `StepConfig` can configure both the number of steps and the jumping
behavior of the function
- `StepConfig` replaces the raw `usize` parameter of the
`EasingFunction::Steps(usize)` construct.
- `StepConfig`s default jumping behavior is `end`, so in that way it
follows #17743
## Testing
- I added a new test per `JumpAt` jumping behavior. These tests
replicate the visuals that can be found at
https://developer.mozilla.org/en-US/docs/Web/CSS/easing-function/steps#description
## Migration Guide
- `EasingFunction::Steps` now uses a `StepConfig` instead of a raw
`usize`. You can replicate the previous behavior by replaceing
`EasingFunction::Steps(10)` with
`EasingFunction::Steps(StepConfig::new(10))`.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
## Objective
There's no need for the `span_index` and `color` variables in
`extract_text_shadows` and `extract_text_sections` and we can remove one
of the span index comparisons since text colors are only set per
section.
## Testing
<img width="454" alt="trace"
src="https://github.com/user-attachments/assets/3109d1df-0817-46c2-9889-0459ac93a42c"
/>
This commit builds on top of the work done in #16589 and #17051, by
adding support for fallible observer systems.
As with the previous work, the actual results of the observer system are
suppressed for now, but the intention is to provide a way to handle
errors in a global way.
Until then, you can use a `PipeSystem` to manually handle results.
---------
Signed-off-by: Jean Mertz <git@jeanmertz.com>
## What problem does this solve or what need does it fill?
There are some situations
(https://github.com/bevyengine/bevy/issues/13735) where the ticks that
are present inside `Ref` are incorrect, for example if `Ref` is created
outside of a `SystemParam`.
I still want to use `Ref` because it has convenient `is_added` and
`is_changed` methods.
My current solution is to build my own `Ref` by copy-pasting most the
bevy code to do that via something like
```rust
/// This method is necessary because there is no easy way to
pub(crate) fn get_ref<C: Component>(
world: &World,
entity: Entity,
last_run: Tick,
this_run: Tick,
) -> Ref<C> {
unsafe {
let component_id = world
.components()
.get_id(TypeId::of::<C>())
.unwrap_unchecked();
let world = world.as_unsafe_world_cell_readonly();
let entity_cell = world.get_entity(entity).unwrap_unchecked();
get_component_and_ticks(
world,
component_id,
C::STORAGE_TYPE,
entity,
entity_cell.location(),
)
.map(|(value, cells, _caller)| {
Ref::new(
value.deref::<C>(),
cells.added.deref(),
cells.changed.deref(),
last_run,
this_run,
#[cfg(feature = "track_location")]
_caller.deref(),
)
})
.unwrap_unchecked()
}
}
// Utility function to return
#[inline]
unsafe fn get_component_and_ticks(
world: UnsafeWorldCell<'_>,
component_id: ComponentId,
storage_type: StorageType,
entity: Entity,
location: EntityLocation,
) -> Option<(Ptr<'_>, TickCells<'_>, MaybeUnsafeCellLocation<'_>)> {
match storage_type {
StorageType::Table => {
let table = unsafe { world.storages().tables.get(location.table_id) }?;
// SAFETY: archetypes only store valid table_rows and caller ensure aliasing rules
Some((
table.get_component(component_id, location.table_row)?,
TickCells {
added: table
.get_added_tick(component_id, location.table_row)
.unwrap_unchecked(),
changed: table
.get_changed_tick(component_id, location.table_row)
.unwrap_unchecked(),
},
#[cfg(feature = "track_location")]
table
.get_changed_by(component_id, location.table_row)
.unwrap_unchecked(),
#[cfg(not(feature = "track_location"))]
(),
))
}
StorageType::SparseSet => {
let storage = unsafe { world.storages() }.sparse_sets.get(component_id)?;
storage.get_with_ticks(entity)
}
}
}
```
It would be very convenient if instead bevy exposed a way to create a
`Ref` object with custom `last_run` and `this_run` ticks.
This PR does this by exposing a function to overwrite the `last_run` and
`this_run` ticks.
(Same with `Mut`)
I am ok with marking the method unsafe or risky if it's deemed to risky
for end-users.
# Objective
Add position reporting to `HitData` sent from the UI picking backend.
## Solution
Add the computed normalized relative cursor position to `hit_data`
alongside the `Entity`.
The position reported in `HitData` is normalized relative to the node,
with `(0.,0.,0.)` at the top left and `(1., 1., 0.)` in the bottom
right. Coordinates are relative to the entire node, not just the visible
region.
`HitData` needs a `Vec3` so I just extended with 0.0. I considered
inserting the `depth` here but thought it would be redundant.
I also considered putting the screen space position in the `normal`
field of `HitData`, but that would require renaming of the field or a
separate data structure.
## Testing
Tested with mouse on X11 with entities that have `Node` components.
---
## Showcase
```rs
// Get click position relative to node
fn hit_position(trigger: Trigger<Pointer<Click>>) {
let hit_pos = trigger.event.hit.position.expect("no position");
info!("{}", hit_pos);
}
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
You can now configure error handlers for fallible systems. These can be
configured on several levels:
- Globally via `App::set_systems_error_handler`
- Per-schedule via `Schedule::set_error_handler`
- Per-system via a piped system (this is existing functionality)
The default handler of panicking on error keeps the same behavior as
before this commit.
The "fallible_systems" example demonstrates the new functionality.
This builds on top of #17731, #16589, #17051.
---------
Signed-off-by: Jean Mertz <git@jeanmertz.com>
This is a follow up fix for #17330 and fixes#17780.
There was a logic error in the ambiguity detection of
`cargo-manifest-proc-macros`.
`cargo-manifest-proc-macros` now has a test for this case to prevent the
issue in the future.
I also opted to hard fail if the `cargo-manifest-proc-macros` crate
fails. That way the error is more obvious and easier to fix and
diagnose.
## Testing
- The reproducer:
https://github.com/bevyengine/bevy_editor_prototypes/pull/178 works for
me using these fixes.
# Objective
Currently, default query filters, as added in #13120 / #17514 are
hardcoded to only use a single query filter.
This is limiting, as multiple distinct disabling components can serve
important distinct roles. I ran into this limitation when experimenting
with a workflow for prefabs, which don't represent the same state as "an
entity which is temporarily nonfunctional".
## Solution
1. Change `DefaultQueryFilters` to store a SmallVec of ComponentId,
rather than an Option.
2. Expose methods on `DefaultQueryFilters`, `World` and `App` to
actually configure this.
3. While we're here, improve the docs, write some tests, make use of
FromWorld and make some method names more descriptive.
## Follow-up
I'm not convinced that supporting sparse set disabling components is
useful, given the hit to iteration performance and runtime checks
incurred. That's disjoint from this PR though, so I'm not doing it here.
The existing warnings are fine for now.
## Testing
I've added both a doc test and an mid-level unit test to verify that
this works!
# Objective
Allow quick jump to definition of types of GlTFs labeled assets.
## Solution
Add links to the types refered on the docs of `GltfAssetLabel`
## Testing
Ran `cargo run -p ci`
# Objective
Since previously we only had the alpha channel available, we stored the
mean of the transmittance in the aerial view lut, resulting in a grayer
fog than should be expected.
## Solution
- Calculate transmittance to scene in `render_sky` with two samples from
the transmittance lut
- use dual-source blending to effectively have per-component alpha
blending
Currently, we *sweep*, or remove entities from bins when those entities
became invisible or changed phases, during `queue_material_meshes` and
similar phases. This, however, is wrong, because `queue_material_meshes`
executes once per material type, not once per phase. This could result
in sweeping bins multiple times per phase, which can corrupt the bins.
This commit fixes the issue by moving sweeping to a separate system that
runs after queuing.
This manifested itself as entities appearing and disappearing seemingly
at random.
Closes#17759.
---------
Co-authored-by: Robert Swain <robert.swain@gmail.com>
# Objective
Because of mesh preprocessing, users cannot rely on
`@builtin(instance_index)` in order to reference external data, as the
instance index is not stable, either from frame to frame or relative to
the total spawn order of mesh instances.
## Solution
Add a user supplied mesh index that can be used for referencing external
data when drawing instanced meshes.
Closes#13373
## Testing
Benchmarked `many_cubes` showing no difference in total frame time.
## Showcase
https://github.com/user-attachments/assets/80620147-aafc-4d9d-a8ee-e2149f7c8f3b
---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- Expand the documentation for `EasingCurve`.
- I suspect this might have avoided the confusion in
https://github.com/bevyengine/bevy/pull/17711.
- Also add a shortcut for simple cases.
## Solution
- Added various examples and extra context.
- Implemented `Curve<T>` for `EaseFunction`.
- This means `EasingCurve::new(0.0, 1.0, EaseFunction::X)` can be
shortened to `EaseFunction::X`.
- In some cases this will be a minor performance improvement.
- Added test to confirm they're the same.
- ~~Added some benchmarks for bonus points.~~
## Side Notes
- I would have liked to rename `EaseFunction` to `EaseFn` for brevity,
but that would be a breaking change and maybe controversial.
- Also suspect `EasingCurve` should be `EaseCurve`, but say la vee.
- Benchmarks show that calling `EaseFunction::Smoothstep` is still
slower than calling `smoothstep` directly.
- I think this is because the compiler refuses to inline
`EaseFunction::eval`.
- I don't see any good solution - might need a whole different
interface.
## Testing
```sh
cargo test --package bevy_math
cargo doc --package bevy_math
./target/doc/bevy_math/curve/easing/struct.EasingCurve.html
cargo bench --package benches --bench math -- easing
```